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Effective detection of carcinoembryonic antigen (CEA) plays an important role in
the diagnosis of lung cancer. Given the challenges posed by the low abundance
and complexity of biosamples, it is urgent to develop sensitive, cost-effective
and fast detection strategies. In this paper, a novel platform is developed
using doped transition metal carbides as semiconductor materials for organic
electrochemical transistor (OECT) aptamer-based sensors to satisfy sensitivity,
specificity, rapidity, and low cost. A new material, CNT-doped MXene, was
synthesized and utilized in the fabrication of CM-OECATs. The morphology and
doping of CNT-doped MXene were validated effectively. 2.0 wt% CNT achieved
maximum doping efficiency at transconductance (Gm) of 0.801 ms. Through
systematic optimization of temperature, pH, aptamer concentration and
incubation time, a wide detection range ranging from 0.1 pg/mL to 100 ng/mL
was achieved, and the lower limit was 0.051 pg/mL. Favorable stability (0.819%
decline), specificity and repeatability (RSD = 2.05%) were demonstrated. CM-
OECATs effectively distinguished between 11 biosamples of lung cancer from 12
healthy controls (AUC = 0.9748, specificity = 0.9565, sensitivity = 0.9978) for
the clinics. The test carried out in two batches gave p-values <0.05, indicating
the effectiveness of the CM-OECATs in discriminating effectively. In addition,
CM-OECATs demonstrated a favourable correlation in 25 clinical samples (y =
0.9782x + 0.7532, R2 = 0.9723). To sum up, an organic electrochemical transistor
aptamer-based sensor based on CNT-doped MXene (CM-OECATs) is promising
for future real-timemonitoring in clinical settings, paving theway for an efficient,
cost-effective and highly sensitive detection strategy.
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1 Introduction

The paramount importance of early detection and precise
identification in lung cancer diagnosis can’t be overstated
(Yang et al., 2019; Sung et al., 2021; Wang et al., 2022), as it enables
timely and effective therapeutic interventions, thereby enhancing
patient survival rates and overall quality of life. However, diagnosing
lung cancer poses challenges due to subtle early symptoms, which
are often overlooked, and the current lack of highly sensitive, real-
time, and cost-effective detection methods (Wang et al., 2019;
Huang et al., 2022). Consequently, there is a pressing need for
innovative technologies to augment diagnostic accuracy and
efficiency. Carcinoembryonic antigen (CEA), as a biomarker for
lung cancer, emerges as a pivotal indicator owing to its elevated
presence in lung cancer patients (Paniagua et al., 2019; Qiu et al.,
2019; Chen et al., 2023). Therefore, devising effective strategies
for the efficient detection of CEA is crucial for improving lung
cancer diagnosis.

In comparison to methods such as plasma chips, enzyme-
linked immunosorbent assay (ELISA), and Surface-enhanced
Raman Spectroscopy, organic electrochemical transistors (OECTs)
offer distinct advantages, including low cost, rapidity, and real-
time detection capabilities (Ramuz et al., 2015; Moser et al., 2020;
Spyropoulos et al., 2020; Guo K. et al., 2021a). The fundamental
principle encompasses the amplification of tiny signal perturbations
via semiconductor materials for detection, imposing unique
requirements on these materials. Transition metal carbides
(MXene), with their favourable semiconductor properties and
unique defect structures facilitating carrier migration and doping
(Qin et al., 2018; Zhang et al., 2020; Wang et al., 2021; Zahed et al.,
2022), represent a novel sensor material with a large specific surface
area crucial for active site interaction. Carbon nanotubes, known
for their favourable conductivity, are widely used to enhance the
sensitivity of electrochemical sensors (Wee et al., 2010; Wei et al.,
2022; Zamzami et al., 2022). However, the utilization of carbon
nanotube-doped MXene for CEA detection has not been reported.

