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An modified intelligent real-time
crack detection method for
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learning
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The combination of UAV camera and intelligent algorithm is a promising
method for non-contact bridge crack detection. In this paper, an inspection
tool based on UAV Image Acquisition Technology (UAVIAT) and Improved
Intelligent Target Detection Technology (IITDT) called Improved Intelligent Real-
Time Crack Detection Method for Bridges (IIRTCDMB) is proposed for efficient
crack detection. The contributions of this paper are (1) The Squeeze-Excitement
(SE) attention module is integrated into the target detection algorithm - You
Only Look Once version 7 (YOLOv7) model to improve the learning ability of
the feature channel. A Focal-efficient intersection over union (Focal-EIoU) loss
function is also introduced to improve the regression accuracy of the model. As
a result, a new crack image detection algorithm, YOLOv7-CD, is proposed. (2) A
training process based on two-stage transfer learning (TSTL) is established, and
hyper-parameter optimization of YOLOv7-CD is carried out. The feasibility and
excellent performance of the proposedmethod are verified by applying it on the
Cuntan Yangtze River Bridge. The results show that the average precision (AP) of
the YOLOv7-CDmodel is improved by 3.19% comparedwith the original YOLOv7
model. After TSTL and hyperparameter optimization, the AP of the YOLOv7-CD
model for bridge crack detection reaches 98.01%, which is higher than that of
the popular target detection models. The IIRTCDMB proposed in this paper can
acquire bridge surface imagesmore safely and efficiently, and provide inspectors
with more accurate structural crack information with lower computational and
hardware requirements, which can provide technical support for the assessment
of structural safety conditions and the formulation of maintenance programs.

KEYWORDS

bridge crack detection, target detection algorithm, transfer learning, hyperparameter
optimization, unmanned aerial vehicle

1 Introduction

Crack disease is one of the most common diseases in concrete bridges,
which has an essential impact on bridges’ structural stability and traffic capacity.
Therefore, visually inspecting structures is important for bridge operation and
maintenance (Ge et al., 2020; Saidin et al., 2022). With the increase in the
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service life of bridges, the demand for crack detection is
also increasing (Mohan and Poobal, 2018). Currently, manual
inspection and bridge inspection vehicle inspection are the
main methods for bridge inspection. Manual detection has
high risk, strong subjectivity, and long periods. At the same
time, the bridge inspection vehicle method is not conducive to
traffic safety, has limited applicable conditions, and is expensive
(Tomiczek et al., 2019).

Recently, the rapid development of unmanned aerial vehicles
(UAVs) has made collecting images of bridge conditions trivial
(Perry et al., 2020). Its high-resolution camera can quickly and safely
obtain high-definition images, which serves as an important basis
for subsequent analysis of bridge defects. It has been confirmed
that the UAS-based bridge inspection is faster and more objective
than the existing technology (Kim et al., 2022). Unmanned aerial
vehicles (UAVs) are now a viable option for augmenting bridge
inspections (Khaloo et al., 2018; Li et al., 2024). Using UAVs for
bridge appearance inspection not only has high accuracy and low
cost (Seo et al., 2018) but can also perform all-around inspections
(Sanchez-Cuevas et al., 2019; Wang et al., 2020; Yao et al., 2023a)
and reduce the danger in the inspection work (Liu et al., 2020;
Kao et al., 2022).

Currently, there are some things that could be improved
in using traditional digital image processing methods to detect
cracks. In the crack identification and extraction process, the main
methods are the gray threshold segmentation method based on
the gray difference between the crack area and the background
(Xuhang et al., 2011) and the Canny iterative method based on
the linear features of cracks (Xu et al., 2013). The gray threshold
segmentation method can only give the general position of the
cracks, and the positioning accuracy is insufficient. The Canny
iterative method is susceptible to background clutter, resulting in a
high rate of false detection andmissed detection.With the evolution
of machine learning technology, some scholars have implemented
crack detection using crack multi-features combined with three
statistical classification methods, namely, Support Vector Machine,
AdaBoost, and Random Forest, respectively (Prasanna et al., 2016).
However, these methods require the manual design of crack
features, resulting in poor adaptability and scalability of the
algorithm. The tensor voting algorithm (Guan et al., 2015) that
enhances crack features by utilizing the linear difference between
cracks and background noise has good results in detecting linear
cracks, but it is not sensitive to complex cracks and may miss
width information.

Deep learning has shown excellent performance in image
recognition (Kim et al., 2018; Wei et al., 2019; Chen et al., 2020;
Sun et al., 2021; Yang et al., 2021; Chen et al., 2023). Crack detection
algorithms based on deep learning can be divided into two
categories. The first category uses object detection networks
for crack localization and identification, while the other uses
semantic segmentation models for pixel-level recognition of
crack images. Research has shown that the You Only Look
Once (YOLO) series algorithm performs outstandingly among
many object detection networks (Du et al., 2021). In the YOLO
model, integrating the attention module or improving the
feature extraction network can enhance the sensitivity of the
model to the target features (Yao et al., 2019; Yang et al., 2022a;

Liu et al., 2022; Zhang et al., 2023a; Kao et al., 2023); combining
the depth-separable convolution or replacing the lightweight
feature extraction network, a lightweight target detection network
for real-time detection of cracks on the structure surface can
be obtained (Zhang et al., 2020a; Yao et al., 2021a; Yang et al.,
2022b; Zhang et al., 2022; Zhang et al., 2023b; Jin et al., 2023);
introducing the focal loss function or transfer learning can
improve the recognition accuracy of the model. Deep learning
has been gradually applied to bridge crack detection (Zhang et al.,
2020b; Yao et al., 2021b; Teng et al., 2022). However, there are still
problems, such as difficulty in obtaining crack images, excessive
training parameters of networkmodels, long inference time, and low
detection accuracy.

