
TYPE Original Research
PUBLISHED 07 February 2024
DOI 10.3389/fmats.2024.1340883

OPEN ACCESS

EDITED BY

Jian-Guo Dai,
Hong Kong Polytechnic University, Hong
Kong SAR, China

REVIEWED BY

Roberto Fedele,
Polytechnic University of Milan, Italy
Xiaohua Li,
Chongqing University, China

*CORRESPONDENCE

Xinglang Fan,
fanxinglang@cribc.com

RECEIVED 19 November 2023
ACCEPTED 02 January 2024
PUBLISHED 07 February 2024

CITATION

Zhou X, Bai L, Rong H, Fan X, Zheng J and
Geng Y (2024), An improved approach for the
continuous retardation spectra of concrete
creep and applications.
Front. Mater. 11:1340883.
doi: 10.3389/fmats.2024.1340883

COPYRIGHT

© 2024 Zhou, Bai, Rong, Fan, Zheng and
Geng. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

An improved approach for the
continuous retardation spectra
of concrete creep and
applications

Xinzhu Zhou1, Linhong Bai1, Hua Rong2, Xinglang Fan2*,
Jianjun Zheng1 and Yan Geng2

1College of Civil Engineering, Zhejiang University of Technology, Hangzhou, China, 2Central Research
Institute of Building and Construction, Metallurgical Group Corporation of China, Beijing, China

Creep is an important physical property of concrete and can lead to additional
displacement, stress redistribution, and even cracking in concrete structures,
inducing prestress loss of large-scale prestressed concrete structures. When an
exponential algorithm is used to calculate the long-term creep of concrete, it
is usually necessary to apply the continuous retardation spectra of the material.
In the improved approach proposed here, the continuous retardation spectra
can be obtained by the Weeks inverse Laplace transform. The CEB MC90 creep
model is taken as an example to analyze the computational process, efficiency,
and error of the approach. The improved approach is further applied to the ACI
209R-92, JSCE, and GL2000 concrete creep models. Through comparison with
other methods, the advantages of the improved approach are illustrated, and
some useful conclusions are drawn.
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1 Introduction

Concrete creep is defined as the time-dependent deformation of a concrete specimen
under sustained load. Itsmagnitude is closely related to the stress applied, time, cement type,
mix proportion of concrete, and environmental conditions (ACI Committee 209, 2005).
In practice, concrete creep can lead to additional displacements, stress redistribution, and
even cracking in concrete structures during their service life (Hubert Rüsch and Hilsdorf,
1983; Bažant et al., 1997). As a result, a prestress loss is often observed in many large-scale
prestressed concrete structures, such as long-span bridges and nuclear containments, which
could significantly affect their safety and durability.

Under low stress, concrete can be considered an aging viscoelastic material, with
concrete creep following the Boltzmann superposition principle. Thus, its strain rate can
be expressed as (Bažant and Jirásek, 2018)

̇ε(t) =
σ̇(t)
E(t)
+∫

t

0
̇J(t, t0)dσ(t0), (1)

where t is the age of concrete, t0 is the time when the load is applied, ̇J(t, t0) is the first
derivative of the compliance function J(t, t0)with respect to t,E(t) is the instantaneous elastic
modulus, and ̇ε(t) and ̇σ(t) are the strain and stress rates, respectively. Equation (1) can be
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solved by the finite difference method. However, this method has
some limitations. First, the entire stress history is required to
obtain the strain increment at the current time step. As a result,
in the process of solving creep by the finite element method, the
entire stress history needs to be stored for the integration points
of each element. For a large-scale problem with many time steps,
the evaluation of these history variables is quite time-consuming.
Second, the effects of some variable factors, such as temperature,
humidity, and concrete cracks, cannot be considered.

It should be noted that the calculation method of J(t, t0) comes
from different creep models, reflecting the ratio of strain value
to stress of the material at time t (loaded at t0), which is usually
related to conditions such asmaterialmix ratio, specimen shape, and
environmental factors.

To overcome the difficulties of the finite difference method,
Eq. (1) can be transformed into a differential rate-type equation,
and an efficient exponential algorithm can be employed to calculate
the concrete creep which exhibits a quadratic convergence rate and
is unconditionally stable. Zienkiewicz et al. (1968) first applied this
method to nonaging viscoelastic materials, and Bažant extended it
to aging viscoelastic materials. This method can effectively improve
computational efficiency with fixed internal variables. When using
the efficient exponential algorithm, it is crucial to select a proper
rheological model, such as the Kelvin chain model, to describe the
viscoelastic behavior of the material. From a mathematical point of
view, the creep compliance function of such a viscoelastic material
can be approximated by the Dirichlet series.This can be achieved by
curve fitting—the so-called retardation spectrum method.

The curve fitting method is usually based on the least squares
method to obtain the coefficients of the Dirichlet series from test
data. However, this method lacks actual physical meanings and does
not follow the second law of thermodynamics, which sometimes
leads to negative coefficients when the test data is not statistically
ideal (Schapery, 1962). Many efforts have been made to solve the
issue (Baumgaertel and Winter 1989; Elster and Honerkamp, 1991;
Kaschta and Schwarzl, 1994; Mead, 1994; Emri and Tschoegl, 1995;
Ramkumar et al., 1997; Park and Kim, 2001). Furthermore, for
aging viscoelastic materials such as concrete, the coefficients of the
Dirichlet series are time-dependent, and the curve fitting method
becomes inefficient as the computational process needs additional
optimization techniques.

