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In this research, free vibration characteristics of functionally graded metal foam
doubly curved panels reinforced with graphene platelets and with porosities
have been surveyed. Halpin Tsai's approach is utilized for extracting the effective
Young modulus of porous metal foam nanocomposite and also the effective
density of nanocomposite porous doubly curved shell panel is estimated
by using an extended rule of mixture. The FSDT hypothesis is utilized for
determining the displacement field and the Finite element and Hamilton
principle are utilized for deriving themass and stiffness matrices of the structure.
Finally, the influences of several variables such as porosity distribution, porosity
coefficient, GPL dispersion pattern, the weight fraction of Nanofillers, and span
angles on the free vibrations characteristics of doubly curved shell panels with
FG porosities and reinforced by graphene platelet have been reported in detail.
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1 Introduction

Composite materials, including functionally graded materials (FGMs), play a
pivotal role in various industries due to their unique combination of properties,
such as high strength-to-weight ratio and corrosion resistance (Hucke, 1971; Shen
and Bever, 1972; Mahamood et al., 2017). The importance of composites lies in
their ability to provide enhanced performance compared to traditional materials.
To ensure their effectiveness, researchers employ rigorous evaluation methods to
assess material properties. These methods include mechanical testing, non-destructive
testing, and advanced analytical techniques (Voigt, 1889; Hill, 1965; Halpin and Tsai,
1969; Mori and Tanaka, 1973; Wakashima and Tsukamoto, 1991). Understanding
and optimizing these properties are crucial for developing lightweight and durable
structures in the aerospace, automotive, and construction industries. Researchers study
composite structures (Wattanasakulpong and Chaikittiratana, 2015; Sobhani et al.,
2021; Civalek et al., 2022) even in nanoscience (Saffari et al., 2017; Penna et al.,
2021; Penna et al., 2022; Lovisi, 2023; Penna, 2023) to push the boundaries of
material science, aiming for innovations that improve efficiency, sustainability, and
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overall performance in diverse applications (Dastjerdi et al., 2020a;
Dastjerdi et al., 2020b).

Nowadays, scholars are evaluating the performance of structures
that are made of polymeric and metallic nanocomposite in practical
applications subjected to various loadings. Also, some of these
structures have been employed in various industries like aerospace,
marine, automobile, etc. One of the most important characteristics
of these structures is their low weight in connection with high
stiffness. On the other hand, adding the nanoparticles to the matrix
(polymer or metal) does not change the weight of the structure
considerably but it can more significantly increase its stiffness. It
is mentioned that these nanoparticles may decrease the stiffness of
structures. Since, the nanoparticles have a high level of energy and
if their weight fraction is more than a certain amount in the matrix,
the nanoparticles stick together and agglomeration will occur.There
are many investigations about determining the maximum weight
fraction of various nanofillers. Two famous examples of nanoparticle
reinforcement which recently attracted the attention of researchers
are carbon nanotubes (CNTs) and graphene platelets (GPLs).
Since many studies have been conducted into structures that are
reinforcedwith these nanoparticles, studies are consideredwhich are
related to the free vibration characteristics of shell-type structures
reinforced by GPLs. Babaei et al. (Mollaei et al., 2023) presented free
vibrations of functionally graded graphene reinforced composite
(FG-GPL RC) cylindrical shell panels employing three-dimensional
FEM. Hamilton principle was applied to obtain the governing
equations. Amirabadi et al. (Amirabadi et al., 2022) employed
third-order shear deformation theory (TSDT) combined with
generalized differential quadrature (GDQ) procedure to predict the
free vibration behavior of rotating FG-GPL conical shells for various
boundary conditions. Dynamic characteristics of FG-GPL shells
with piezoelectric patches assuming nonlinear behavior for electro-
elastic coupling were presented by Rao et al. (Rao et al., 2018).
Nguyen Van Do and Hyung Lee (Van Do and Lee, 2020a) evaluated
static bending and natural frequencies of FG-GPL RC cylindrical
shell panels employing FSDT and utilizing the isogeometricmethod.
Applying classical shell theory and the Rayleigh-Ritz technique, the
free vibration response of sandwich FG-GPL cylindrical shells was
studied by Permoon, Farsadi, and Askarian (Permoon et al., 2023).
Dynamic characteristics of an FG-GPL conical structure applying
Jacobi-Ritz solutionwere presented byZhao et al. (Zhao et al., 2023).
Free vibration characteristics of rotating 2D FG-GPL conical shells
supporting an elastic medium employing FSDT were presented
by Amirabadi et al. (Amirabadi et al., 2021). Mohammadi et al.
(Mohammadi, 2023) applied isogeometric procedure and higher
order shear deformation theory (HSDT) to evaluate free vibrations
of trapezoidally corrugated FG-GPL RC laminated cylindrical
panels. Mohammadi, Shojaei, and Kiani (Mohammadi et al., 2023)
presented an isogeometric method for free vibrations of FG-GPL
panel-type structures based on the Kirchhoff–Love shell hypothesis.
Liu et al. employing an analytical model (Amirabadi et al., 2023)
presented 3D buckling and free vibration behavior of pre-stressed
FG-GPL RC cylinders. Dong et al. (Dong et al., 2022) combined
GDQM and trigonometric expansion analysis to evaluate the
vibration behavior of FG-GPL RC conical shells assuming the ring
as a frequency controller based on FSDT. Dong et al. (Dong et al.,
2018a) performed an investigation about the influences of rotation
and axial force simultaneously on the geometrically nonlinear free

vibrations of FG-GPL RC cylinders applying Donnell's theory and
an analytical solution. Based on HSDT, the natural frequency
characteristics of FG-GPL cylindrical and spherical shell-type
panels by employing isogeometric solution were presented by
Nguyen Van Do and Hyung Lee (Van Do and Lee, 2020b). Liu et al.
(Liu et al., 2021) used three-dimensional elasticity assumptions
and an analytical layer-wise solution for the investigation of free
vibration characteristics of FG GPL spherical shells. Traveling
wave evaluation of a rotating FG-GPL RC cylinder for several
boundary conditions according to Donnell shell theory was
conducted by Qin et al. (Qin et al., 2019). Utilizing FSDT as a
theory and using GDQM as a solution, natural frequencies of
FG-GPL cylinders resting on various types of elastic foundations
for different BCs were presented by Sobhani et al. (Sobhani et al.,
2023a). Sobhani and Avcar (Sobhani and Avcar, 2022) examined
various nanofiller materials' effects on the free vibration of
cylindrical shells employing FSDT and using GDQM as a
numerical solution.