In order to obtain bridge surface crack images more efficiently
and improve the model’s detection accuracy of cracks, this
study proposed an improved intelligent real-time crack detection
method for bridges (IIRTCDMB) based on UAVIAT and
improved intelligent target detection technology (IITDT). First,
the appearance image of the bridge to be detected was obtained
through UAVs. Then, the SE attention module was introduced into
the YOLOv7 model to enhance the feature extraction ability of
cracks, and the Focal-efficient intersection over union (Focal-EIoU)
loss function was used to balance positive and negative samples
and accelerate loss convergence. The improved model was defined
as YOLOv7-CD. To further improve the average precision (AP),
the improved model underwent two-stage transfer learning (TSTL)
training. The initial training was performed with the COCO2017
dataset to obtain the initial training weights. Then, the publicly
available CRACK500 dataset (Eisenbach et al., 2017) was used for
pre-training with different hyperparameters to obtain pre-training
weights. Finally, the training is performed on the bridge crack
dataset (QL_CRACK dataset), and the error is reduced by adjusting
the values of hyperparameters to make the model more suitable for
bridge crack detection.

2 Methodologies

The IIRTCDMB proposed in this article mainly includes
high-definition image acquisition by UAVs and automatic
localization and recognition of bridge cracks based on
the YOLOv7-CD model. The specific process is shown
in Figure 1.

In the UAVIAT, bridge information review, site risk assessment,
flight plan development, and daily environmental monitoring will
be conducted. Then, the UAV will be selected, and parameter
settings such as shooting distance and flight route will be completed.
After camera calibration, the bridge structure’s appearance will be
captured, and an automatic naming program will be written to
assign position and number to each image. The image quality will
be judged based on the proposed image quality evaluation function.
The images with qualified quality will be stored in the database
according to the preset cycle, and finally, the bridge crack dataset
will be obtained. The YOLOv7-CD model will be trained with TSTL
and hyperparameter optimization. Finally, cracks will be detected in
the images, and their corresponding locations in the actual bridge
will be obtained.

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2024.1351938
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Yang et al. 10.3389/fmats.2024.1351938

FIGURE 1
The diagram of the improved intelligent real-time crack detection method for bridges.

2.1 Image acquisition method

2.1.1 UAV selection
Currently, the UAVs mainly used for crack detection include DJ

Mavic 2 Pro,DJM210-RTK,DJMini 2, andDJMavicAir 2 (Xu et al.,
2023a). Due to the large span of bridges inspected byUAVs, themain
parameters to consider are hovering time and hovering accuracy.
Additionally, since it involves storing appearance images of large-
span bridges, there is also a high requirement for memory. Through
an analysis of the parameters of the four UAVs, DJ Mavic Air 2 is the
best option. Its hover time is 33 min, hover accuracy is ± 0.1, and
memory size is 8 GB. To ensure consistent experimental conditions,
the distance between the UAV and the target surface is fixed at 5.0m,
and the normal direction of the lens is perpendicular to the target
surface. The images will be taken in clear weather conditions and
natural lighting. To ensure sufficient image data, the UAV will cover
the entire bridge deck and tower surface, with a 50% overlap in the
images taken.

2.1.2 Camera calibration
In the process of picture-taking and crack detection of concrete

bridges, a geometric model of camera imaging is required to
determine the interrelationship between the three-dimensional
geometric position of a point on the surface of the bridge
structure and its corresponding point in the image. In the
UAVIAT, the calibration of camera parameters is the key link, and
its calculation process and calibration results directly affect the
authenticity of the crack detection results. The conversion model

of the ground coordinate system to the pixel coordinate system is
introduced below.

1) Transformation from ground coordinate system to camera
coordinate system.

In order to accurately describe the motion trajectory of the
UAV and obtain its position information, a transformation model
from the ground coordinate system (XG,YG,ZG) to the camera
coordinate system (XC,YC,ZC) has been established. They represent
the angle of camera rotation around the XG, YG, and ZG axes,
respectively (Figure 2). Then, the rotation matrix R from the ground
coordinate system to the image coordinate system can be obtained,
as shown in Eq. 1.

R = [[

[

1 0 0
0 cos σ sin σ
0 − sin σ cos σ

]]

]

⋅[[

[

cos μ 0 − sin μ
0 1 0

sin μ 0 cos μ

]]

]

⋅[[

[

cos ε sin ε 0
− sin ε cos ε 0

0 0 1

]]

]
(1)

In addition to the rotation transformation, there is also a
translation transformation between the UAV and the ground.
Therefore, the coordinate transformation matrix from the ground
coordinate system to the camera coordinate system is given by Eq. 2.

M1 = [

[

R T

O 1
]

]
(2)

where T = [Tx Ty Tz]T is the translation transformation matrix.
Tx, Ty and Tz represent the displacement of the UAV in the XG, YG,
and ZG directions, respectively.
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FIGURE 2
UAV motion state description parameters: (A) Rotation around XG axis; (B) Rotation around YG axis; (C) Rotation around ZG axis.

FIGURE 3
Coordinate transformation: (A) Transformation from camera coordinate system to image coordinate system; (B) Transformation from image coordinate
system to pixel coordinate system.

2) Transformation from camera coordinate system to image
coordinate system.

As shown in Figure 3A, the transformation from the camera
coordinate system to the image coordinate system (X,Y,Z) follows
the pinhole imaging principle. The ZC axis of the camera coordinate
system is on the same line as the Z-axis of the image coordinate
system. P is a point in space, P1 is its projection point in the plane
XCOCYC, P2 is the imaging point of P in the XOY plane of the
image coordinate system, f is the focal length, and z is the distance
from point P to point P1. The conversion matrix F from camera
coordinates to image coordinates is given by Eq. 3.