With the continuous retardation spectrum method, the
coefficients of the Dirichlet series can be determined by
discretizing the continuous retardation spectrum, avoiding the
issues encountered in the curve fitting method. Bažant and Xi
(1995) studied the continuous retardation spectrum for concrete
solidification theory and used the Post–Widder method to
approximate the spectrum. In practice, however, a high-order
Post–Widder formula is often needed to meet the precision
requirement, which significantly increases the analytical complexity.
Fortunately, Jirásek and Havlásek (2014) solved this issue using a
low-order Post–Widder formula with time adjustment factors of
retardation times. A high convergence speed and good accuracy
are demonstrated for various concrete creep models. However,
the method is heuristically based on empirical analyses, and the
determination of time adjustment factors is highly dependent
on personal experience and numerical experiments for different
creep models.

The purpose of this paper is to develop an improved approach
for efficiently approximating the continuous retardation spectra
of various concrete creep models. The continuous retardation
spectrum is first introduced, then the process of calculating the
continuous retardation spectrum by the Post–Widder method and
its corresponding shortcomings are analyzed, and an improved
approach for solving the continuous retardation spectra based on
theWeeks inverse Laplace transformmethod is proposed. By taking
theCEBMC90 creepmodel as an example, the numerical solution of
the continuous retardation spectra solved by the improved approach
is analyzed.The proposed approach is then applied to the ACI 209R-
92, JSCE, and GL2000 concrete creep models. Finally, the numerical
results are compared with the other methods and some conclusions
are drawn.

2 General solution for the continuous
retardation spectrum

To describe viscoelastic materials, their constitutive properties
can be represented by the Kelvin chain model. In the Kelvin chain
model, the deformation of a material can be characterized by a
number of Kelvin units and an additional spring unit assembled in
series (Figure 1). Each Kelvin unit is composed of a spring and a
dashpot assembled in parallel. All these units bear the same stress,
and the total strain ε is equal to the sum of the deformations of each
Kelvin unit and the spring unit.

ε = ε0 + ε1 + ε2 +…+ εM . (2)

For the nonaging Kelvin unit μ shown in Figure 2, the total stress
is equal to the sum of the elastic stress and the viscous stress.

σ(t) = Eμεμ(t) + ημ ̇εμ(t), (3)

where both the spring elastic modulus Eμ and the dashpot viscosity
ημ do not change with age.

For aging viscoelastic materials such as concrete, the aging
Kelvin chain model is needed. For the aging Kelvin unit μ, the
stress–strain relationship can be expressed in rate form as

σ̇(t) = Dμ(t) ̇εμ(t) + ημ ̈εμ(t), (4)

where the modified age-dependent modulus Dμ(t) is equal to

Dμ(t) = Eμ(t) + η̇μ(t). (5)

Since ̇σ(t) is equal to zero for creep tests, the boundary condition
of εμ(t0) = 0 is satisfied and the strain of the aging Kelvin unit μ can
be obtained as

εμ(t) =
σ

Dμ(t0)
{1− exp[−(t − t0)/τμ]}, (6)

where τμ = ημ(t)/Dμ(t) is the retardation time of the Kelvin unit μ
and t0 is the time when the load is applied.

When the aging Kelvin chain model is subjected to a unit stress,
the strains of all the Kelvin units (μ = 0,1,2,…,M) and the spring
unit are superimposed; the compliance function is given by (Bažant,
1988)

J(t, t0) =
1

E0(t0)
+∑M

μ=1
1

Dμ(t0)
{1− exp[−(t − t0)/τμ]}, (7)
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FIGURE 1
Nonaging Kelvin chain model.

FIGURE 2
Nonaging Kelvin unit.

which can be considered a finite Dirichlet series. In the practical
application process, once the compliance function is constructed in
the form of Eq. (7), the long-term creep value of materials can be
numerically calculated by exponential algorithm. For a given time t0,
when there are infinite number of Kelvin units in the chain and the
retardation time distributes continuously, Eq. (7) can be converted
into an integral form (Bažant and Xi, 1995):

J(t, t0) =
1

E0(t0)
+∫
∞

0

1
τ
L(τ){1− exp[−(t − t0)/τ]}dτ, (8)

where L(τ) is the continuous retardation spectrum. For a specific
creep model, once the continuous retardation spectrum is given,
the direct discrete method can be used to construct the compliance
function in the form of finite Dirichlet series. For convenience sake,
the compliance function J(t, t0) is rewritten as

J(t, t0) =
1

E0(t0)
+φ(ξ), (9)

where ξ = t− t0 is the loading duration, and φ(ξ) is defined as

φ(ξ) = ∫
∞

0

1
τ
L(τ)[1− exp (−ξ/τ)]dτ. (10)

By using the inverse Laplace transform method,
Tschoegl (Nicholas, 1989) approximated L(τ) from the Post–
Widder method as

Lk(τ) = −
(−kτ)k

(k − 1)!
φ(k)(kτ), k = 1,2,…, (11)

where φ(k)(kτ) is the kth order derivative of φ(kτ). When k→∞,
Lk(τ) converges to the exact solution:

L(τ) = lim
k→∞

Lk(τ). (12)

In this method, a sufficiently smooth function φ(ξ) and a
higher order k are required for an acceptable approximation of the
continuous retardation spectrum. This method is straightforward
and efficient for some problems with simple compliance functions.
In practice, however, the computation of the high-order derivatives
is usually quite complicated, and the process of solving them will
become complicated. To improve this method, Jirásek and Havlásek
(2014) analyzed the difference between the low-order Post–Widder
method and the exact solution and proposed an approach for
adjusting the retardation time by multiplying correction factor
ατ to improve the accuracy of calculating continuous retardation
spectrum. Thus, the continuous retardation spectrum is defined as

L(αττ) = Lk(τ). (13)

When the correction factor ατ is applied, the accuracy of
the numerical solution of the compliance function is effectively
improved, and the approximation order is well controlled within low
ranges. In this method, however, the value of the correction factor is
determined empirically and is different for different creep models.