Free vibrations characteristic of FG-GPL doubly curved shell
structures have been studied in few articles.The differences between
these works are usually in methodology. In detail, Wang et al.
(Wang et al., 2018) introduced an analytical model for obtaining
natural frequencies of FG doubly curved panels reinforced by GPLs
based onHSDT. Free vibration responses of FGGPLs doubly curved
shells based on HSDT were presented by Adamian (Adamian et al.,
2020). Employing FSDT and Ritz solution, free vibrations of
FG-GPL doubly curved panels were presented by Esmaili et al.
(Esmaeili et al., 2022). In another investigation by considering the
same hypothesis and solution, they (Esmaeili and Kiani, 2022)
studied thermal induced vibration responses of GPL RC doubly
curved panels. Free vibrations of FG-GPL RC doubly curved shell-
type structures in thermal conditions employing Reddy’s HSDT and
using an analytical model were developed by Shen et al. (Shen et al.,
2019). Sobhi, Ashraf, and Zenkour (Sobhy and Zenkour, 2019)
proposed an analytical model for free vibration analysis of FG-
GPL RC doubly-curved panels supported on elastic foundations
based on an HSDT.

The weight of the structure is too prominent in the aerospace
industry and the low weight of the structure can be useful for
other applications where saving energy is important. One of the
ways to decrease the weight of a structure is BY creating pores in
it; the stiffness of the structure also will decrease. To compensate
for the decrease in stiffness of the structures, these structures can
be reinforced with nanoparticles. Hence, scholars have examined
the various types of structures which were fabricated by FG
porous material reinforced by nanoparticles. Due to there being
many investigations in this field, we review the articles which are
related to the vibration behavior of shell structures made of FG
porous material reinforced by GPLs. In detail, Bahaadini et al.
(Bahaadini et al., 2019) proposed an analytical model for obtaining
natural frequencies of FG-GPL RC conical shells with FG porosities
employing Love’s first approximation assumptions. Ye and Wang
(Ye and Wang, 2021) employed the Galerkin method to study the
resonance phenomenon in an FG- GPL cylinder with FG porosities
based on Donnell’s nonlinear assumptions. Wang et al. (Wang et al.,
2019) conducted an investigation into the nonlinear vibrations of
a porous cylinder reinforced with GPLs nanofillers by employing
the Galerkin approach and Donnell nonlinear hypothesis. Moradi
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Dastjerdi and Behdinan (Moradi-Dastjerdi and Behdinan, 2021)
presented an axisymmetric meshless model according to moving
least squares approximations for obtaining the stress waves in
porous cylindrical shells reinforced by GPL nanofillers exposed to
thermal conditions. Nonlinear free vibrations of FG-GPL imperfect
cylinders with FG porosities employing FSDT were performed by
means of an analytical model by Salehi et al. (Salehi et al., 2023).
Nejadi et al. (Nejadi et al., 2021) presented a GDQM numerical
model as a semi-analytical formulation for free vibrations of
sandwich cylinders based on FSDT and by assuming porosity
and GPL sense on transfering fluid flow. Zhou et al. (Zhou et al.,
2021) employ Reddy theory and the standard Lagrange model to
illustrate free vibrations of FG GPL cylinders with FG porosities
under supersonic load. Ton-That et al. (Ton-That et al., 2021)
reported the nonlinear forced vibrations of FG-GPL cylinders with
FG porosity effects by applying nonlinear Donnell assumptions
and the Galerkin solution. Ebrahimi et al. (Ebrahimi et al., 2019)
presented an analytical model for free vibration analysis of FG
–GPL cylinders with FG porosities employing the FSDT as a theory.
Pourjabari et al. (Pourjabari et al., 2019) analytically reported the
free and forced vibrations characteristic of the FG-GPL cylinders
in a micro sense employing modified strain gradient theory.
Free vibrations of FG-GPL cylinders considering various FG
porosity patterns were presented by Barati and Zenkour (Barati and
Zenkour, 2019). Kiarasi et al. (Kiarasi et al., 2021) utilized FEM as a
numerical solution and two-dimensional axisymmetric elasticity as
an accurate theory to study the free vibrations of FG-GPL RC joined
conical–cylindrical structure considering FG porosities. Zhang et al.
(Zhang et al., 2023) examined free vibrations characteristic of FG-
GPL joined hemispherical–cylindrical–hemispherical structure
with FG porosities by using 3D elasticity based on FEM. Cho
(Cho, 2023) applied FSDT and two-dimensional FE solution
to present free vibration characteristics of FG –GPL cylindrical
panels with FG porosities. Twinkle and Pitchaimani (Twinkle
and Pitchaimani, 2021) examined the influence of FG-GPL
reinforcement and FG porosities on the free vibrations and stability
of porous GPL-reinforced cylindrical shell panels according to
HSDT and utilizing Galerkin solution. Salehi et al. (Salehi et al.,
2023) proposed a novel analytical model for geometrically
nonlinear vibrations of FG-GPL RC imperfect cylinders with
FG porosities employing FSDT. A novel analytical model for
investigating the traveling wave vibrations of rotating FG GPL
joined conical-cylindrical structures considering FG porosities
applying Donnell’s assumptions was reported by Chai and Wang
(Chai and Wang, 2022).

The above literature review shows that in the most of
investigations, structures with simple shapes and governing
equations like cylindrical and conical shells have been considered,
and free vibrations of porous metal foam FG-GPL doubly curved
panels have not been investigated so far. In this investigation,
FSDT as a theory and FEM as a numerical solution are applied
to investigate the natural frequency characteristics of porous FG-
GPL metal foam doubly curved panels. Four distinct porosity
distributions combined with five different GPL dispersion functions
are assumed through the thickness of the structures. The porosity
distributions are assumed with symmetric, asymmetric, and
uniform patterns through the thickness of the structure. Two
distributions of porosity are employed for a symmetric pattern.