F =
[[[[

[

f/z 0 0 0

0 f/z 0 0

0 0 1 0

]]]]

]

(3)

3) Transformation from image coordinate system to pixel
coordinate system.

The pixel coordinate system reflects the arrangement of pixels in
the CMOS chip of the camera, as shown in Figure 3B. The image
coordinate system and the pixel coordinate system (u,v) are in a

translation relationship, and the transformation matrix D between
them is shown in Eq. 4.

D =
[[[[

[

1/dX 0 u0

0 1/dY v0
0 0 1

]]]]

]

(4)

where (u0,v0) is the coordinate of the image coordinate system
origin in the pixel coordinate system; dX and dY represent the
physical dimensions of the pixel in the X and Y directions,
respectively.

In summary, the formula for transforming the ground
coordinate system to the pixel coordinate system is shown in Eq. 5.
Eq. 6 represents the calculation of the intrinsic parameter matrix of
the camera.

[[[[

[

u

v

1

]]]]

]

= DgFgM1g

[[[[[[[

[

XG

YG

ZG

1

]]]]]]]

]

=M2gM1g

[[[[[[[

[

XG

YG

ZG

1

]]]]]]]

]

(5)
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M2 = DgF =
[[[[

[

f/zdX 0 u0 0

0 f/zdY v0 0

0 0 1 0

]]]]

]

(6)

where [u,v,1]T is the homogeneous coordinate in the pixel
coordinate system, and [XG,YG,ZG,1]

T is the homogeneous
coordinate in the ground coordinate system. M1 is the external
parameter matrix of the camera, and M2 is the internal parameter
matrix of the camera.

2.1.3 Image quality assessment
In this article, entropy and sharpness are utilized as two image

quality parameters to assess the quality of the images captured from
the UAV.10 (Duque et al., 2018). The formula for judging the image
quality is given by Eq. 7 and Eq. 8. The criteria for judging the image
quality are:

1) The image sharpness is greater than the average value
of sharpness.

2) The image sharpness is less than the average value of sharpness,
but the image entropy is less than the average value of entropy.

The image satisfying any of these points is considered a qualified
image.

Sk ≥
1
N

N

∑
k=1
( 1
Psum

Psum
∑
j=1

8

∑
i=1
|dGi/dxi|) (7)

Sk ≤
1
N

N

∑
k=1
( 1
Psum

Psum
∑
j=1

8

∑
i=1
|
dGi

dx i
|),Ek ≤

1
N

N

∑
k=1
(−

255

∑
i=0

pi log2(pi)) (8)

where N is the total number of captured bridge images, Sk is the
sharpness of the kth image, Psum is the total number of pixels in
the image, dGi is the amplitude of the grayscale variation, and dxi
is the distance increment between pixels. dGi/dxi is the gradient
vector between pixels, which is calculated based on the pixel values
of the eight neighboring pixels for each pixel. pi is the occurrence
probability of the gray value i in the image, which is obtained from
the grayscale histogram.

2.2 Crack detection

2.2.1 YOLOv7-based crack
Thebridge surface images thatmeet the quality requirements are

input into the crack detection model YOLOv7. In the beginning,
the input image enters the main feature extraction network
Backbone, which performs crack feature extraction by convolutional
normalization and activation function. In the feature extraction
process, the image will be compressed in height and width first,
then the channel expansion will be performed, and finally, the
three effective crack feature layers will be formed. Then, the three
effective crack feature layers obtained at Backbone will be fused
by the FPN framework, which aims to combine the crack feature
information at different scales for enhanced feature extraction of
the image. FPN performs up-sampling and down-sampling on the
crack features to achieve the fusion of crack features. After passing
through the Backbone and FPN, three enhanced effective crack

feature layers will be obtained. Each crack feature layer has a width,
height, and number of channels. At this point, the crack feature
map can be viewed as a collection of feature points, with three prior
boxes at each feature point, each of which has the same number of
crack features as the number of channels. Eventually, the RepConv
structure is introduced in the Head part to equivalent the complex
residual structure to a normal 3 × 3 convolution. This can reduce
the complexity of the network while ensuring the same prediction
performance.

2.2.2 Attention module
The task of locating and identifying cracks focuses on details

such as background color and crack position. Therefore, in order to
enhance the model’s perception of crack features and improve the
detection effect on small targets, three SE channel attentionmodules
were added to the YOLOv7 model. The SE attention module has
three steps:

1) Using adaptive global average pooling to compress the length
and width of the crack feature layer, leaving only the
information of the channel dimension C.

2) Continuously using two fully connected layers to perform self-
attention on the channel information and obtaining a feature
map with a dimension of 1*1*C.

3) Performing activation by channel-wise multiplication with
weight coefficients on the feature map with channel attention
(1*1*C) and the original input feature map (H*W*C), and
finally outputting a feature map with channel attention.

2.2.3 Loss functions
Neural network model training is the process of optimizing

the parameters in the network and reducing the losses using
a backpropagation algorithm. Loss is the penalty for inaccurate
predictions during the training process and describes the difference
between the model’s predicted results and the actual results. Eq. 9 is
the formula for calculating the loss function of YOLOv7 during the
training process.

L = LCIoU + Lobj + Lcls (9)

where L is the total loss of the model, LCIoU is the bounding
box regression loss used to measure the deviation between the
predicted and ground truth crack boxes, Lobj is the confidence loss
used to measure the accuracy of crack localization, and Lcls is the
classification loss used to measure the accuracy of predicting the
presence of cracks. The calculation formulas for Lobj and Lcls are
shown in Eq. 10 and Eq. 11.