In Section 3, in view of the shortcomings of the Post–Widder
method, an improved method for solving continuous retardation
spectra based on the Weeks inverse Laplace transform is proposed.
Here, Eq. (10) is processed in advance.

The differentiation of Eq. (10) with respect to ξ yields

φ′(ξ) = ∫
∞

0

1
τ2

L(τ)exp (−ξ/τ)dτ. (14)

By setting δ = 1/τ, we have

φ′(ξ) = ∫
∞

0
L(1/δ)exp (−ξδ)dδ. (15)

It can be seen from Eq. (15) that φ′(ξ) is the Laplace transform
of L(1/δ). Therefore, once the inverse Laplace transform of φ′(ξ) is
determined, L(1/δ) can be obtained.
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3 Weeks method for the continuous
retardation spectrum

In the method by Weeks (1966), the Laguerre polynomials
are used to numerically calculate the inverse Laplace transform.
The main advantage is that an explicit solution can be obtained.
In applying this method, the following two conditions should be
fulfilled: the Laplace space function is a smooth function with
bounded exponential growth, and it can be expressed as a Laguerre
series. The above two conditions are fulfilled for commonly used
creep models, including the CEB MC90, ACI 209R-92, JSCE, and
GL2000 models.

For Laplace space function F(x), the analytical expression of the
time-domain function f(t) can be obtained by theWeeks method as

f (t) = exp(σt)∑∞
n=0

an exp(−bt)Lgn(2bt). (16)

In Eq. (16), σ and b are two parameters that fulfill the conditions
of b > 0 and σ > σ0, where σ0 is the Laplace convergence abscissa. an
contains the information of the Laplace space function. It could be
a scalar, vector, or matrix but does not change with time. With the
Maclaurin series, the analytical expression of an is given by

2b
1−ω

F(σ + 2b
1−ω
− b) =∑∞

n=0
anω

n, |ω| < R, (17)

where R is the radius of convergence of the Maclaurin series.
Lgn(x) in Eq. (16) is the Laguerre polynomial of degree n defined

as

Lgn(x) =
exp (x)
n!

dn

dxn
[exp (−x)xn]. (18)

For practical numerical calculation, Eq. (16) can approximately
be expressed as

f N (t) = exp(σt)∑
N−1
n=0

an exp(−bt)Lgn(2bt), (19)

where N is an integer. The exact solution of f(t) can be obtained as
N approaches infinity

f (t) = lim
N→∞

f N (t). (20)

By using the Bromwich integral and the fast Fourier transform,
an approximate expression of an in Eq. (17) can be obtained as

an ≈
exp(− inπ2N )

2N
∑N−1

m=−N

2bexp(−inθm)

1− exp(iθm+1/2)
F(σ − b

exp(iθm+1/2) + 1

exp(iθm+1/2) − 1
),

(21)

where θm =mπ/N.
In the Laplace transform formula of Eq. (15), the Laplace space

function is φ′(ξ), the complex variable is ξ, the time-domain
function is L(1/δ), and the time-domain variable is δ. From Eq. (19),
L(1/δ) can be obtained through the inverse Laplace transform as

LN (1/δ) = exp(σδ)∑
N−1
n=0

an exp(−bδ)Lgn(2bδ). (22)

Substitution of τ = 1/δ into Eq. (22) leads to

LN (τ) = exp(σ/τ)∑
N−1
n=0

an exp(−b/τ)Lgn(2b/τ), (23)

an ≈
exp(− inπ2N )

2N
∑N−1

m=−N

2bexp(−inθm)

1− exp(iθm+1/2)
φ′(σ − b

exp(iθm+1/2) + 1

exp(iθm+1/2) − 1
).

(24)

In applying the Weeks method, it is obvious that the truncation
error can be reduced by using a larger value of N. In addition, a
proper choice of σ and b can lead to a higher convergence speed.
Therefore, it is very important to choose the values of σ and b
reasonably. For Eq. (19), according to the method provided by
Weeks (1966), when solving fN(t) in the range of 0 < t < tmax, the
value can be simply determined as

{{{
{{{
{

σ = (σ0 +
1

tmax
)u(σ0 +

1
tmax
),

b = N
2tmax
,

(25)

u(x) =
{
{
{

0 if x < 0,

1 if x ≥ 0.
(26)

For Eq. (23), let tmax = 1/τ, and, considering that for all creep
models σ0 = 0, then σ and b can be taken as

{
{
{

σ = τ,

b = Nτ
2
.

(27)

Equation (27) is simple and suitable for all creepmodels and can
directly improve the computational accuracy by increasingN, which
is recommended to take a value between 10 and 50. In order to fully
improve the computational efficiency, N is taken as 10 in this paper,
and, to further determine the values of σ and b for different models,
the analysis process is shown as follows.