This study addressed this gap by applying carbon nanotube-
dopedMXene in transistor biosensors, coupled with CEA aptamers,
to construct an aptamer sensor (CNT-doped MXene-based
organic electrochemical aptasensor transistor, CM-OECATs) for
specific CEA detection in lung cancer diagnosis (Figure 1A). We
systematically verified the structure and morphology of carbon
nanotube-doped MXene and optimized the pH, temperature,
aptamer concentration, and incubation time of CM-OECATs
sensors. As a result, CM-OECATs demonstrated acceptable
performance in stability (0.819% decline), specificity, and
reproducibility (RSD = 2.05%). By utilizing CNT-doped MXene
as the organic electrochemical transistor material and leveraging
the double electrical layer effect (Figures 1B, C), the sensor achieved
detection within the range of 0.1 pg/mL-100 ng/mL, with a low
detection limit of 0.051 pg/mL. In clinical sample analysis, CM-
OECATs effectively differentiated 11 lung cancer serum samples
from12 healthy control samples (AUC=0.9748, Specificity = 0.9565,
Sensitivity = 0.9978). t-test results for two sample batches yielded
a p-value of 0.0064 < 0.05, indicating effective discrimination by
CM-OECATs. In 25 clinical samples, CM-OECATs demonstrated
favourable clinical correlation with the target values (y = 0.9782x
+ 0.7532, R2 = 0.9723). In summary, the organic electrochemical

transistor aptamer sensor (CM-OECATs) constructed based on
CNT-doped MXene holds promise for future real-time clinical
monitoring, paving the way for efficient, low-cost, and highly
sensitive detection technologies.

2 Materials and methods

2.1 Synthesis of CNT-doped MXene

The synthesis process of CNT-doped MXene begins with
a reaction between 1 g of Ti3AlC2 and 3 mL of 2 M sodium
hydroxide solution, left to react overnight for 12 h (Mojtabavi et al.,
2019; Mojtabavi et al., 2019; Kim et al., 2021). This results in the
formation of MXene material with a two-dimensional structure.
Subsequently, centrifugation and drying are performed to obtain
powdered MXene. Different concentrations of carbon nanotubes
(Chengdu Organic Chemistry Ltd.) are then subjected to a
hydrothermal reaction with MXene powder at mass fractions
of 1.0%, 2.0%, and 3.0%. The specific reaction parameters
entail a comprehensive reaction between MXene and carbon
nanotubes at 80°C (López Barreiro et al., 2019; Wang et al., 2021;
Guo et al., 2022). The resulting products are used in the fabrication
of CM-OECATs.

2.2 Preparation of CM-OECATs

ToprepareCM-OECATs, a semiconductormaterial with various
ratios of CNT-doped MXene is first synthesized at a concentration
of 1 g/mL. Subsequently, it is spin-coated onto a screen-printed
electrode at 1000 RPM for 120 s. After achieving uniformity,
the electrode is dried on a heating plate at 90°C for 5 min.
Plasma cleaning of the working electrode is then performed
for 3 min (Li et al., 2017; Meirinho et al., 2017; Wang et al., 2020),
followed by 12 h of binding with a CEA aptamer with a sequence
of SH-ATACCAGCTTATTCAATT (Si et al., 2017). After sufficient
binding, the electrode is blocked using 20 μM mercaptoacetic
acid for 6 h. The final CM-OECATs are stored in a refrigerated
environment at 4°C.

2.3 Characterization

Scanning electron microscopy is carried out using the FlexSEM
1000 II, while transmission electron microscopy is performed using
theThermo Fisher Talos L120C. Transfer curves are measured using
a Keithley 2612B.

2.4 Collection and analysis of clinical
samples

Serum samples from patients or healthy individuals are
collected, centrifuged at 1,200 g for 5 min, and finally sealed and
stored at −20°C. Receiver Operating Characteristic (ROC) analysis,
t-tests, and correlation curves are processed using SPSS software.
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FIGURE 1
Schematic diagram illustrating the principle of CEA detection by CM-OECATs. (A) Preparation process of CM-OECATs, including CNT-doped MXene
preparation, sensor fabrication, and functionalization steps. (B) Amplification of small signals through the dual capacitance effect of OECTs. (C) Transfer
curves of CM-OECATs before and after binding with CEA.