Lobj = −
S2

∑
i=0

B

∑
j=0

Iobi,j [C
j
i log(Ĉ

j
i)+ (1−C

j
i) log(1− Ĉ

j
i)]

−λno
S2

∑
i=0

B

∑
j=0

Inoi,j [C
j
i log(Ĉ

j
i)+ (1−C

j
i) log(1− Ĉ

j
i)]

(10)

Lcls = −
S2

∑
i=0

Iobi,j∑[P
j
i log(P̂

j
i)+ (1− P

j
i) log(1− P̂

j
i)] (11)

where B and S2 are the priori box and the feature map scale. Iobi,j and
Inoi,j denote crack and no crack in the jth prior box of the ith grid. Cj

i
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FIGURE 4
YOLOv7-CD model architecture.

FIGURE 5
Two-stage transfer learning training diagram.
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FIGURE 6
UAV shooting route diagram.

and Ĉj
i denote the confidence of the predicted and labeled box. λno is

the weight coefficient. Pji and P̂ji denote the classification probability
of the predicted and labeled box.

When calculating the regression loss, the EIoU was used
instead of complete intersection over union (CIoU) to consider
the effects of overlapping area, centroid distance, and aspect ratio
of the target and prediction boxes simultaneously. The EIoU takes
into account the width and height loss, which minimizes the
difference between the width and height of the target and prediction
boxes, thereby accelerating convergence and improving regression
accuracy. Since cracks are small and occupy a small proportion of
the background, the focal loss function is introduced to balance the
proportion of foreground and background data samples (Lin et al.,
2020; Wang et al., 2023a). Finally, the Focal-EIoU loss function is
obtained, as shown in Eq. 12 and Eq. 13.

LEIoU = 1− IoU+
ρ2(b,bgt)
cw

2 + ch2
+
(w−wgt)2

cw
2 +
(h− hgt)2

ch
2 (12)

LFocal−EIoU = IoU
γLEIoU (13)

where IoU is the ratio of the intersection of the area of the target
box and the predicted box to the concatenated set. b,w and h are the
coordinates of the center point, width, and height of the predicted
box, respectively. bgt, wgt and hgt are the coordinates of the center
point, width, and height of the target box, respectively. ρ2(b,bgt)
represents the distance between two center coordinates. cw and ch are
the minimum width and height of the outlier boxes of the target and
prediction boxes. λ is a parameter controlling the degree of outlier
suppression.

2.2.4 YOLOv7-CD model
The YOLOv7 model, which integrates the SE attention module

and the Focal-EIoU Loss, is named YOLOv7-CD, as shown in

Figure 4. The red part indicates the added SE attention module, and
the red arrow represents the changed computation path.

2.3 Two-stage transfer learning

The hyperparameters for extracting different features in the
same neural network model have good interoperability. In order
to improve the training efficiency and prediction accuracy of the
model, TSTL is used in this study. The transfer learning process
is shown in Figure 5. In Stage 1, the initial training weights are
obtained by initializing the model parameters on the COCO2017
dataset. In Stage 2, the model backbone network is frozen, and the
batch normalization layer is not updated during feature transfer to
reduce the model error and to ensure the transfer effect. The pre-
trained model parameters are adjusted by training on the publicly
available CRACK500 dataset, which is a pavement crack dataset
suitable for target detection. In Stage 3, freeze training and then thaw
training is performed on the QL_CRACK dataset.

3 Experiments

3.1 Image acquisition

The selected research object of this article is the Cuntan
Yangtze River Bridge, which starts from Huangjuewan Interchange
in the south, crosses the Yangtze River, and ends at Happy Valley
Interchange in the north. The total length of the line is 1.6 km, and
the main bridge is 880 m long and 42 m wide.

The DJ Mavic Air 2 UAV was used for bridge crack image
acquisition in the experiment, which has high vertical hovering
accuracy and horizontal hovering accuracy (Yao et al., 2022). The
resolution of captured photos can reach up to 8000*6000, and its
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TABLE 1 Performance comparison before and after model
improvement.

Method Precision
(%)

Recall
(%)

F1 AP (%) FPS

YOLOv7 89.20 92.07 0.86 94.60 52

YOLOv7-CD 94.70 96.31 0.95 97.79 52

high pixels can meet the data requirements of the experiment. In
addition, the excellent endurance and stable flight speed of this UAV
can ensure the efficiency of image acquisition.

The flight path of DJ Mavic Air 2 is shown in Figure 6.

1) Flew along the path A-B-C-D on the upper bridge deck, then
flew to the lower bridge deck to shoot along the same route.
After shooting the bridge deck, retrieved the UAV.

2) Flew from the top point E on one side of the bridge tower pylon
to the bottom endpoint F, shot the four sides of the pylon back
and forth, then flew to another pylon and flew up from the
bottom endpoint G to the top point H. Repeated the appeal
operation until all the pylons were shot and retrieved the UAV
(this path was E-F-G-H).

3) The bridge pier shooting path (I-J-K-L) was similar to the
bridge tower. Started flying from the top point I on one side
of a bridge pier to the bottom endpoint J. After shooting four
sides, flew to the next pier and repeated the aforementioned
shooting operation. Finally, retrieved the UAV.

After each retrieval of the UAV, the acquired image information
was read, and the images were numbered in the order in
which they were taken. To obtain clear images of cracks, raw
images with occlusions were consciously avoided, and images with
occlusions were carefully screened and removed during the dataset
creation process.