To determine the parameters σ and b, Weideman (1999)
proposed a method by minimizing the theoretical error E

E = exp(σt)(∑2N−1
n=N
|an| + ϵ∑

N−1
n=0
|an|), (28)

where ϵ is the machine round-off error.
Further analysis according to the method of Weideman (Weeks,

1966), taking the CEB MC90 creep model (CEB-FIP, 1993) as an
example, the compliance function is

J(t, t0) =
ρ(t0) +ϕ0βc(t − t0)

Ecm28
, (29)

where Ecm28 is the average elastic modulus of concrete at 28 days,
ρ(t0) is the correction factor related to the loading time t0, ϕ0 is the
nominal creep coefficient related to the material strength, loading
time, and the relative humidity of the environment, and the creep
development coefficient βc(t− t0) is equal to

βc(t − t0) = [
(t − t0)

βh + (t − t0)
]
0.3

, (30)

with βh being a coefficient related to the volume/surface ratio, the
relative humidity, and the material strength, generally ranging from
250 to 1,500. By setting φ(ξ) = βc(t− t0), the first-order derivative of
φ(ξ) is given by

φ′(ξ) =
0.3βh

ξ0.7(βh + ξ)
1.3 . (31)
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FIGURE 3
Distributions of log (E) (CEB MC90 model) for (A) τ = 10; (B) τ = 100; (C) τ = 1000.

When βh, N, and τ are given, the error E as a function of σ and
b can be obtained by substituting Eqs (24) and (31) into Eq. (28).
N should be selected by considering computational accuracy and
efficiency. When a larger N is used, the choice of σ and b is
more flexible.

By setting βh = 500 and N = 10, log (E) is obtained as a function
of σ and b for different retardation times τ (Figure 3). The figure
shows that the errorE can be significantly reduced by a proper choice
of the two parameters. In some zones where σ and b follow a certain
relationship, the errorE is kept within relatively low levels as the dark
part shown in Figure 3.

Combine the three graphs in Figure 3 and represent the
horizontal and vertical coordinates in exponential growth.
Select several points with the smallest error E within different
parameter ranges and use a few crosses to represent them,
forming Figure 4.

If the relationship between σ and b can be determined under the
condition of minimum error E, the method of parameter selection
can be further determined. It was found that the relationship is
related to the poles and branch points of the Laplace function
(Weideman, 1999). If s1 = α1 + β1i and s2 = α2 + β2i are two farthest
points to the origin of the Laplace function on the complex
plane, we have

FIGURE 4
Relationship between σ and b (CEB MC90 model).

b2 − σ2 +
|s2|2 − |s1|2

α2 − α1
σ +

α2|s1|2 − α1|s2|2

α2 − α1
= 0. (32)
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FIGURE 5
Relative errors of the Weeks method (CEB MC90 model) for (A) τ = 0.01; (B) τ = 1; (C) τ = 100; (D) τ = 1000.

Equation (31) has two branch points: ξ = −βh and ξ = 0. By using
Eq. (32), the relationship between σ and b for the CEBMC90 model
can be obtained as

b = √βhσ + σ2. (33)

By taking βh = 500, Eq. (33) is plotted as the solid line shown
in Figure 4. It is apparent from Figure 4 that the numerical results
fromerrorminimization are very close to Eq. (33) for theCEBMC90
model. Therefore, for the CEB MC90 creep model, Eq. (33) can be
determined as the relationship between σ and b.

As seen from Eq. (23), the relationship between σ (or b) and τ
is also required to perform the inverse Laplace transform and will
be determined empirically through error analysis. Thus, a reference
solution Ld(τ) is obtained by a combination of the Durbin inverse
Laplace transformation (Durbin, 1974) and an adaptive numerical
integration. It should be pointed out that, although the reference
solution Ld(τ) has higher accuracy, it is very time-consuming and
needs to be calculated by long-term iterative calculation and is thus
not suitable for practical applications.The relative error Er is defined
as

Er =
|Ld(τ) − LN (τ)|

Ld(τ)
. (34)

When βh = 500, N = 10, under the premise of using Eq. (33) for
parameter values, the relative errors of the Weeks inverse Laplace
transform for τ = 0.01,1,100,1000 are shown in Figure 5.

Figure 5 shows that, when τ is smaller than 1, the relative error
exhibits larger changes from 10−4 to 1 (Figures 5A,B). When τ is
larger than 100, the relative error is smaller than 10−1 and has a
downward tendency as σ/τ increases (Figures 5C,D).

Based on the numerical results in Figure 5, an empirical value of
σ for the CEB MC90 model is suggested as follows:

{{{{{
{{{{{
{

σ = (0.038
βh
)τ2, for τ < 0.02βh,

σ = 0.038τ2, for 0.02βh ≤ τ < 100,

σ = τ, for τ ≥ 100.

(35)

For different values of τ, the relative error calculated from
Eq. (35) is also obtained as the red cross shown in Figure 5. It is seen
from Figure 5 that, when using Eq. (35), the relative error is smaller
than 10−1. Particularly when τ is equal to 100 or 1,000, the relative
error is smaller than 10−3. Therefore, computational accuracy is
guaranteed.

ForN = 10 and different values of βh, the continuous retardation
spectra obtained from different methods are compared in Table 1,
where La(τ) is calculated from Eqs (33) and (35) while Lb(τ) is
calculated from Eq. (27), Era and Erb are the relative errors between
the calculated results obtained by the two calculation methods and
the reference solution Ld(τ), respectively. It is seen fromTable 1 that,
compared with the Weeks parameter value method—Eq. (27)—the
relative errors of the continuous retardation spectra given by
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TABLE 1 Comparison of L(τ) calculated from two different methods (CEB MC90 model).