3 Results

3.1 Characterizations of CM-OECATs

Taking into account the considerable impact of the
semiconductor material composition and morphology on OECT
sensors, we incorporated CNT into MXene material to modulate
the semiconductor performance of the sensor. Scanning electron
microscopy and transmission electron microscopy images of
carbon nanotubes demonstrate their morphology (Figures 2A, B).
Subsequently, we obtained MXene material with a unique layered

structure through sodium hydroxide etching of transition metal
carbides (Figure 2C). Additionally, we employed a hydrothermal
synthesis method to combine CNT with MXene, as characterized
by SEM (Figure 2D). High-resolution transmission electron
microscopy and selected area electron diffraction (SEAD) analysis of
CNT-doped MXene revealed a unique lattice structure (0.256 nm,
Figure 2E) and distinct diffraction rings related to its hexagonal
crystal structure (Figure 2F), consistent with literature reports
(Hui et al., 2019; Guo Y. et al., 2021b). The above verification of
morphology and hybridization effectively establishes a beneficial
foundation for the next steps in CM-OECATs.
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FIGURE 2
Characterizations of CM-OECATs. (A) Scanning electron microscopy image and (B) transmission electron microscopy image of carbon nanotubes. (C)
Scanning electron microscopy image of MXene and (D) CNT-doped MXene. Carbon nanotubes effectively adhere to the surface of MXene, enhancing
its semiconductor and conductive properties, thereby improving the detection performance of CM-OECATs. (E) High-resolution transmission electron
microscopy image and (F) SEAD image of CNT-doped MXene.

3.2 Optimizations of CM-OECATs

To evaluate the influence of carbon nanotube doping on
CM-OECATs, we used transconductance (Gm) to compare its
different effects (Wu et al., 2019;Wu et al., 2019). Transconductance
represents the level at which CM-OECATs amplify small signals. For
different carbon nanotube concentrations, the transconductance of
CNT-doped MXene showed an upward trend followed by a decline,
reaching a maximum of 0.801 mS at a carbon nanotube proportion
of 2.0 wt% (Figure 3A).This phenomenon could be attributed to the
initial enhancement of CNT-doped MXene conductivity with the
increasing carbon nanotube concentration. However, excessively

high CNT concentration reduces the carrier migration efficiency
of CNT-doped MXene, leading to a plateau in transconductance
(Supplementary Table S1, Eq. 1). This also indicates that the
appropriate dopant concentration is crucial for effectively promoting
the semiconductor performance of MXene. Simultaneously, we
optimized important parameters such as aptamer concentration,
time, pH, and temperature. Transconductance curves before and
after CM-OECATs binding with CEA for parameter evaluation are
shown in Figure 3B. Regarding aptamer concentration optimization,
the maximum value for the CM-OECATs aptamer sensor is
attained at approximately 20 μM (9.12 ± 0.68 μA, Figure 3C).
Regarding aptamer incubation time, the incubation time for
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FIGURE 3
Optimizations of CM-OECATs. (A) Transconductance performance of CM-OECATs at different carbon nanotube concentrations, with a maximum of
0.801 mS at a carbon nanotube proportion of 2.0 wt%. (B) Transconductance curves before and after CM-OECATs binding with CEA. (C) Aptamer
sensor concentration optimization for CM-OECATs, with the highest value at around 20 μM (9.12 ± 0.68 μA). (D) Incubation time optimization for
CM-OECATs sensor, reaching the maximum at 30 min (8.91 ± 0.34 μA). (E) pH optimization for CM-OECATs, showing an upward then downward trend,
reaching the highest value at pH = 7 (9.15 ± 0.44 μA). (F) Incubation temperature optimization for CM-OECATs, showing an upward then downward
trend, reaching the maximum at around 37°C (9.23 ± 0.27 μA).
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FIGURE 4
Validations of CM-OECATs. (A) Schematic diagram of CM-OECATs detection. (B) Specificity of CM-OECATs, showing a significantly higher signal
response to CEA than other interfering substances. (C) Reproducibility of CM-OECATs, with an RSD value of only 2.05% for nine sensors. (D) Stability of
CM-OECATs after 1 month, showing a decrease of only 0.819%. (E) Response of CM-OECATs to CEA in the range of 0.1 pg/mL to 100 ng/mL, and its
corresponding (F) standard curve.

