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Mining is one of the most daunting occupations gain the sector since it entails
risk at any point in the operation. In its operation, the main focus is on slope
stability. To avoid slope failures, work should be performed in line with both
the regulations and the safety criteria. Slope stability is essential in mining
activities owing to slope failure putting productivity and safety at risk. Prediction
of slope failure is difficult because of the complexity of traditional engineering
techniques. Through study, recent technologies have helped mining companies
predict slope problems quickly and effectively. In this current research, an
ensemble of machine learning intelligence algorithms was used to estimate
and assess the Factor of Safety (FOS). In Ostapal Chromicte Mine, India, 79
experimental and failure slope occurrences were tracked to gather in-the-
moment field data. The available data were split into training and testing sets at
random to build algorithms. The five influenced factors such as the unit weight,
the friction angle, the cohesiveness, the mining depth, as well as the slope
angle used as input variables to estimate the FOS. Selected machine learning
techniques such as Multiple Linear Regression (MLR), Decision Tree, Random
Forest (RF), eXtreme Gradient Boosting (XGBoost) and ensemble hybrid model
combining eXtreme Gradient Boosting and Random Forest (XGBoost-RF) were
developed to evaluate the FOS. The validity and efficiency of created models
can be evaluated using standard evaluation parameters such as coefficient of
determination (R2), root mean square error (RMSE), mean square error (MSE),
normalized root mean square error (NRMSE), mean absolute percentage error
(MAPE) and mean absolute deviation (MAD). The most precise model to assess
the FOS across all models was discovered to be the XGBOOST-RF ensemble
model, which had a high R2 of 0.931, MSE of 0.009, NRMSE of 0.069, MAD of
0.037, MAPE of 3.581 and an RMSE of 0.098.
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1 Introduction

Given that there is danger involved at every stage of the
process, mining is among the most challenging jobs in the industry.
The main focus is on stability, which is important. Work should
be done according to the guidelines and safety standards to
prevent slope collapse. Slope stability is crucial for both safety and
profitability in open-pit quarrying and mining operations. Building
safe, affordable, and useful dug slopes is essential to achieve a steady
state of slope stability. It is commonly accepted that a thorough
grasp of geological processes, such as geomorphology, stratigraphy,
petrography, weathering, and earthquakes, is necessary to construct
a stable slope. The main natural factors that affect how stable slopes
are intersections of joints, bedding planes, faults, joints, and shear
zones. The devastation of important commodities and the death of
individuals can both result from catastrophic rock slope instability.
Gravity’s actions on materials cause them to migrate downward,
which leads to slope failure. However, it is believed that where
joint sets cross is where a rock slope will slide. Failure of a rock
mass becomes unavoidable once the shear stress approaches the
rock’s shear resistance (Gao et al., 2017). Slope wall failure is still
influenced by several factors, such as cracks in the rock mass,
weathering, an increase in pore pressure, the existence of decayed
clay rock fillers, leaching, a rise in moisture absorption, strain
softening, as well as a start changing in the complexities of the
groundwater (Sha, 2016). To ensure that the construction of a pit
wall continues for such duration of a mine while collecting quite so
much ore as securely as well as affordably possible, it is crucial to
understand the composition and behaviors of the rock mass. The
most frequent type of collapse in rocky slopes is plane collapse.
The structure collapses whenever a structural discontinuity surface,
such as a bedding plane, has an angle that is greater than the
discontinuity surface’s angle of friction but lesser than that of the
inclination angle of the slope (Raghuvanshi, 2019). Additionally,
the slope may become unstable because of the water forces that are
present along the probable collapse plane.The dynamic loading and
surcharge forces are cited by Wang and Niu (2009) as additional
variables that contribute to the key driving force which results in
a collapse in slope stability. In the past few decades, significant
progress has been achieved in slope stability scientific studies which
looked at the factors that contribute to slope failure and the causes
of slope collapse. Sha (2016) splits these components into external
and internal factors. Some internal factors that could affect a sloping
wall’s stability include the kind of rock, the mineral composition of
the stone, and the stone’s structural and geotechnical characteristics.
Earthquakes, rain, and weathering are examples of environmental
influences that could reduce the strength of a rock mass; in contrast,
external causes were primarily the consequence of human activity
(Nicholas and Sims, 2000). Slope stability must be considered in
mining operations management since slope failure compromises
both the production’s financial and security elements. The majority
of mines have been designed to extract additional materials through
deep and steepmines due to the rise in demand formineral minerals
and the emergence of much better efficient extraction techniques
and equipment. These mines are inclined at a greater angle, which
raises their risk of experiencing a slope failure. Slope failure could
result in worker injuries, mine equipment damage, and operations
disruption, all of which have a detrimental effect on the efficiency of