In one of them, the pores are mainly concentrated at the upper
and lower surfaces of the doubly curved shell panel and in
the other, the concentration of pores at the upper and lower
surfaces of the structure is too low. In asymmetric porosity
distribution, the number of pores at the structure’s thickest
point is low and the number of pores gradually increases from
the structure’s least to most thick points. Five distinct GPL
dispersion functions are supposed via the thickness of the shell
panel: GPLX, GPLO, GPLA, GPLV, and GPLUD. The effect
of various variables including porosity distribution, porosity
coefficient, GPL dispersion pattern, weight fraction of GPLs, and
span angles on the free vibration characteristics of FG porous
nanocomposite structure have been studied. In Section 2, the
effective mechanical properties of the structure are presented
by proposing the Halpin-Tsai model and extension rule of
mixture. Then, in Section 3, the finite element procedure and
Rayleigh-Ritz method are utilized for extracting the stiffness and
mass matrix of FG porous doubly curved panel reinforced with
GPLs.Finally, in Section 4 the numerical results of the natural
frequencies of the structures are presented and discussed in
detail. The most prominent finding results are presented in the
conclusion section.

2 Governing equations of porous
FG-GPL RC doubly curved shell panel

2.1 Description of the Geometry

Figure 1 denotes the geometrical parameters of the FG porous
metal foam doubly-curved panel reinforced by GPLs, where
h is the thickness of the shell structure, R1 and R2 are the
radiuses of curvature, θ1 and θ2 represent the span angles of
a doubly curved shell, respectively. Also, four distinct porosity
patterns combined with five GPL dispersion functions are
depicted in Figure 1.

2.2 Obtaining the equal mechanical
properties of FG porous doubly curved
panel reinforced with graphene platelet:

Four different porosity functions are supposed via the thickness
of the doubly curved panel. (See Figure 1) and their relation
to changing mechanical properties including Young modulus
and density along the structure thickness is shown in Eqs 1–4.
Besides, five GPL dispersion functions through the thickness of a
doubly curved panel are shown in Figure 1; Eq. 16 (Anirudh et al.,
2019; Li and Zheng, 2020; Moradi-Dastjerdi and Behdinan, 2020;
Zhao et al., 2020).

Nonlinear symmetric porosity function 1:

{{{{
{{{{
{

E(ϒ) = E∗ [1− e10 cos (πϒ)]

G(ϒ) = G∗ [1− e10 cos (πϒ)]

ρ(ϒ) = ρ∗ [1− e10 cos (πϒ)]

(1)

where ϒ = z/h
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FIGURE 1
The schematic of FG porous nanocomposite doubly curved shell panel.

Nonlinear symmetric porosity function 2:

{{{{
{{{{
{

E(ϒ) = E∗ [e20(1− cos (πϒ))]

G(ϒ) = G∗ [e20(1− cos (πϒ))]

ρ(ϒ) = ρ∗ [e2m(1− cos (πϒ))]

(2)

Nonlinear asymmetric porosity function 3:

{{{{
{{{{
{

E(ϒ) = E∗[e30(1− cos (πϒ/2+ π/4))]

G(ϒ) = G∗[e30(1− cos (πϒ/2+ π/4))]

ρ(ϒ) = ρ∗ [e3m(1− cos (πϒ/2+ π/4))]

(3)

Uniform porosity pattern 4:

{{{{
{{{{
{

E = E∗ e40
G = G∗ e40
ρ = ρ∗ e4m

(4)

΄Where E∗ , G∗ , and ρ∗ are the corresponding material
properties of nanocomposite doubly curved panels reinforced with
GPL nanofillers but without internal cavities. Also, e10, e

2
0,e

3
0, and

e40 (the amounts of them are between zero and one) represents
the coefficients of porosity for distribution functions 1, 2, 3, and
4, respectively. e1m,e2m,e3m, and e4m are related to the mass density
coefficient for patterns 1, 2, 3, and 4, respectively.

Mass density and modules of elasticity for open-cell metal foam
such as used in this research are dependent as presented in the below
Eq. (Gibson and Ashby, 1982; Ashby et al., 2000; Asgari et al., 2022).

E(ϒ)
E∗
= (

ρ(ϒ)
ρ∗
)
2

(5)

Eq. 4 is utilized to denote the dependency between the mass
density and porosity coefficients for each porosity function as
following relations:

1− e1m cos (πϒ) = √1− e10 cos(πϒ)

em
2(1− cos (πϒ)) = √e20(1− cos(πϒ))

e3m(1− cos (πϒ/2+ pi/4)) = √e30(1− cos (πϒ/2+ pi/4))

e4m = √e40 (6)

TABLE 1 Porosity coefficients for various patterns (Dong et al., 2018b;
Yang et al., 2018).

e10 e20 e30 e40

0.1 0.1738 0.9361 0.0324

0.2 0.3442 0.8716 0.1176

0.3 0.5103 0.8064 0.1862

0.4 0.6708 0.7404 0.1501

0.5 0.8231 0.6733 0.2647

0.6 0.9612 0.6047 0.3364

For comparing the stiffness of different distributions, the
analyses should be implemented for the shells with identical masses.
Hence, it is supposed that the mass of doubly curved shell panels
with different porosity functions and nanofiller dispersion functions
are similar:

h/2

∫
−h/2

√1− e10 cos(πϒ) dϒ =
h/2

∫
−h/2

√e20(1− cos(πϒ)) dϒ

=
h/2

∫
−h/2

√e30(1− cos (πϒ/2+ pi/4))dϒ = √e
4
0

(7)

Based on Eq. 7, the amounts of e20,e
3
0 and e40 may be evaluated

with a known value of e10. Details of these coefficients are
presented in Table 1. When e10 reaches 0.6, e20 (=0.9612) is
near to the upper bound. This justifies the selection of e10 ∈
[0,0.6] hereafter.