3.2 Dataset creation

In this experiment, a total of 466 raw images were acquired
by DJ Mavic Air 2. In order to improve the training efficiency of
the model, this article does some processing on the raw images. A
raw image with a resolution of 8000 × 6000 was segmented into
713 sample images of 256 × 256, and then 10000 crack images that
meet the criteria are selected as training sample images among the
sample images according to the image quality ranking from high to
low to create the QL_CRACK dataset. To determine the location of
the crack images in the bridge structure, the images were named
according to “bridge structure - raw image number - segmented
image number”. The bridge structure includes a bridge deck (BD),
a bridge tower (BT), and a bridge pier (BP). After obtaining the
QL_CRACK dataset, Lamblmg software was used to annotate the
image crack areas, and 10,000 annotation files in XML format were
obtained after annotation. The COCO2017 public dataset and the
publicly available CRACK500 crack dataset were downloaded from
the internet as the datasets for transfer learning, with a total of
163,957 images in the COCO2017 dataset and 3,368 images in the

CRACK500 dataset. To evaluate the generalization ability of the
YOLOv7-CD model, 80% of the 10,000 images were used as the
training and validation sets (with 80% of the training set and 20%
of the validation set), and 20% were used as the test set according to
the five-fold cross-validation principle.

3.3 Model training

The training process of the network model in this study was
implemented in the Pytorch deep learning framework built in
Windows 11, NVIDIA GeForce RTX 3060 was used for the GPU,
AMD Ryzen 7 5800H with Radeon Graphics at 3.20 GHz was
used for the CPU, CUDA11.0 and CUDNN8.0 were selected for
the calculation platform, RAM specification was 16 GB, and the
Deep learning framework was built by PyTorch 1.7.1. Development
environment was based on Visual Studio Code 1.73, python3.9.

When training the model, the batch size can only be set to 2,
4, and 8 due to the limitation of the experimental platforms, and
a small batch size setting can lead to a large model error and slow
down the training speed during the batch normalization operation
(Ioffe and Szegedy, 2015; Wu and He, 2018). However, the TSTL
approach adopted in this study can solve this problem well. As
shown in Figure 5, the approach first trained on the COCO2017
dataset to obtain the initial weights; then froze the backbonenetwork
and trained 50 epochs on the CRACK500 dataset to obtain the
pre-training weights; and finally froze the backbone network to
train 50 epochs on the QL_CRACK dataset and then unfroze it to
train 250 epochs.

In order to compare the performance of the YOLOv7-CD
model under different conditions, a total of 16 sets of working
conditions were set up for comparison experiments, which were
(SGD10−2.0)LR-(2 or 4 or 8)BS-(0)TL, (Adam10−2.0)LR-(2 or
4 or 8)BS-(0)TL, (SGD10−5.0)LR-(4)BS-(0) TL, (SGD10−4.0)LR-
(4)BS-(0)TL, (SGD10−3.0)LR-(4)BS-(0)TL, (SGD10−1.0)LR-(4)BS-
(0)TL, (Adam10−5.0)LR-(4)BS-(0)TL, (Adam10−4.0)LR-(4)BS-
(0)TL, (Adam10−3.0)LR-(4)BS-(0)TL, (Adam10−1.0)LR-(4)BS-(0)TL
and (Adam10−3.0)LR-(4)BS-(1or2)TL. “LR” and “BS” represent the
learning rate and batch size, respectively. “SGD” and “Adam” are
shorthand for stochastic gradient descent algorithm and adaptive
descent algorithm, respectively. The corresponding parameters are
in the front brackets. For example, “(SGD10−2.0)LR-(2)BS” indicates
that the SGD learning rate optimization algorithm is chosen with
an initial learning rate of 10−2 and a batch size of 2. “(0)TL” denotes
TSTL training, “(1)TL” denotes no second stage of transfer learning
training, and “(2)TL” denotes no TSTL was performed.

4 Results and discussion

In this article, Precision, Recall, F1, and AP were selected as
accuracy evaluation indexes, and frames per second (FPS) were
selected as model inference speed evaluation indexes to analyze the
performance of the YOLOv7-CD model.

Before introducing the evaluation metrics, we should first
introduce the confusion matrix. The confusion matrix itself is a
rough evaluation of the prediction results, which can give us a
macro understanding of the prediction results and the original data.
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FIGURE 7
Variation of Precision, Recall, F1, and AP with batch size for different learning rate optimization algorithms: (A) Variation of Precision with batch size; (B)
Variation of Recall with batch size; (C) Variation of F1 with batch size; (D) Variation of AP with batch size.

TABLE 2 Precision, Recall, F1, and AP for different working conditions.

Number Working condition Precision (%) Recall (%) F1 AP (%)

1 (SGD10−2.0)LR-(2)BS-(0)TL 94.11 95.66 0.95 96.71

2 (SGD10−2.0)LR-(4)BS-(0)TL 94.70 96.31 0.95 97.79

3 (SGD10−2.0)LR-(8)BS-(0)TL 95.51 95.66 0.96 97.82

4 (Adam10−2.0)LR-(2)BS-(0)TL 93.92 94.86 0.94 96.88

5 (Adam10−2.0)LR-(4)BS-(0)TL 94.99 96.56 0.96 97.66

6 (Adam10−2.0)LR-(8)BS-(0)TL 94.40 96.80 0.96 97.76

We will also use the data in the confusion matrix to calculate the
evaluation index.

The confusion matrix has four compartments that contain all
the possible scenarios of the prediction result when we make a
binary prediction.

True Positive (abbreviated as TP) means that the sample is
actually Positive and the model predicts the sample as Positive.

True Negative (abbreviated as TN) means that the sample is
actually Negative and the model predicts the sample as Negative.

False Positive (abbreviated as FP) means that the sample is
actually Negative, but the model predicts it as Positive.

False Negative (abbreviated as FN) means that the sample is
actually Positive, but the model predicts it to be Negative.

Precision, also known as the check rate, indicates the proportion
of samples predicted to be Positive that are actually Positive.
Precision can be seen as a measure of quality. Higher precision
means that an algorithm returns more relevant results than
irrelevant ones.