CM-OECATs reaches its maximum at 30 min (8.91 ± 0.34 μA,
Figure 3D). For pH optimization, CM-OECATs pH exhibits an
upward then downward trend, reaching its highest value at pH =
7 (9.15 ± 0.44 μA, Figure 3E). For temperature optimization, the
incubation temperature of CM-OECATs shows an upward then
downward trend, reaching its maximum at around 37°C (9.23
± 0.27 μA, Figure 3F), coinciding with human body temperature
and aligning with the parameters for antigen-aptamer binding.
The optimization of the doping ratio and related parameters lays

a beneficial foundation for the application of CM-OECATs in
the next steps.

Gm =
Wd
L

μC*(Vth −VG) (1)

where C* is the volumetric capacitance, Vth is the threshold voltage,
Gm is the transconductance, Vg is the gate voltage,μ is the mobility,
W, D, L are the width, depth, length of the channel, respectively.
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FIGURE 5
Clinical performance of CM-OECATs. (A) 11 lung cancer serum samples and 12 healthy control serum samples. (B) High correlation of values
determined by CM-OECATs for 23 clinical samples with the target values (y = 0.9782x + 0.7532, R2 = 0.9723). (C) t-test for 11 lung cancer serum
samples and 12 healthy control serum samples by CM-OECATs, with a p-value of only 0.0064 < 0.05. (D) ROC curve analysis, showing effective
discrimination (AUC = 0.9748, Specificity = 0.9565, Sensitivity = 0.9978).

3.3 CM-OECATs’s specificity,
reproducibility, stability, and standard
calibration curve

The specificity, reproducibility, stability, and standard curve
of the sensor are crucial for its clinical detection. Consequently,
we evaluated the specificity of CM-OECATs by assessing their
response to CEA in the presence of various interfering substances.
CM-OECATs exhibited a signal response to CEA significantly
higher than that of other interfering substances (Figures 4A, B).
For reproducibility, we selected nine CM-OECATs sensors, with
an RSD value of only 2.05%, indicating favorable reproducibility
(Figure 4C). Regarding stability, CM-OECATs showed a decrease
of only 0.819% after 1 month (Figure 4D), indicating good stability.
Simultaneously, CM-OECATs demonstrated a wide range of CEA
detection from 0.1 pg/mL to 100 ng/mL, with a detection limit of
0.0051 pg/mL (Figures 4E, F), showcasing performance that is either
superior or equivalent to the current state-of-the-art literature. The
above results demonstrate that CM-OECATs possess the required
specificity, reproducibility, stability, and standard curve, providing a
beneficial foundation for future clinical decisions.

3.4 CM-OECATs’s clinical performance

We collected 11 lung cancer serum samples and 12 healthy
control serum samples to assess the clinical performance of
CM-OECATs (Figure 5A, Supplementary Table S2). Concurrently,
CM-OECATs evaluated values for 23 clinical samples, showing
a high correlation with the target values (Figure 5B, y = 0.9782x
+ 0.7532, R2 = 0.9723), demonstrating the reliability of the
CM-OECATs method The values obtained from CM-OECATs
measurements exhibit a strong correlation with the target values
in lung cancer patients (Supplementary Figure S1), demonstrating
excellent performance. A similar correlation is observed in
the case of healthy individuals (Supplementary Figure S2).
Furthermore, CM-OECATs successfully passed a t-test for 11 lung
cancer serum samples and 12 healthy control serum samples,
with a p-value of only 0.0064 < 0.05 (Figure 5C). Moreover,
employing ROC curve analysis, the sensor attained effective
discrimination (AUC = 0.9748, Specificity = 0.9565, Sensitivity
= 0.9978, Figure 5D). The analysis results of correlation, t-
test, and ROC indicate that CM-OECATs exhibited favorable
clinical performance.
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4 Discussion