βh τ [day] Ld(τ) La(τ) Era Lb(τ) Erb

500

1.0E-02 0.00903 0.00871 3.58E-02 0.00863 4.41E-02

1.0E-01 0.01784 0.01739 2.54E-02 0.01725 3.33E-02

1.0E+00 0.03586 0.03475 3.09E-02 0.03488 2.74E-02

1.0E+01 0.07205 0.07388 2.54E-02 0.07437 3.23E-02

1.0E+02 0.15782 0.15783 8.34E-05 0.15689 5.89E-03

1.0E+03 0.10949 0.10944 5.30E-04 0.10753 1.79E-02

800

1.00E-02 0.007822 0.007572 3.20E-02 0.007498 4.14E-02

1.00E-01 0.01571 0.015102 3.87E-02 0.014972 4.70E-02

1.00E+00 0.031088 0.030159 2.99E-02 0.030117 3.12E-02

1.00E+01 0.062401 0.061064 2.14E-02 0.06423 2.93E-02

1.00E+02 0.13156 0.131,432 9.72E-04 0.130,819 5.63E-03

1.00E+03 0.146,365 0.146,318 3.19E-04 0.144,544 1.24E-02

1,200

1.00E-02 0.006926 0.006698 3.29E-02 0.006639 4.14E-02

1.00E-01 0.013834 0.013372 3.34E-02 0.013253 4.20E-02

1.00E+00 0.027578 0.026719 3.11E-02 0.026585 3.60E-02

1.00E+01 0.055185 0.053813 2.49E-02 0.055983 1.45E-02

1.00E+02 0.113,781 0.113,619 1.43E-03 0.113,169 5.38E-03

Eqs (33) and (35) are smaller in most cases, and the computational
accuracy is obviously improved. For the Weeks method, however,
the computational accuracy can also be improved by increasing the
value of N.

4 Application of the Weeks method to
different creep models

In this section, the Weeks method is applied to the CEB MC90,
ACI 209R-92, JSCE, and GL2000 creep models. φ(ξ) is calculated
and analyzed based on the aging Kelvin chain and different methods
for the continuous retardation spectrum. N = 10 is used in all
cases. The results obtained by a combination of the Durbin inverse
Laplace transformation (Durbin, 1974) and an adaptive numerical
integration are used as a reference solution.

4.1 CEB MC90 model

As discussed in the previous section, the continuous retardation
spectrum of the CEB MC90 model can be obtained by the
Weeks method. When βh = 500, the continuous retardation spectra
calculated by the Weeks method, the Post–Widder method

with different orders, and the reference solution are shown in
Figure 6.

Once L(τ) is known, φ(ξ) can be obtained from Eq. (10).
However, the integral involved should be approximated by the
Dirichlet series for an aging material. Therefore, the discrete
retardation times τμ are selected based on accuracy and efficiency.
If τm is assumed to be a geometric series with an initial value of
τ0 = 10−4 and a base of 10, that is,

τm = 10−4,10−3,…,106 m = 0,1,2,…,10, (36)

then Eq. (10) is changed to

φ(ξ) = ∫τ=√10τ0τ=0
1
τ L(τ)[1‐exp(−ξ/τ)]dτ

+∑10m=1∫
τ=√10τm
τ=√10τm−1

1
τ L(τ)[1‐exp(−ξ/τ)]dτ

+∫τ=+∞τ=√10τ10
1
τ L(τ)[1‐exp(−ξ/τ)]dτ.

(37)

When τ < √10τ0, [1‐ exp (−ξ/τ)] is close to unity, and the first
term in Eq. (37) can be assumed to be 1/E0, which is not affected by
the duration ξ. When τ > √10τ10, L(τ) is close to zero, and the third
term in Eq. (37) tends to be zero. Thus, Eq. (37) reduces to

φ(ξ) = 1
E0
+∑10

m=1
∫
τ=√10τm

τ=√10τm−1

1
τ
L(τ)[1‐exp(−ξ/τ)]dτ. (38)
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FIGURE 6
Continuous retardation spectra calculated by different methods (CEB
MC90 model).

The integral in Eq. (38) can be approximated by the two-point
Gaussian quadrature rule:

φ(ξ) ≈ 1
E0
+ ln10

2

10

∑
m=1

{{{{{{{
{{{{{{{
{

L(10−√3/6τm)[

[
1− exp(−

ξ

10−√3/6τm
)]

]

+L(10√3/6τm)[

[
1− exp(−

ξ

10√3/6τm
)]

]

}}}}}}}
}}}}}}}
}

.

(39)

The following definitions are used:

{
{
{

τμ = 10
−√3/6τ(μ+1)/2, for μ is odd,

τμ = 10
√3/6τμ/2, for μ is even.

(40)

Equation (39) then becomes

φ(ξ) ≈ 1
E0
+∑20

μ=1
ln10
2

L(τμ)[1− exp(−ξ/τμ)]. (41)

If 1/D(τμ) is set to be ln 10L(τμ)/2, φ(ξ) of the aging Kelvin
chain model is changed to

φ(ξ) = 1
E0
+∑20

μ=1
1

D(τμ)
[1− exp(−ξ/τμ)]. (42)

Equation (42) is consistent with the form of Eq. (7), where the
number of Kelvin units is set to M = 20. 1/E0 can be obtained by
numerical integration algorithms (Jirásek and Havlásek, 2014), but
this will cause some errors. In this paper, in order to reduce the effect
of numerical integration at low retardation times, 1/E0 is solved by
subtracting the difference between the numerical solution and the
exact solution of φ(ξ), which is βc(t− t0) in Eq. (30) for the CEB
MC90 model:

1
E0
= βc(ξ

′) −∑20
μ=1

1
D(τμ)
[1− exp(−ξ′/τμ)], (43)

where ξ′ is the loading duration when βc(ξ
′) reaches the maximum

value (ξ′ = 105 for the CEB MC90 model). The analysis process is
shown in Figure 7.