The Young’s modulus of the doubly curved panel fabricated
by metallic nanocomposite without porosity based on the Halpin-
Tsai micromechanics model (Choi and Lakes, 1995; Liu, 1997;
Arshid et al., 2020; Arshid et al., 2021; Ebrahimi et al., 2021) is
calculated as the following:
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E∗ = 3
8
(
1+ εGPLL ηGPLL VGPL

1− ηGPLL VGPL
)Em +

5
8
(
1+ εGPLW ηGPLW VGPL

1− ηGPLW VGPL
) (8)

in which

εGPLL =
2lGPL
tGPL

(9)

εGPLW =
2wGPL

tGPL
(10)

ηGPLL =
EGPL −Em

EGPL + ε
GPL
L Em

(11)

ηGPLW =
EGPL −Em

EGPL + ε
GPL
W Em

(12)

The mechanical properties of GPLs are shown with subscripts
of GPL. Additionally, the subscripts of m are utilized for showing
the corresponding mechanical properties of matrix material. The
volume amount of nanofillers is indicated with VGPL. lGPL, wGPL,
and tGPL symbols are hired for showing the length, width, and
thickness of nanofillers, respectively (Arshid et al., 2020; Zhao et al.,
2020; Ebrahimi et al., 2021).

According to the rule of mixture, mass density and Poisson's
ratio of the shell are obtained as below Eqs (Guo et al., 2021;
Babaei, 2022):

ρ∗ = ρGPLVGPL + ρm(1−VGPL) (13)

v∗ = vGPLVGPL + vm(1−VGPL) (14)

Accordingly, the shear modulus of the shell is expressed below:

G∗ = E∗

2(1+ v∗ )
(15)

Also, the VGPL for various GPL dispersion functions varies
through the shell’s thickness andmay be obtained by using the below
Eq (see also Figure 1):

VGPL(z) =

{{{{{{{{{{{
{{{{{{{{{{{
{

ti1[1− cos (πϒ)] GPL− X

ti2[cos (πϒ)] GPL− O

ti3 GPL− UD

ti4[1− cos (
π
4
− π
2
ϒ)] GPL −A

ti5[cos (
π
4 −

π
2ϒ)] GPL− V

}}}}}}}}}}}
}}}}}}}}}}}
}

(16)

Where ti1, ti2, ti3, ti4, and ti5 denote the upper limit
of the VGPL, and subscript i =1, 2, 3, and 4 denote
corresponding parameters for porosity functions 1, 2, 3, and
4 within each pattern. VT

GPL is the total volume amount
of nanofillers and it is obtained by substituting the GPLs
weight fraction ΔGPL into Eq. 16. Hence, ti1, ti2, ti3, ti4, and ti5 may be
obtained by Eq. 18 (Esmaeili et al., 2022).

VT
GPL =

ΔGPLρm
ΔGPLρm + ρGPL −ΔGPLρGPL

(17)

VT
GPL

h/2

∫
−h/2

ρ(ϒ)
ρc

dϒ =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

ti1

h/2

∫
−h/2

[1− cos (πϒ)]
ρ(ςϒ)
ρc

dψ

ti2

h/2

∫
−h/2

[cos (πϒ)]
ρ(ϒ)
ρc

dψ

ti3

h/2

∫
−h/2

ρ(ϒ)
ρc

dϒ

ti4

h/2

∫
−h/2

[1− cos (π
4
− π
2
ϒ)]

ρ(ϒ)
ρc

dϒ

ti5

h/2

∫
−h/2

[cos (π
4
− π
2
ϒ)] 

ρ(ϒ)
ρc

dϒ

(18)

2.3 FSDT shell theory equations

FSDT shell theory is hired to present the displacements of doubly
curved shell panels as follows:

u = u0 + z α

v = v0 + zβ

w = w0

(19)

In Eq. 2, u, v, and w, are displacements along the x, y,
and z axes, respectively, while u0, v0, and w0 are the same
displacements at the mid-plane of the shell. Also, α and β
are normal transverse rotations around y and x, respectively.
Hence, the strain field of the doubly curved shell panel
is as follows:

εx = ε0x + zkx, εy = ε0y + zky
γxy = γ

0
xy + zkxy, γxz = γ

0
xz, γyz = γ

0
yz

(20)

where

ε0x =
∂u0
∂x
− w
R1
, ε0y =

∂v0
∂y
− w
R2

kx =
∂α
∂x
, ky =
∂β
∂y
, kxy =
∂α
∂y
+
∂β
∂x

γ0xz =
∂w
∂x
+ α, γ0yz =

∂w
∂y
+ β, γ0xy =

∂v0
∂x
+
∂u0
∂y
− 2 w

R12
(21)

Therefore, the matrix form of Eq. 21 will be as:

[[

[

εx
εy
γxy

]]

]

=
{{
{{
{

ε0x
ε0y
γ0xy

}}
}}
}

+ z
{{
{{
{

kx
ky
kxy

}}
}}
}

=
[[[[[[

[

∂
∂x

0 − 1R1
z ∂∂x 0

0 ∂∂y −
1
R2

0 z ∂∂y
∂
∂y
∂
∂x
−2
R12

∂
∂y
∂
∂x

]]]]]]

]

[[[[[[[

[

u0
v0
w0

α
β

]]]]]]]

]

= d1Q

{
γ0xz
γ0yz
} = [[

[

0 0 ∂∂x 1 0

0 0 ∂∂y 0 1
]]

]

[[[[[[[

[

u0
v0
w0

α
β

]]]]]]]

]

= d2Q

(22)

where
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TABLE 2 Comparison of results of present research with natural frequencies of ANSYS WORKBENCH.

ω (Hz) ω1 ω2 ω3 ω4 ω5 ω6

ANSYS
WORKBENCH

2719.1 3176.8 3616.5 3977.8 4157.4 4724.2

Present 2729.8 3188.7 3632.1 3990.1 4165.8 4738.4

TABLE 3 Natural frequencies of FG- porous doubly curved panel reinforced by graphene nanoparticles for various span angles and GPL pattern
(θ1 = 120°, PD1,e0=0.2, ΔGPL = 0.05wt%).