In selecting CNT-doped transition metal Carbide as the
material for our organic electrochemical transistor biosensor, our
rationale is primarily grounded in its capacity to augment the
conductivity of semiconductor materials, complemented by its
unique two-dimensional structure. The incorporation of carbon
nanotubes (CNT) into the transition metal carbide, MXene, not
only improves the electronic transport properties but also imparts
unique characteristics owing to its two-dimensional nature. Opting
for CNT-doped transitionmetal carbide paves the way for enhanced
performance in the OECT sensor, fostering the hope that analogous
structures will prove valuable in guiding the future design of
organic electrochemical transistors. This strategic selection aligns
with our objective to push the boundaries of sensor technology
by leveraging advanced materials with enhanced electronic
properties.

Furthermore, the utilization of CNT-doped MXene as the
semiconductormaterial for CM-OECATs is highlighted, showcasing
commendable performance in sensitivity, stability, reproducibility,
and clinical sample detection. The merit of the sensor can be largely
attributed to the synergistic effects of CNT doping, significantly
enhancing the detection performance. This achievement not only
validates our approach in utilizing CNT-Doped transition metal
carbide but also provides insightful directions for future biosensor
designs. The emphasis on enhancing detection capabilities becomes
a cornerstone for the ongoing evolution of sensor technologies,
inspiring novel strategies for the development of next-generation
biosensors with improved sensing capabilities.

Looking forward, the future of clinical diagnostic sensors
is envisioned to be more sensitive, user-friendly, and rapid.
The imperative resides in developing new materials to enhance
sensitivity and overall detection performance. The discussion
underscores the crucial role of doped two-dimensional materials,
particularly in opening new avenues for highly efficient diagnostic
tools. By focusing on heightened sensitivity, convenience, and
cost-effectiveness, we advocate for ongoing research in material
science to drive innovation and contribute to the development
of advanced clinical diagnostic sensors. The incorporation of
doped two-dimensional materials emerges as a promising avenue
for realizing efficient and accessible diagnostic methodologies in
the future.

5 Conclusion

In this work, we have developed a novel material known
as CNT-doped MXene, which has been incorporated in the
construction of aptamer-based organic electrochemical transistor
sensors, denoted as CM-OECATs. A rigorous validation procedure
was used to evaluate the morphology and doping properties
of CNT-doped MXene, revealing optimum doping efficiency
at 2.0 wt% CNT, resulting in a notable transconductance of
0.801 ms. Systematic optimization of temperature, pH, aptamer
concentration, and incubation time of CM-OECATs enabled a

broad detection range ranging from 0.1 pg/mL to 100 ng/mL, with
a remarkably low detection limit of 0.051 pg/mL. In particular,
the biosensor demonstrated favourable stability (a decrease of
0.819%), specificity and reproducibility (RSD = 2.05%). The CM-
OECATs demonstrated effective discrimination between 11 samples
of lung cancer serum and 12 healthy controls in clinical sample
analysis, showing remarkable performance metrics (AUC 0.9748,
specificity 0.9565, and sensitivity 0.9978). t-test results from two
sample batches yielded 0.0064 < 0.05, highlighting the robust
discrimination capability of CM-OECATs. In addition, the CM-
OECATs demonstrated a strong clinical correlation between the 25
clinical specimens (y = 0.9782x + 0.7532, R2 = 0.9723). To sum up,
an aptamer-based organic electrochemical transistor sensor (CM-
OECATs), which is constructed using CNT-doped MXene, holds
great promise for future real-time clinical monitoring, indicating
significant progress in efficient, cost-effective and highly sensitive
detection technologies.
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