FIGURE 7
Analysis process of 1/E0.

By taking βh as 500, 800, and 1,200, the values of φ(ξ) are
obtained by the Weeks and Post–Widder methods with different
orders (Figure 8).

The error is defined as [φ(ξ) − βc(ξ)] for the CEB MC90 model.
Thus, the errors of different methods are shown in Figure 9. At
the same time, the errors obtained from the method of Jirásek and
Havlásek (2014) are also compared in Figure 9.

Equation (42) shows that φ(ξ) is related to τμ. For the two-point
Gaussian quadrature rule, L(τμ) corresponding to different τμ is able
to describe the retardation spectrum curve as accurately as possible.
If L(τμ) at two adjacent points τμ are connected by line segments,
the approximation of L(τμ) to the retardation spectrum curve can
be observed more intuitively. As shown in Figure 10, the retardation
spectrum curve can be described well when τμ takes values from
Eq. (40).

In Eq. (42), the number of Kelvin units is taken as 20. If higher
computational accuracy is required, the number of Kelvin units can
be increased:M = 20k, (k = 1,2,3,…). Thus, Eq. (42) becomes

φ(ξ) = 1
E0
+∑M

μ=1
1

D(τμ)
[1− exp(−ξ/τμ)], (44)

where

τm,k = 10−4,10−4+1/k,10−4+2/k,…,106 m = 0,1,2,…,10k, (45)

{
{
{

τμ = 10−
√3/(6k)τ(μ+1)/2,k, for μ is odd,

τμ = 10
√3/(6k)τμ/2,k, for μ is even,

(46)

1
E0
= βc(ξ

′) −∑M
μ=1

1
D(τμ)
[1− exp(−ξ′/τμ)], (47)

1
D(τ)
=
ln(10

1
k )L(τ)

2
. (48)

It should be noted that, for most concrete creep models (CEB
MC90, ACI 209R-92, and GL2000), the retardation spectra are
relatively smooth, and taking k = 1 in Eq. (45) usually satisfies
the precision requirement. However, if the retardation spectrum
changes sharply in terms of retardation time, it is necessary to
increase the value of k, which will be discussed in Section 4.3.
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FIGURE 8
φ(ξ) calculated by different methods (CEB MC90 model) for (A) βh = 500; (B) βh = 800; (C) βh = 1,200.

4.2 ACI 209R-92 model

The creep compliance function of the ACI 209R-92 model
(ACI committee 209, 2008) is

J(t, t0) =
1+ϕ(t, t0)

E(t0)
, (49)

where ϕ(t, t0) is defined as

ϕ(t, t0) =
(t − t0)

ψ

d + (t − t0)
ψ ϕμ. (50)

In Eq. (50), ϕμ is the ultimate creep coefficient related to
the curing conditions, slump, and ambient humidity of concrete
structures and ψ and d are two parameters—usually taken as 0.6 and
10 according to the recommendations in ACI 209R-92, respectively.

To simplify the analysis process, φ(ξ) is defined as

φ(ξ) =
ξψ

d + ξψ
. (51)

Derivation of Eq. (51) with respect to ξ gives

φ′(ξ) =
dψξψ−1

(d + ξψ)2
. (52)

Since Eq. (52) has a branch point of ξ = 0, Eq. (32) cannot
be directly used. For the ACI 209R-92 model, when N = 10, the
computational accuracy of the creep compliance function obtained
from Eq. (27) is not very satisfactory (Figure 13). With reference to
the analysis of the CEB MC90 model, Eq. (28) is used to calculate E
and analyze the relationship between σ and b. Thus b is given by

b = √46σ + σ2. (53)

When N = 10, the empirical expression of σ is expressed as

{
{
{

σ = 0.05τ2, for τ < 20,

σ = τ, for τ ≥ 20.
(54)

The continuous retardation spectra calculated by the Weeks
method and the Post–Widder method with different orders are
shown in Figure 11.

From Eq. (42), the values of φ(ξ) of the ACI 209R-92 model
for different durations ξ are obtained as shown in Figure 12; the
errors are shown in Figure 13. For comparison, the errors of φ(ξ)
calculated from Eq. (27) are also shown in Figure 13 for N = 10 and
N = 50. Figure 13 shows that, when Eq. (53) and (54) are adopted,
the computational accuracy is obviously improved under the
same N value.
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FIGURE 9
Errors of φ(ξ) calculated by different methods (CEB MC90 model) for (A) βh = 500; (B) βh = 800; (C) βh = 1,200.

FIGURE 10
Approximation of L(τμ) to the retardation spectrum (CEB MC90 model
and βh = 500).

FIGURE 11
Continuous retardation spectra calculated by different methods (ACI
209R-92 model).
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FIGURE 12
φ(ξ) calculated by different methods (ACI 209R-92 model).

FIGURE 13
Errors of φ(ξ) calculated by different methods (ACI 209R-92 model).

4.3 JSCE model

The creep compliance function of the JSCE model
(Uomoto et al., 2008) is defined as

J(t, t0) = {1− exp[−0.09(t − t0)
0.6]}ε′cr , (55)

where ε′cr is the ultimate creep strain under unit stress and related to
the ambient relative humidity, temperature, and the volume/surface
ratio. φ(ξ) is defined as

φ(ξ) = 1− exp(−0.09ξ0.6). (56)

FIGURE 14
Continuous retardation spectra calculated by different methods
(JSCE model).