GPL pattern θ2 λ1 λ2 λ3 λ4 λ5 λ6

GPL-X

60° 3396.1 3967.9 4517 4968.2 5192.6 5900.6

90° 2784.2 3638.2 3673.8 3868.7 4308.5 4772.3

150° 2408.1 3003.8 3123.5 3273.9 3424.2 3485.6

GPL-A

60° 3243.276 3769.505 4277.599 4670.108 4860.274 5493.459

90° 2605.733 3387.164 3409.507 3563.846 3952.101 4354.151

150° 2207.746 2739.466 2839.636 2954.367 3076.849 3115.29

GPL-V

60° 3214.086 3735.579 4239.101 4628.077 4816.531 5444.017

90° 2582.281 3356.68 3378.821 3531.772 3916.532 4314.964

150° 2187.876 2714.81 2814.08 2927.778 3049.158 3087.252

GPL-O

60° 3178.41 3694.115 4192.047 4576.706 4763.068 5383.589

90° 2553.618 3319.421 3341.317 3492.57 3873.059 4267.068

150° 2163.591 2684.676 2782.844 2895.28 3015.312 3052.984

GPL-UD

60° 3016.246 3505.64 3978.167 4343.2 4520.054 5108.916

90° 2423.331 3150.063 3170.841 3314.377 3675.454 4049.36

150° 2053.204 2547.703 2640.862 2747.562 2861.47 2897.22

Q =

[[[[[[[

[

u0
v0
w0

α
β

]]]]]]]

]

, d1 =
[[[[[[

[

∂
∂x

0 − 1R1
z ∂∂x 0

0 ∂
∂y −

1
R2

0 z ∂∂y
∂
∂y
∂
∂x
−2
R12

∂
∂y
∂
∂x

]]]]]]

]

,

d2 =
[[

[

0 0 ∂∂x 1 0

0 0 ∂∂y 0 1
]]

]

{{{{
{{{{
{

ε0x
ε0y
γ0xy

}}}}
}}}}
}

=

[[[[[[[

[

∂
∂x

0 − 1R1
0 0

0 ∂
∂y −

1
R2

0 0 0

∂
∂y
∂
∂x
−2
R12

0 0

]]]]]]]

]

[[[[[[[[[[

[

u0
v0
w0

α

β

]]]]]]]]]]

]

= d3Q

{{{{
{{{{
{

kx
ky
kxy

}}}}
}}}}
}

=
[[[[[[

[

0 0 0 ∂∂x 0

0 0 0 0 ∂
∂y

0 0 0 ∂∂y
∂
∂x

]]]]]]

]

[[[[[[[[[[

[

u0
v0
w0

α

β

]]]]]]]]]]

]

= d4Q

where

d3 =

[[[[[[[

[

∂
∂x

0 − 1R1
0 0

0 ∂
∂y −

1
R2

0 0 0

∂
∂y
∂
∂x
−2
R12

0 0

]]]]]]]

]

, d4 =
[[[[[[

[

0 0 0 ∂∂x 0

0 0 0 0 ∂
∂y

0 0 0 ∂∂y
∂
∂x

]]]]]]

]

The constitutive relations of a porous FG-GPL doubly curved
shell panel are:
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TABLE 4 Natural frequencies of FG- porous doubly curved panel reinforced by graphene nanoparticles for various span angles and porosity distribution
(θ1 = 120°, GPLX,e0=0.2, ΔGPL = 0.05wt%).

Porosity distribution θ2 λ1 λ2 λ3 λ4 λ5 λ6

PD1

60° 3396.1 3967.9 4517 4968.2 5192.6 5900.6

90° 2784.2 3638.2 3673.8 3868.7 4308.5 4772.3

150° 2408.1 3003.8 3123.5 3273.9 3424.2 3485.6

PD2

60° 2818.763 3269.55 3694.906 4029.21 4180.043 4720.48

90° 2264.668 2937.919 2945.065 3074.765 3398.976 3741.483

150° 1918.774 2376.126 2452.822 2548.928 2646.222 2676.941

PD3

60° 2377.27 2767.61 3087.37 3378.078 3507.134 3948.682

90° 1909.961 2486.892 2460.821 2577.874 2851.804 3129.751

150° 1618.243 2011.344 2049.516 2137.013 2220.229 2239.261

PD4

60° 2545.037 2936.762 3340.981 3661.563 3815.522 4305.078

90° 2044.75 2638.886 2662.965 2794.207 3102.568 3412.233

150° 1732.445 2134.274 2217.873 2316.35 2415.458 2441.37

TABLE 5 Natural frequencies of FG- porous doubly curved panel reinforced by graphene nanoparticles for various span angles and weight fraction of
nanofiller ( θ1 = 120°, GPLX, e0=0.2, PD1).

Weight fraction of Nano-fillers (%wt) (%) θ2 λ1 λ2 λ3 λ4 λ5 λ6

0

60° 2207.465 2575.961 2932.436 3224.859 3320.668 3771.664

90° 1911.075 2494.187 2518.593 2651.799 2909.582 3221.28

150° 1691.425 2107.242 2191.215 2296.371 2366.272 2407.572

0.5

60° 3396.1 3967.9 4517 4968.2 5192.6 5900.6

90° 2784.2 3638.2 3673.8 3868.7 4308.5 4772.3

150° 2408.1 3003.8 3123.5 3273.9 3424.2 3485.6

1

60° 4007.398 4705.929 5379.747 5917.608 6185.472 7058.298

90° 3446.338 4319.22 4379.871 4612.605 5137.456 5714.334

150° 3066.041 3843.945 4013.975 4207.596 4401.174 4498.863

{{{{
{{{{
{

σx
σy
τxy

}}}}
}}}}
}

=
[[[[

[

C11 C12 0

C12 C22 0

0 0 C66

]]]]

]

{{{{
{{{{
{

εx
εy
γxy

}}}}
}}}}
}

{
{
{

τxz
τyz

}
}
}
= [

[

C44 0

0 C55

]

]