The formula is:

Precision = TP
TP+ FP

(14)
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TABLE 3 Train loss under different working conditions.

Number Working condition Train loss

7 (SGD10−5.0)LR-(4)BS-(0)TL 0.0221

8 (SGD10−4.0)LR-(4)BS-(0)TL 0.0187

9 (SGD10−3.0)LR-(4)BS-(0)TL 0.0175

2 (SGD10−2.0)LR-(4)BS-(0)TL 0.0194

10 (SGD10−1.0)LR-(4)BS-(0)TL 0.0224

11 (Adam10−5.0)LR-(4)BS-(0)TL 0.0135

12 (Adam10−4.0)LR-(4)BS-(0)TL 0.0130

13 (Adam10−3.0)LR-(4)BS-(0)TL 0.0100

5 (Adam10−2.0)LR-(4)BS-(0)TL 0.0129

14 (Adam10−1.0)LR-(4)BS-(0)TL 0.0175

Recall, also known as the rate of checking for completeness,
indicates the proportion of the number of actual positive samples
in the positive sample that the prediction results in a positive sample
to the proportion of positive samples in the full sample. Recall can be
seen as a measure of quantity. High recall means that an algorithm
returns most of the relevant results (whether or not irrelevant ones
are also returned).

The formula is:

Recall = TP
TP+ FN

(15)

AP is the area under the Precision-recall curve, usually the better
a classifier is, the higher the AP value is.

F1 is a weighted average of precision and recall.
The formula for F1 is as follows:

F1 = 2× P×R
P+R

(16)

4.1 Comparative results of YOLOv7 and
YOLOv7-CD

To verify the effectiveness of the improvement of the YOLOv7
model, the AP and FPS before and after the improvement with
default parameters (batch size = 4, initial learning rate = 0.01 and
SGD learning rate optimization algorithm) were compared, and the
comparison results are shown in Table 1. Although the inference
speed did not change after the model improvement, Precision,
Recall, F1, and AP were improved. Among them, Precision
improved by 5.50%, Recall improved by 4.24%, F1 improved by
0.09, and AP improved by 3.19%. This indicates that integrating the
SE attention module and introducing the Focal-EIoU loss function
in the YOLOv7model can improve detection accuracy.TheAP value
before model improvement is 94.60% and the AP value after model
improvement is 97.79%.

4.2 Hyperparameter optimization results

The parameters of the neural network are the internal variables
of the neural network model, such as weights (w) and bias (b),
and they can be obtained by training. The hyperparameters of the
neural network are the external parameters of the model, such as
learning rate, batch size, number of hidden layers, number of hidden
layer units, activation function, momentum, etc. These parameters
cannot be obtained from training and must be set manually, and
they will affect the values of the obtained parameters w and b. The
hyperparameters of the neural network have an important impact
on the prediction results, and the appropriate hyperparameters will
greatly improve the accuracy and efficiency of the network model.

In structured data, optimizing the batch size and learning rate
are effective ways to achieve good performance in deep learning
networks. Within a certain range, increasing batch size can improve
convergence stability and reduce training time, but as the batch size
increases, the number of iterations per epoch decreases, and the
model’s accuracy decreases accordingly. The impact of the learning
rate on model performance is reflected in two aspects: the size of the
initial learning rate and the optimization algorithm for the learning
rate. The initial learning rate usually has an optimal value. When
the initial learning rate is too small, the model converges slowly, and
when it is too large, themodel does not converge.The convergence of
themodel will be different when different learning rate optimization
algorithms are chosen. In this article, two optimizers, SGD and
Adam, were used to investigate (Shafi and Assad, 2023).

In order to make the model more suitable for bridge crack
detection, this method conducts comparison experiments on three
variables, batch size, learning rate, and optimization algorithm. In
the experiments, the minimum learning rate was always 0.01 times
the initial learning rate. A loss function is used to determine the
convergence of the model during the hyperparameter optimization.

4.2.1 Batch size optimization
The larger the batch size, the higher the GPU performance

requirements and the batch size is usually a power of 2 (Dong et al.,
2021). Therefore, in this experiment, the batch size was set to 2,
4, and 8 based on the actual hardware configuration. And the
performance of two learning rate optimization algorithms, SGD and
Adam, was compared simultaneously. To ensure the reliability of
batch size optimization, the initial learning rate was set to 0.01, and
50 epochs were trained in the freezing phase and 250 epochs in
the thawing phase on the QL_CRACK dataset. Figure 7 shows the
relationship between Precision, Recall, F1, and AP with different
batch sizes for different learning rate optimization algorithms. The
blue color represents the SGD optimization algorithm, and the grey
color represents the Adam optimization algorithm. The results are
also summarized in Table 2.

Combined with Figure 7 and Table 2, it can be seen that
Precision is the largest forNumber 3 andNumber 5, with 95.51%and
94.99%, respectively; Recall is the largest for Number 5 and Number
6, with 96.56% and 96.80%, respectively; F1 is the largest forNumber
3, Number 5 and Number 6, all with 0.96. When the batch size is
4 and 8, the precision, recall, and F1 are all higher than when the
batch size is 2.

When the batch size is increased from 2 to 4, the AP for SGD
and Adam optimization algorithms improved by 1.08% and 0.76%,
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FIGURE 8
Learning rate optimization process: (A) loss variation of SGD optimization algorithm with different initial learning rates; (B) loss variation of Adam
optimization algorithm with different initial learning rates; (C) Variation of the loss function with initial learning rate.

respectively, while when the batch size is increased from 4 to 8, the
AP only improved by 0.03% and 0.1%, respectively. This indicates
that the AP obtained by different optimization algorithms (SGD and
Adam) have similar trends with the batch size, both of which have a
large change in the batch size from 2 to 4 and a small change in the
batch size from 4 to 8. The AP for the SGD and Adam optimization
algorithms are the largest at a batch size of 8, but the differencewith a
batch size of 4 is small. Considering both the saving of videomemory
and the speed of training, the batch size of the freezing phase was set
to 8, and the training batch size of the thawing phase was set to 4
during the experiment.