Derivation of φ(ξ) with respect to ξ gives

φ′(ξ) = 0.054ξ−0.4 exp(−0.09ξ0.6). (57)

Since Eq. (57) has only a branch point ξ = 0, Eq. (32) cannot
be directly used to evaluate the values of σ and b. Instead,
Eq. (27) is adopted to determine the values of the two parameters.
For N = 10, the continuous spectra calculated by the Weeks
and Post–Widder methods with different orders are shown
in Figure 14.

It is seen fromFigure 14 that, comparedwith the CEBMC90 and
ACI 209R-92 models, the continuous retardation spectra calculated
by the Weeks method are steeper at the peak. The continuous
retardation spectra of the CEB and ACI models show significant
changes in the range from τ = 10−2 to τ = 105, while that of the
JSCE model mainly shows changes in the range from τ = 10−1 to
τ = 103. If k = 1 is set in Eq. (45), L(τμ) cannot effectively describe
the retardation spectrum curve. As shown in Figure 15A, the curve
around τ = 102 is not well reproduced. Therefore, it is necessary
to increase the value of k. By setting the number of Kelvin units
to M = 40— k = 2 in Eq. (45)—it is seen from Figure 15B that the
computational accuracy is greatly improved.Therefore, for the JSCE
model, it is necessary to adopt this retardation time value method.
Thenumerical results and the errors for differentmethods are shown
in Figures 16, 17, respectively.

4.4 GL2000 model

The creep compliance function of the GL2000 model (Gardner
and Lockman, 2002) is defined as

J(t, t0) =
1

Ecmt0
+
ϕ28(t, t0)
Ecm28
, (58)
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FIGURE 15
Approximation of L(τμ) to the retardation spectrum (JSCE model) for (A) k = 1; (B) k = 2.

FIGURE 16
φ(ξ) calculated by different methods (JSCE model).

where Ecmt0 is the elastic modulus at loading time and ϕ28(t, t0) is the
creep coefficient at 28 days. The expression of ϕ28(t, t0) is

ϕ28(t, t0) = ϕc

{{{{{
{{{{{
{

2(t − t0)
0.3

(t − t0)
0.3 + 14
+( 7

t0
)
0.5
[
(t − t0)
(t − t0) + 7

]
0.5

+2.5(1− 1.086h2)[
(t − t0)

(t − t0) + 0.12(V/S)2
]
0.5

}}}}}
}}}}}
}

.

(59)

In Eq. (59), ϕc is the correction term for the drying effect before
loading, h is the relative humidity, and V/S is the volume/surface
ratio of specimens. To simplify the calculation, φ(ξ) is expressed as

φ(ξ) = 2
ξ0.3

ξ0.3 + 14
+( 7

t0
)
0.5
(

ξ
ξ + 7
)
0.5
+ 2.5(1− 1.086h2)[

ξ
ξ + 0.12(V/S)2

]
0.5

.

(60)

FIGURE 17
Errors of φ(ξ) calculated by different methods (JSCE model).

TABLE 2 Parameters for the two cases.

Case t0 [day] h V/S [mm]

1 14 70% 50

2 30 40% 100

If φ1(ξ) and φ2(ξ,γ) are defined as

φ1(ξ) =
ξ0.3

ξ0.3 + 14
, φ2(ξ,γ) = (

ξ
ξ + γ
)
0.5
, (61)

the derivation of φ(ξ) with respect to ξ yields

φ′(ξ) = 2φ′1(ξ) + (
7
t0
)
0.5
φ′2(ξ,7) + 2.5(1− 1.086h

2)φ′2

(ξ,0.12(V/S)2). (62)
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FIGURE 18
Continuous retardation spectra calculated by different methods (GL2000 model) for (A) case 1; (B) case 2.

FIGURE 19
φ(ξ) calculated by different methods (GL2000 model) for (A) case 1; (B) case 2.

FIGURE 20
Errors of φ(ξ) calculated by different methods (GL2000 model) for (A) case 1; (B) case 2.
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FIGURE 21
Comparison between experimental results and numerical results for (A) OPC; (B) SF10.

Because the function form of φ2 is similar to Eq. (30), and the
function form of φ1 is similar to Eq. (51), the parameter value forms
of the CEB MC90 and ACI 209R-92 models can be referred to
respectively. ForN = 10, the values of σ and b recommended forφ′1(ξ)
and φ′2(ξ,γ) are

b1 = σ1,σ1 = 0.6τ, (63)

b2 = √σ
2
2 + γσ2,
{{{{
{{{{
{

σ2 = (15/γ)τ2, for τ < 0.04γ,

σ2 = 0.6τ, for 0.04γ ≤ τ < 100,

σ2 = τ, for τ ≥ 100.

(64)

Two cases are considered, and the parameters are listed in
Table 2. The continuous retardation spectra calculated by the
Weeks and Post–Widder methods for different orders are shown in
Figure 18.

It is apparent from Figure 18 that the continuous retardation
spectra begin to grow significantly from τ = 10−4 and decrease
gradually at a long retardation time. Therefore, more Kelvin units
are needed to cover the range of the continuous retardation spectra.
Consequently, τ0 is set to 10

−5, themaximumvalue ofm in Eq. (36) is
taken as 18, τ18 = 1013 for thismodel, and the number of Kelvin units
in Eq. (42) changes from 20 to 36. The values of φ(ξ) of the GL2000
model for different duration ξ are obtained as per Figure 19, and
the errors are shown in Figure 20. Since the GL2000 model was not
discussed by Jirásek and Havlásek (2014), the error obtained from
their method is not compared in Figure 20.