{
{
{

γxz
γyz

}
}
}

C11 = C22 =
E∗

1− v∗ 2
,C12 =

v∗E∗

1− v∗ 2
,C44 = C55 = C66 = G∗

(23)

By integrating the stress field along the thickness direction,
resultant moment and force will be:

{{{{
{{{{
{

Nx

Ny

Nxy

}}}}
}}}}
}

= ∫
h
2

−h
2

[[[[

[

σx
σy
τxy

]]]]

]

dz,
{{{{
{{{{
{

Mx

My

Mxy

}}}}
}}}}
}

= ∫
h
2

−h
2

[[[[

[

σx
σy
τxy

]]]]

]

zdz

{
{
{

Qx

Qy

}
}
}
= K2∫

h
2

−h
2

[

[

τxz
τyz
]

]
dz

(24)

In Eq. 24, K is the shear correction factor and equals 5/6.
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TABLE 6 Natural frequencies of FG- porous doubly curved panel reinforced by graphene nanoparticles for various span angles and porosity
coefficients (θ1 = 120°, GPLX, ΔGPL = 0.05wt%, PD1).

e0 θ2 λ1 λ2 λ3 λ4 λ5 λ6

0.2

60° 3396.1 3967.9 4517 4968.2 5192.6 5900.6

90° 2784.2 3638.2 3673.8 3868.7 4308.5 4772.3

150° 2408.1 3003.8 3123.5 3273.9 3424.2 3485.6

0.4

60° 2818.763 3317.164 3789.763 4104.081 4273.51 4843.803

90° 2357.104 3102.366 3143.965 3259.733 3616.813 3995.933

150° 2054.687 2581.49 2693.994 2780.196 2897.024 2941.446

0.5

60° 2784.802 3225.903 3645.219 3985.49 4134.867 4669.145

90° 2319.573 3005.182 3012.193 3153.127 3485.752 3836.742

150° 2047.704 2532.447 2613.929 2723.497 2827.578 2860.207

Simplified form of Eq. 24 is as follows:

[[[[[[[[[[[[[[[

[

Nx

Ny

Nxy

Mx

My

Mxy

Qx

Qy

]]]]]]]]]]]]]]]

]

=

[[[[[[[[[[[[[[[

[

A11 A12 0 B11 B12 0 0 0
A12 A22 0 B12 B22 0 0 0
0 0 A66 0 0 B66 0 0
B11 B12 0 D11 D12 0 0 0
B12 B22 0 D12 D22 0 0 0
0 0 B66 0 0 D66 0 0
0 0 0 0 0 0 K2A44 0
0 0 0 0 0 0 0 K2A55

]]]]]]]]]]]]]]]

]

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

ε0x
ε0y
γ0xy
kx
ky
kxy
γ0xz
γ0yz

}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}
}

(25)

where:

(Aij,Bij,Dij) = ∫
h
2

− h
2

Cij(1,z,z2)dz (26)

The strain and kinetic energies of the doubly curved panel may
be presented as the below Eqs.

δU = δU1 =
1
2∭εTσdV

=∬
{
{
{

Nxε
0
x +Ny ε

0
y +Nxyγ

0
xy +MxKx +MyKy+

MxyKxy +Qxγxz +Qyγyz

}
}
}

dxdy = ∫(((d3Q)
TAT + (d4Q)TBT)(d3δQ))

+ ((d3Q)
TBT + (d4Q)TDT)(d4δQ) + (d2Q)TeT

(d2δQ)dxdy

δT = ∫
h
2

− h
2

ρ(üδu+ ̈vδv+ ẅδw)dV

(27)

where:

{{{{
{{{{
{

δu = δu0 + zδα
δv = δv0 + zδβ
δw = δw0

{{{{{{{{{
{{{{{{{{{
{

ü =
∂2u0
∂t2
+ z∂

2α
∂t2

̈v =
∂2v0
∂t2
+ z
∂2β
∂t2

ẅ =
∂2w0

∂t2

δT = ∫∫
h
2

− h
2

ρ((∂
2u0
∂t2
+ z∂

2α
∂t2
)(δu0 + zδα))

+(∂
2v0
∂t2
+ z∂

2β
∂t2
)(δv0 + zδβ) +

∂2w0
∂t2

δw0dzdA

(28)

Replacing Eqs 27, 28 Hamilton’s principle, we have:

∫
t2

t1
[∬

h
2

− h2
ρ((
∂2u0
∂t2
+ z∂

2α
∂t2
)(δu0 + zδα))]

+(
∂2v0
∂t2
+ z
∂2β
∂t2
)(δv0 + zδβ) +

∂2w0

∂t2
δw0dzdA

+∫(((d3Q)
TAT + (d4Q)

TBT)(d3δQ) + ((d3Q)
TBT + (d4Q)

TDT))

(d4δQ) + (d2Q)TeT(d2δQ)dxdydt = 0 (29)

2.4 FEM solution of governing equations:

In this section, for solving the governing motion equations of
the shell, the graded FE method is used. In conventional FEM, the
material property is constant through the element. InGFEM, to treat
the material heterogeneity, in addition to the displacement field, the
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FIGURE 2
The first six mode shapes of FG-GPL porous doubly curved panel (GPLX, ΔGPL = 0.05wt%, PD1, e0=0.2, R1=0.225 m, R2=0.4 m, θ1 = 120

0,θ2 = 60
0).

material properties of the FG-GPL porous doubly curved structure
could also be determined from their nodal values. This approach
leads to a smooth change of the properties along the structure and
also obtains more precise results than discretizing the structure
into elements with constant properties. By using the interpolation
functions of cubic ten nodded triangular element, the displacement
field, andmaterial properties of individual element (e) in terms of the
nodal displacement vector q, nodal elasticity modulus Ei and mass
density ρi and shape function matrix Ψ are as:

Q(e) =((
Ψ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Ψ1

)…(
Ψ10 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Ψ10

))

{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{
{

u01
v01
w01

α1
β1
⋮
u010
v010
w010

α10
β10

}}}}}}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}}}}}}}
}

= Ψq(e)