the mining process. It is essential to conduct thorough geotechnical
investigations to make sure the FOS falls within a reasonable range
(less than one) of failure to avoid such danger from happening.
Greater focus should be placed onmonitoring such slopes to prevent
slope failure in situations where the FOS seems to be very low.
Open-pit mines frequently experience slope failures, which are
inevitable as excavation grows deeper and more challenging to
control. Examining previously failed slopes all around the world
helps us in a better understanding of the failure modes and variables
to consider when regulating the processes that lead to mass material
movement in slope design (Sjoberg, 2000). It is crucial to have a
full understanding of the properties of rock masses, the impact of
underground water pressure, structural geology, and some other
local external stressors to reduce the risk of slope failure. There are
several reasons why rock slopes collapse, and most of them have
previously been discussed in this paper. For maximum operating
effectiveness, the walls of the stripping excavation must be made as
steep as necessary. Although pre-existing faults and cracks account
for the bulk of open pit mining failures, failure may happen if the
slope design is excessively steep (Simmons and Simpson, 2006).
Different interior structures interact with one another differently
as the rock deforms, affecting how the rock behaves generally.
Furthermore, to understand the deformation operations in open
pit mining sites, a thorough understanding of the situ stress field
sequence is required.

1.1 Slope failure accidents in India and
other countries

There have been several slope and dump failure accidents
taking place in some of the Indian mines to date. Some of
the prominent slope failure accidents that took place in Indian
mines are summarized in the following Table 1. Although there is
sufficient advancement in technology and methodology in foreign
countries, several slope and dump failure accidents have taken
place in some of the mines till date. Some of the prominent slope
failure accidents that took place in the mines across the world are
detailed in Table 2.

1.2 Input features selection

The most important influenced elements must be determined
to forecast the slope’s stability. According to the literature, six
variables were chosen as input qualities for this purpose: unit weight
(γ), cohesiveness (c), angle of internal friction (ϕ), slope angle
(β), and slope height (H). The slope’s status, which may be either
stable or unstable, is the model’s output. For the context of this
research, stable plains were those that had a FOS greater than
one. Variable selection techniques are used to choose the input
variables that are relevant for modeling/predicting the variable(s)
under consideration. Three separate sets of data—training, testing,
and validation sets—are created from the original data collection.
The largest dataset, known as the training dataset, is used by neural
networks to discover patterns within the data. After that, the general
abilities of a purportedly trained network are tested using the testing
set. Utilizing the validation set, a full verdict of the trained network’s

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2024.1330609
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Ragam et al. 10.3389/fmats.2024.1330609

TABLE 1 Some catastrophic mining accidents in Indian opencast mines involved dump and slope failures.

Sl.
No

Name of the mine Date Incidence Fatalities/Damages

1 KD Hesalong OCP, M/s Central Coalfields Limited
(CCL)

28.02.1975 Side fall 06 deaths

2 Panandhro Lignite Mine, M/s GMDC Limited, Gujarat 27.06.1975 Side fall 04 deaths

3 Jorekuri Palasthali mine 09.06.1980 Landslide 04 deaths

4 Kawadi OCP, M/s Western Coalfields Limited (WCL) 24.06.2000 Slope failure of OB benches of 31 m height 10 deaths

5 Tollen Iron Ore Mine, M/s Kunda R Gharse in Goa 09.12.2006 Dump slope failure of 30 m–46 m in height 06 deaths

6
Jayant OC Mine, M/s Northern Coalfields Limited

(NCL)
17.12.2008 Slope Failure of Dragline OB Dump

05 workers

01 Shovel Buried

7 Sasti OC Mine, M/s Western Coalfields Limited (WCL) 04.06.2009 Failure of Dragline OB dumps of 73 m height
02 workers

02 Excavators Buried

8 Hansa Minerals and Exports Granite Mine 25.02.2010 Granite mass sided along an inclined joint plane and
failed from height varying from 10 m to 55 m

14 workers

9
Amlai OC Mine, M/s South Eastern Coalfields Limited

(SECL)
22.06.2014

Dump failure due to the sudden development of cracks
in the embankment and Unstable Ground Conditions

2 workers

1 Dumper

1 Dozer

1 Crane

10 Rajmahal OCP of M/s Eastern Coalfields Ltd. (ECL) 29.12.2016
Dump failure due to the development of cracks and

Unstable Ground conditions

25 workers

12 Tippers

6 Excavators and 1 dozer

11 Juna Kunada OCMine, Majri Area, WCL 01.12.2017
Slope failure due to the development of cracks and

Unstable Ground Conditions

3 Excavators

8 Dumpers

1 Dozer

1 Service Van

performance is made. The existing slope’s FOS must be measured
and monitored regularly to ensure that working conditions are fully
safe. It is possible to quickly calculate the equilibrium circumstances
like an uneven slope as well as the likelihood of its own instability
using a variety of methodologies, such as numerical modeling and
soft computing techniques. In this study, the stability of several of the
benches at the Ostapal Chromite open-cast mine in Odisha, India
was evaluated using ensemble machine learning methods. For every
stone of the slope that the FOS is to be measured, parameters such
as slope angle, cohesiveness, bench height, internal angle of friction,
lithology, and other factors are first determined. The usual method
of evaluating the factor of safety, which takes into account the bench
geometric features, cohesiveness, and internal angle of friction of a
single rock kind, is the foundation for all of the data sets being used
to train the model.