4.5 Discussion

For all the concrete creep models discussed in this section,
the proposed approach based on the Weeks method improves the
computational accuracy and efficiency of the continuous retardation
spectra and the creep compliance. It should be noted that, for
the case of long duration, the errors of φ(ξ) decrease with the
increase of ξ and approach zero. There are two main reasons
for this phenomenon. First, the creep compliances used have

negligible variation for a long duration and have a clear upper
limit. Thus, the approximation through the Dirichlet series will
maintain the same characteristics as long as the retardation time
range selected is wide enough. Second, by calculating 1/E0 based
on the most accurate compliance value—Eq. (43)—the effect of
numerical integration for a short duration on the final results
is reduced.

For the creep models considered, when ξ ≥ 1, the absolute
error of φ(ξ) given by the improved approach (using the Weeks
method) is smallest andmaintains a lower level (usually smaller than
0.01). For the ACI 209R-92 and JSCE models, the results from the
proposed approach achieve higher accuracy than the Post–Widder
method. When calculated by the improved approach, φ(ξ) of the
ACI 209R-92 model is closest to the reference solution, while φ(ξ)
of the JSCEmodel exhibits the most significant improvement on the
Post–Widder method.

The errors of φ(ξ) obtained from the improved approach and
the Jirásek–Havlásek method are both controlled at a relatively
low level. For the CEB MC90 model, the results obtained from
Jirásek–Havlásek are more accurate for low retardation times, while
those obtained from Weeks are more accurate for high retardation
times. As shown in Figure 9, the errors corresponding to the Weeks
method are smaller compared to the Jirásek–Havlásek method
when ξ > 10. For the ACI 209R-9 and JSCE models, the results
obtained from Weeks are more accurate and the errors of φ(ξ)
are smaller.

For the other creep models which are not discussed in this
paper, the proposed approach is still applicable when they fulfill
the requirement of the Weeks inverse transform. In general, a large
value of N can be used to achieve the required computational
accuracy and a proper choice of σ and b can significantly improve
computational efficiency. In general, Eq. (27) can be used to
determine the parameters, and 10 ≤ N ≤ 50 is recommended. The
larger the value of N, the more accurate the calculation results, but
computational efficiency will be reduced. If φ′(ξ) has two or more
poles and branch points, Eq. (32) can also be used to determine
the parameters, and precision requirements are usually satisfied
when N = 10.
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5 Comparison with experimental
results

To further verify the validity of the improved approach, the finite
element method is used to compute the long-term creep of concrete
by combining the retardation spectrum obtained by the Weeks
method with the second-order exponential algorithm (Bažant
and Jirásek, 2018). For this purpose, two sets of experimental
data, OPC and SF10, were selected from Mazloom et al. (2004).
They had different mix proportions, and a pressure of 10 MPa
was applied on the OPC and SF10 cylinders on the 28th and
7th days, respectively. Two UMAT user subroutines for material
behavior—ACI UMAT and CEB UMAT—of the commercial
finite element software ABAQUS were coded. The concrete
strain was calculated using the CEB MC90 and ACI 209R-92
creep models. The results are shown in Figure 21, which shows
that the finite element results are in good agreement with the
experimental results. For the OPC group, the ACI 209R-92 model
has higher accuracy, while, for the SF10 group, the CEB MC90 has
higher accuracy.

It is noted that one of the purposes of this paper is to ensure that
the numerical results agree well with the corresponding expressions
of J(t, t0). As a result, the accuracy of the final numerical results is
mainly dependent on whether the analytical expression of J(t, t0)
given by design codes is close to the practical situation. Therefore,
before the concrete creep is calculated, it is necessary to select a
reasonable model according to the practical situation, including the
mix proportion, the component shape, loading, and environmental
conditions, to ensure the computational accuracy of the numerical
results. It should also be noted that, since this paper is mainly
concerned with improving on the continuous retardation method,
finding a viable, stable strategy to identify the optimal dimension of
the approximation in the presence of an error (uncertainty) on data
is not addressed. This limitation is expected to be removed in our
future work.

6 Conclusion

Based on the Weeks method, an efficient approximation
approach has been developed for the continuous
retardation spectra of aging viscoelastic materials. Compared
with the existing methods, the approach has several
advantages.

(1) It can calculate the continuous retardation spectrum
more accurately by only using the first-order derivative
of the creep compliance function. The difficulty of
calculating the high-order derivatives in the Post–Widder
method is avoided.

(2) Unlike the method proposed by Jirásek and Havlásek (2014),
in which the correction factor is empirically determined
for each concrete creep model at a given derivative order,
the proposed approach is based on a solid theoretical
foundation and can be conveniently applied to various concrete
creep models.

(3) Better computational accuracy can be achieved for a long
loading duration. As illustrated by different concrete creep

models, the error of the creep compliance function obtained
by the proposed approach is controlled within 0.02 for a
loading duration of 10−1 < ξ < 106. Therefore, the approach is
applicable to long-term creep analyses of aging viscoelastic
materials, such as concrete.

It should be noted that the proposed approach is only applicable
to concrete creep models when the first-order derivative of the
compliance function fulfills the requirement of the Weeks method.
For concrete creep models with logarithmic compliance functions,
such as the fib model (CEB-FIP, 2010), the inversion formula of the
Laplace transform has an analytical solution and does not require
the Weeks method for the continuous retardation spectrum. In this
research, to achieve high computational efficiency and accuracy, the
values of σ and b for the CEB MC90, ACI 209R-92, and GL2000
models are determined empirically for N = 10. As for the JSCE
model, a good precision requirement can be achieved when the
parameters are taken directly through Eq. (27) for N = 10. If the
proposed approach is applied to other creep models, the parameters
can be determined by referring to the analytical process of this
paper or directly by increasing the value of N to meet the precision
requirements.
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