E∗ =
10

∑
i=1

Eiψi = ΨΞ,ρ∗ =
10

∑
i=1

ρiψi = ΨR

(30)

where Ψn,n = 1,2,…,10 are the approximation functions
and presented in the Appendix. u0i, v0i, w0i, αi and
βi are nodal DOFs, Ξ and R are respectively vectors
containing elasticity modulus and mass density of each
node, and are as:

ψ = [ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10],

Ξ = [E1 E2 E3 E4 E5 E6 E7 E8 E9 E10]T

R = [ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10]
T

(31)

Substituting Eqs 30, 31 in Eq. 29 can be rewritten as

∫
Ωe

0

[((d3Ψ)
TATd3Ψ+ (d4Ψ)TBTd3Ψ+ (d3Ψ)

TBTd4Ψ)]

+ (d4Ψ)TDTd4Ψ+ (d2Ψ)TeTd2Ψq+ΨTIΨ ̈qdxdy = 0 (32)

where d2Ψ = B2,d3Ψ = B3,d4Ψ = B4.

∫
Ωe

0

[(B3
TATB3 +B4

TBTB3 +B3
TBTB4 +B4

TDTB4 +B2
TeTB2)q+Ψ

TIΨ ̈q]dxdy = 0

(33)
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FIGURE 3
The first six mode shapes of FG-GPL porous doubly curved panel (GPLX, ΔGPL = 0.05wt%, PD1, e0=0.2, R1=0.225 m, R2=0.4 m, θ1 = 1200,θ2 = 900).

Rearranging Eq. 33, the FEmodel of porous FG-GPL RC doubly
curved panel element will be as follows:

(k1 + k2 + k3)
(e)q(e) +Me ̈q(e) = 0

ke1 = ∫
Ωe

0

[B3
TAT +B4

TBT]B3dxdy

ke2 = ∫
Ωe

0

[B3
TBT +B4

TDT]B4dxdy

ke3 = ∫
Ωe

0

[B2
TeTB2]dxdy

Me = ∫
Ωe

0

ΨTIΨdxdy (34)

Where in Eq. 34 and mass matrix of element, [I] may be
evaluated as:

I =

[[[[[[[[[[

[

I0 0 0 I1 0

0 I0 0 0 I1
0 0 I0 0 0

I1 0 0 I2 0

0 I1 0 0 I2

]]]]]]]]]]

]

(35)

where Ii, i = 0,1,2 are

{{{{
{{{{
{

I0
I1
I2

}}}}
}}}}
}

= ∫
h
2

− h
2

{{{{
{{{{
{

1

z

z2

}}}}
}}}}
}

ρdz (36)

By assembly of mass, stiffness, and force matrices of each
element, the FEmotion equations of the FG-GPL RC doubly curved
panel are as

(k1 + k2 + k3)q+M ̈q = 0 (37)

The natural frequency problem of the structure may be derived
by the solution of the eigenvalue model as follows:

((k1 + k2 + k3) −Mω2)q = 0 (38)

where ω is the circular natural frequency and q is the mode shapes

of free vibrations.

The shell is fully clamped at its all edges as:

u0,v0,w0,α,β = 0 (39)
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FIGURE 4
The first six buckling mode shapes of FG-GPL porous doubly curved panel (GPLX, ΔGPL = 0.05wt%, PD1, e0=0.2, R1=0.225 m, R2=0.4 m,
θ1 = 1200,θ2 = 1500).

3 Numerical results and discussion

In this part, natural frequencies of FG-GPL porous doubly
curved shell panels examined by changing the volume weight
fraction of nanofillers, nanofiller dispersion pattern, porosity
distribution, and porosity coefficient are investigated in detail. The
shell is fully clamped on its four edges.

3.1 Validation

To validate the obtained results of the present research,
the first six natural frequencies of isotropic homogenous
doubly curved shell panels with clamped edges are extracted
employing commercial FEM software ANSYS-WORKBENCH,
and the results are compared with the results of the present
research. Therefore, one may consider e0=0 and ΔGPL = 0wt%
. Also, the dimensions and material properties of the shell are
chosen as the following: Geometry: R1=0.225 m, R2=0.4 m,
h=0.025m, θ1 = 120°,θ2 = 60° and Mechanical properties:
E=200 GPa, υ = 0.3,ρ = 7800kg/m3

A comparison of the results of the present research with natural
frequencies of ANSYSWORKBENCH is presented in Table 2, and it
indicates excellent concordance between the results.

3.2 Natural frequencies of FG porous
doubly curved shell panel reinforced by
GPLs

The influence of coefficients of porosity and distributions of
porosity, GPL pattern, and weight fraction of nanofillers and span
angles on the natural frequency characteristics of an FG-GPL porous
doubly curved shell panel is investigated in this section. Therefore,
the below material properties and dimensions are employed:

Geometry: R1=0.225 m,R2=0.4 m, h=0.025m, θ1 = 120°,θ2 = 60°.
Material property: Em = 130GPa, ρm = 8960 kg/m3, υm = 0.34 for

copper28, and EGPL = 1.01 TPa, ρGPL = 1062.5 kg/m3, υGPL =0.186 ,
wGPL = 1.5 μm, lGPL = 2.5 μm, tGPL = 1.5 nm for GPLs (Arshid et al.,
2020; Zhao et al., 2020; Ebrahimi et al., 2021).