4.2.2 Learning rate optimization
The learning rate affects how fast the algorithm converges to

the regionally minimal value. A suitable learning rate allows the
algorithm to descend in the direction of the maximum gradient in
appropriate steps, and the learning rate can be effectively optimized
by the decreasing gradient of the loss function. Since the YOLOv7
model uses the learning rate optimization algorithm, only the initial
learning rate and the optimization algorithm can be considered in
the optimization (Wang et al., 2023b).

In this manuscript, the range of the initial learning rate was
set from 10−5.0 to 10−1.0, with a step size of 10 set in sequence
(Mayr et al., 2018; Xu et al., 2023b; Yao et al., 2023b). The minimum
learning rate was set to 0.01 times the initial learning rate. The batch

size follows the optimal solution mentioned above (batch size = 4),
and the Epoch is set to 100. Table 3 shows the training loss under
different working conditions. Figures 8A, B show the convergence
of the loss function values with the initial learning rate for the SGD
and Adam optimization algorithms, respectively. From Figure 8A, it
can be seen that the loss function converges fastest when the initial
learning rate is set to 10−3 when the SGD optimization algorithm is
used, and the loss function fluctuates more in the early stage when
the initial learning rate is 10−1, indicating that the learning rate is
set too large at this time and the model does not converge well.
From Figure 8B, it can be seen that the convergence curves of the
loss function are smooth when the Adam optimization algorithm
is used, but in the convergence process, the loss function values of
each working condition have the following relationships: Number
14>Number 5, 11and 12>No. 14. When the initial learning rate is
10−3, the model convergence effect is obviously better than other
working conditions.

Figure 8C shows the variation of the loss functionwith the initial
learning rate when the SGD and Adam optimization algorithms
were used. Combining Figure 8C and Table 3, it can be seen that
the minimum loss is 0.0175 for an initial learning rate of 10−3, and
the maximum is 0.0224 for an initial learning rate of 10−1 when
the SGD optimization algorithm was used. And the minimum loss
is 0.0100 for an initial learning rate of 10−3, and the maximum
is 0.0175 for an initial learning rate of 10−1 when the Adam
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optimization algorithm was used. The trend of the loss curve
with the initial learning rate is similar for the SGD and Adam
optimization algorithms, both decreasing first and then increasing,
and there is an optimal initial learning rate. In addition, the loss
functions of the Adam optimization algorithm are lower than those
of the SGD optimization algorithm. The optimal result is that the
learning rate optimization algorithm is set to Adam, and the initial
learning rate is set to 0.001.

4.3 Transfer learning results

In order to demonstrate the enhancement effect brought by the
TSTL approach, a comparison experiment was conducted. The AP
under different working conditions are counted in Table 4. “(0)TL”
represents TSTL, “(1)TL” represents only transfer learning stage 1,
and " (2)TL” represents no transfer learning. The AP of YOLOv7-
CD is 98.01% with TSTL, 97.75% with only transfer learning stage
1, and 96.23% with the model without transfer learning.

AP of the YOLOv7-CD model with TSTL is 98.01%, AP of the
YOLOv7-CDmodelwith only transfer learning stage 1 is 97.75%,AP
of the YOLOv7-CD model without transfer learning is 96.23%. For
more visual observation of the effect of transfer learning, Figure 9
shows the convergence of the loss function for different transfer
learning cases. It can be seen fromFigure 9 that there is a relationship
of “(2)TL < (1)TL < (0)TL” in the training loss during convergence,
indicating that both phases of transfer learning can reduce the
value of the loss function of the model and thus improve the
model accuracy.

4.4 Crack detection results

In YOLO, confidence is a value between 0 and 1 that indicates
how sure the model is about the detected target (Yang et al., 2022c;
Yang et al., 2022d; Yang et al., 2023a; Yang et al., 2023b; Yang et al.,
2023c; Yang et al., 2024). This method has a good effect on bridge
crack detection, and some of the detection results are shown in
Figure 10.The naming rule in the figure is “bridge structure location
- original image number - segmented image number” For example,
“BR-095–164” means the crack is located in the 164th segmented
image of the 95th captured image of the bridge deck. This is a good
way to determine the location of the crack in the bridge structure.
The red box in the image indicates the location of the crack, and the
confidence level is marked in the lower left corner.

From Figure 10, it can be seen that YOLOv7-CD model has
a good detection effect on transverse cracks, vertical cracks, and
oblique cracks. The mean confidence rate is 0.83, ranging from
0.60 to 0.96. The cracks in Figures 10A, E, and Figure 10H all have
certain curvature, similar to U-shape, and their confidence levels
are above 0.9. For the oblique cracks, whether it is the southwest-
northeast-trending crack in Figures 10B, G or the northwest-
southeast-trending crack “crack-2” in Figure 10D, the confidence
level is above 0.8. In contrast, for the transverse crack in Figure 10F
and the vertical crack in Figure 10C, the confidence levels are
below 0.8. The lowest confidence level is for transverse and vertical
cracks, higher for diagonal cracks, and the highest confidence level
is for U-shaped cracks, indicating that the model believes that

TABLE 4 AP under different transfer learning conditions.