Table 3 describes the influences of nanofiller patterns on the
free vibrations of the porous FG-GPL doubly curved shell panel
(θ1 = 120°, PD1,e0=0.2, ΔGPL = 0.05wt%). As it is obvious in this
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table, the maximum andminimum fundamental frequencies belong
to GPLX and GPL-UD, respectively. Concentrating more nanofiller
near the upper and lower surfaces of the doubly curved shell
panel will result in more stiffness of the shell and consequently
higher natural frequencies will be obtained. In addition, for uniform
dispersion of nanofillers along the thickness of the structure,
the minimum stiffness of the shell and also the lowest natural
fundamental frequencieswill be created.Also, the results of this table
indicate that fundamental frequencies for GPL-A and GPL-V have
approximately the same values. Comparing the results of Table 3
shows that the maximum difference between the fundamental
frequencies with the change of nanofiller distributions is about 13%.
In addition, the results of this table denote that by increasing the
span angle θ2 from 60 ° to 150 ° the natural frequency of the
shell rose considerably, by 30%. This is due to the fact that by
increasing the span angle, the ratio of stiffness to the mass of the
shell increases. The influences of various porosity distributions are
reported in Table 4 (θ1 = 120°, GPLX,e0=0.2, ΔGPL = 0.05wt%). The
maximum andminimum fundamental frequencies are estimated for
PD1 and PD3, respectively. This means that PD1 provides higher
rigidity for the shell while PD3 leads to a lower stiffness of the doubly
curved shell panel. Comparing the results of Table 4 shows that the
maximum difference between fundamental frequencies considering
the effect of porosity distributions is about 43%. Also, the results of
this table denote that when the distribution of pores is symmetric
and their size is more around the mid-pane of the shell, the stiffness
of the shell is greater and for the asymmetric distribution of pores,
the stiffness of the shell will be lower. The impacts of the weight
fraction of nanofillers on the natural frequencies of the porous FG-
GPL structure (θ1 = 120°, GPLX, e0=0.2, PD1) is reported in Table 5.
By changing the weight fraction of nanofillers from 0 to 1%, the
fundamental frequencies of doubly curved shell panels considerably
increase (approximately 80%). The impact of porosity coefficient
on the free vibrations characteristics of porous FG-GPL doubly
curved shell (θ1 = 120°, GPLX, ΔGPL = 0.05wt%, PD1) are indicated
in Table 6. This table denotes that by increasing the porosity of
the shell, the fundamental frequencies of FG-GPL porous doubly
curved shell panels for PD1 decrease by approximately 22%. This
is due to the fact that both the mass and stiffness of the structure
decrease as the size of pores increases, the decrease of themass of the
shell is more remarkable than its stiffness. Comparing the results of
Tables 3–6 illustrates that the natural frequencies are less influenced
byGPLdistribution than other parameters affecting the frequency of
the shell.The first six free vibrationsmode shapes of porous FG-GPL
doubly curved shell panels for different span angles θ2 = 60°,90°, and
150° are shown in Figures 2–4. As it can be seen in these figures, it is
obvious that by increasing the span angle of the doubly curved shell
panel, higher free vibration mode shapes with more strain energies
are obtained.

4 Conclusion

Free vibration characteristics of FG porous metal foam doubly
curved shell panel reinforced by GPLs nanofillers have been
surveyed in this research. Four distinct porosity functions and
five GPL distributions are considered across the shell thickness.
Applying FSDT and employing FEM based on the Hamilton

principle, the governing motion equations of the shell are
derived. The effects of GPL patterns, the weight fraction of
nanofillers, porosity coefficient, and pattern and span angles
on the free vibration responses of FG-GPL doubly curved
panels with FG porosities have been examined. The main
results are as:

a) Maximum and minimum fundamental frequencies are
obtained for GPL-X and GPL-UD,
respectively.

b) The fundamental frequencies of GPL-A and GPL-V are
approximately identical.

c) The maximum and minimum fundamental frequencies of the
shell have been obtained for PD1 and PD3.

d) By changing ΔGPL from 0 to 1%, the fundamental frequencies
of the structure remarkably increase (approximately 80%).

e) By growing the size of the porosity of the
structure, the fundamental frequencies of the shell
decrease by 22%.

f) The natural frequencies are less influenced byGPL distribution
than other parameters (about 13%).

g) By increasing the span angle θ2 from 60 ° to
150 °, the fundamental frequencies remarkably are
enhanced by 30%.
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Appendix A

ψ1 =
(x23(y− y3) − y23(x− x3))(x49(y− y9) − y49(x− x9))(x58(y− y8) − y58(x− x8))

(x23y13 − y23x13)(x49y16 − y49x16)(x58y18 − x58r18)

ψ2 =
(x31(y− y1) − y31(x− x1))(x74(y− y4) − y74(x− x4))(x65(y− y5) − y65(x− x5))

(x31y21 − y31x21)(x74y24 − y74x24)(x65y25 − y65x25)

ψ3 =
(x21(y− y1) − y21(x− x1))(x69(y− y9) − y69(x− x9))(x78(y− y8) − y78(x− x8))

(x21y31 − y21x31)(x69y39 − y69x39)(x78y38 − y78x38)

ψ4 =
(x85(y− y5) − y85(x− x5))(x32(y− y2) − y32(x− x2))(x31(y− y1) − y31(x− x1))

(x85y45 − y85x45)(x32y41 − y32x41)(x31y41 − y31x41)

ψ5 =
(x31(y− y1) − y31(x− x1))(x74(y− y4) − y74(x− x4))(x32(y− y2) − y32(x− x2))

(x31y51 − y31x51)(x74y54 − y74x54)(x32y52 − y32x52)

ψ6 =
(x12(y− y2) − y12(x− x2))(x47(y− y7) − y47(x− x7))(x13(y− y3) − y13(x− x3))

(x12y62 − y12x62)(x23y63 − y23x63)(x13y63 − y13x63)

ψ7 =
(x96(y− y6) − y96(x− x6))(x12(y− y2) − y12(x− x2))(x13(y− y3) − y13(x− x3))

(x96y76 − y96x76)(x12y72 − y12x72)(x13y73 − y13x73)

ψ8 =
(x69(y− y9) − y96(x− x9))(x21(y− y1) − y21(x− x1))(x23(y− y3) − y23(x− x3))

(x69y89 − y69x89)(x21y81 − y21x81)(x23y83 − y23x83)

ψ9 =
(x58(y− y8) − y58(x− x8))(x23(y− y3) − y23(x− x3))(x21(y− y1) − y13(x− x1))

(x58y98 − y58x98)(x23y93 − y23x93)(x21y91 − y21x91)

ψ10 =
(x31(y− y1) − y31(x− x1))(x32(y− y2) − y32(x− x2))(x21(y− y1) − y21(x− x1))
(x31y10−1 − y31x10−1)(x32y10−2 − y32x10−2)(x21y10−1 − y21x10−1)
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