Number Working condition AP (%)

13 (Adam10−3.0)LR-(4)BS-(0)TL 98.01

15 (Adam10−3.0)LR-(4)BS-(1)TL 97.75

16 (Adam10−3.0)LR-(4)BS-(2)TL 96.23

FIGURE 9
YOLOv7-CD model convergence process under different transfer
learning cases.

bridge cracks should be more irregularly oriented through crack
feature learning. Two cracks are present in Figure 10D, and the
model accurately identifies the number and extent of cracks with
confidence levels of 0.70 and 0.83. For fine cracks, the confidence
level is 0.92 in Figure 10A and 0.64 in Figure 10C; for wide cracks,
the confidence level is 0.93 in Figure 10E and 0.79 in Figure 10F.
This indicates that the width of the crack does not have a significant
effect on the confidence level of crack detection. Overall, YOLOv7-
CD can quickly and accurately locate and identify cracks in the
acquired images.

4.5 Comparison of different models

The improved model in this study was compared with five
currently common target detection networks (YOLOv4, YOLOv5m,
YOLOv4-tiny, and MobileNet-SSD) for experiments. The AP,
number of parameters (#Param), computation volume (FLOPs), and
FPS were used as evaluation metrics, and the comparison results are
tallied in Table 5.

From Table 5, the AP of YOLOv4, YOLOv5m, YOLOv4-tiny,
MobileNet-SSD, and YOLOv7-CD are 95.5%, 85.58%, 72.22%,
84.28%, and 98.01%, respectively. The prediction accuracy of
YOLOv7-CD is higher than the remaining four target detection
models. The parameters of YOLOv4, YOLOv5m, YOLOv4-tiny,
MobileNet-SSD, and YOLOv7-CD are 64, 21.4, 5.9, 8.85, and
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FIGURE 10
Bridge crack detection results: (A) BD-095-164; (B) BD-095-168; (C) BD-107-017; (D) BD-105-13; (E) BP-400-093; (F) BP-400-094; (G) BT-380-283;
(H) BT-380-059.

TABLE 5 Performance comparison of different target detection models.

Model AP (%) #Param
(M)

FLOPs
(GMacs)

FPS

YOLOv4 95.50 64.00 63.92 16

YOLOv5m 85.58 21.40 51.30 39

YOLOv4-
tiny

72.22 5.90 4.31 56

MobileNet-
SSD

84.28 8.85 12.40 48

YOLOv7-
CD

98.01 37.65 17.04 52

37.65 M, respectively; the computational volume were 63.92, 51.3,
4.31, 12.4 and 17.04 GMacs, respectively; the ratio of parameter
number to the computational volume were 1.00, 0.42, 1.37, 0.71, and
2.21, respectively.

YOLOv7-CD has the largest ratio of parameters to computation
volume, and its higher number of parameters maintains a lower
computation volume, which will ensure its fast inference capability
to a certain extent. The FPS of YOLOv4, YOLOv5m, YOLOv4-
tiny, MobileNet-SSD, and YOLOv7-CD are 16, 39, 56, 48, and
52, respectively. YOLOv4-tiny has the fastest inference speed of
56, followed by 52 for YOLOv7-CD. In terms of inference speed,
YOLOv7-CD is 7.6% lower than YOLOv4-tiny, but in terms of
AP, YOLOv7-CD is 25.79% higher than YOLOv4-tiny. Therefore,
among the five object detection models, YOLOv7-CD has the
best comprehensive performance in both prediction accuracy and
inference speed.

5 Conclusion

In response to the current problems in intelligent bridge crack
detection, such as difficulties in acquiring high-quality crack images,
long inference time of network models, and detection accuracy to
be improved, this article proposes an IIRTCDMB based on UAVIAT
and IITDT.

The method proposed in this article can effectively detect
cracks with different morphologies and complex backgrounds
and has strong robustness as well as background noise filtering
capability, which can reduce the problems of noise interference
and blurring of UAV images due to the influence of environmental
conditions. The adopted crack image naming method can quickly
find out the actual location where the cracks appear and maintain
them in time.

In order to verify the excellent performance of this method, it
was applied to the Cuntan Yangtze River Bridge, and the following
conclusions were obtained:

1) The YOLOv7-CD model, which integrates the SE attention
module and introduces the Focal EIOU loss function, has an
AP improvement of 3.19% compared to the original YOLOv7
model. The comparison experiments of transfer learning show
that both stages of transfer learning can reduce the loss of
model convergence.

2) The hyperparameter optimization of the YOLOv7-CD model
can reduce the model loss to a certain degree and improve the
accuracy of the model in detecting bridge cracks. The model
performs best when the batch size is 8, the initial learning rate
is 0.001, and the learning rate optimization algorithm is Adam.
Because the AP difference between the batch size of 4 and 8
is small, the batch size of the freezing phase is set to 8, and
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the batch size of the thawing phase is set to 4 in order to save
computational performance.

3) In the crack localization and identification results, the
confidence level of horizontal and vertical cracks is the lowest,
the confidence level of oblique cracks is higher, and the
confidence level of U-shaped cracks is the highest, which
indicates that the model believes that the bridge cracks
should be more irregularly oriented through crack feature
learning. The average value of the crack detection confidence
is 0.83. Overall, the YOLOv7-CD model can quickly and
accurately perform crack location and identification on the
acquired images.

4) Under the conditions of this article, the AP of the YOLOv7-
CD model is 98.01%, and the FPS is 52. Its comprehensive
performance is all the better than the current popular target
detection models YOLOv4, YOLOv5m, YOLOv4-tiny, and
MobileNet-SSD.

In conclusion, the method proposed in this paper solves the
current problems of difficult crack image acquisition and high cost
of image labeling while improving the performance of the model.
Themodel can focus on the relationship between pixels, improve the
robustness of themodel, and reduce the time cost of sample labeling.
In the future, the model can be further optimized toto improve the
segmentation ability of the model for crack edges and small cracks,
and to improve the generalization ability of the model.
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