Contributions: Motivated by the existing slope stability issues
and its damages in open cast mines, the main contribution in this
research paper can be described as follows:

• Slope stability accidents, affecting key factors and types of slope
failures discussed with respect to the past research literature
and survey.

• In this current work, the prediction of slope failure in open-pit
mines is examined using ensemble machine learning methods.
It includes the determination of the factor of safety of slope
against all possible influence parameters.

• Totally five machine learning (ML) models named MLR,
Decision Tree, RF, XGBoost and an ensemble hybrid model
combining eXtreme Gradient Boosting and Random Forest
(XGBoost-RF) were used to estimate the Slope’s FOS.
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TABLE 2 Some fatality incidents in opencast mines in foreign nations involved dump and slope collapses.

Sl. No Name of the mine Year Incidence Fatalities/Damages

1 Jupile coal mine, Belgium 1961 Removal of the toe of a fly ash storage facility
that caused a flow slide

11 deaths

2 Aberfan coal mine, Wales, United Kingdom 1966 Flowslide of coal waste dump 144 deaths

3 Groonyella coal mine, Queensland, Australia 1970 Slope failure of spoil piles None

4 Buffalo Creek coal mine, United States 1972 Overtopping of coal dump 118 deaths, 4,000 homeless

5 Vales Manastirii, Gorj, Romania 2000 Landslide An 800 m section of River Motru was
completely blocked

6 Bingham Canyon mine, United States 2013 Landslide None

7 Grasberg Gold and Copper mine, Indonesia 2014 Massive landslide 10 deaths

8 Hpakant Jade mine, Myanmar 2020 landslide 174 deaths, 100 persons missed

• The performance of these ML models can be evaluated by
evaluation metrics such as coefficient of determination (R2),
RMSE, MSE, NRMSE, MAPE, and MAD.

2 Previous work(s)

To find the slope designs and equilibrium equations that are
most feasible, stable, as well as economical, slope stability evaluation
is carried out. The ratio of resistive forces acting on an inclined
surface to the force that would otherwise cause it to collapse or
slide is known as slope stability. The primary issues of slope stability
research are observing and reviewing failure processes, identifying
critically dangerous slopes, and determining slope vulnerability.
When determining the stability of a slope, deterministic and
probabilistic methods were combined with engineering concepts to
compute the slope’s factor of safety (FOS). The factors that affect the
equilibrium and operate on the mass assumed to fail are identified.
This technique holds that the weight of the substance in the sliding
mass constitutes the outside load on the face and that the slope’s
surfaces also contribute to phases that affect mobility. On the surface
that is expected to fail, the soil’s shear strength prevents slippage.
The resistive moment is calculated based on the overall soil’s shear
strength. This is how the safety factor is shown:

FOS =
MomentsResisting theSliding (resisting f orce)
MomentsCausing theSliding (driving f orce)

Empirical relationships are often employed to measure the
component of protection that cannot be strictly relied on just
because the models do not take moisture into account. Additionally,
the models are strictly observational and the estimation time is
too long. They are unable to estimate the risk of loss. Many
of these loopholes, however, can be filled using soft computing
techniques. Soft computational methods, such as artificial neural
networks, rely on prior familiarity with input and output data. In
soft-computedmethodologies, any uncertainty in the data collection
may be accepted. Soft computation is similar to the mechanism
of the human brain. It does not depend on binary numbers or

crisp values. The mining industry makes extensive use of soft
computing techniques for a variety of purposes. Artificial neural
networks are systems focused on neurons in the human brain.
Several different types of neural networks can be used for a
range of purposes and uses such as pattern recognition, detection,
classification, voice, vision, and control systems. There are two
forms of learning: supervised and unsupervised. The primary
soft computing techniques include machine learning, probabilistic
reasoning, evolutionary communication, fuzzy algorithms, neural
networks, and supporting vector algorithms. Mc Culloh and Pitts
(McCulloch and Pitts, 1943) are credited with developing the very
first artificial neural network (ANN) which is acknowledged as the
ground-breaking breakthrough in artificial intelligence. Any neural
networkmust be constructed so that increasing the number of inputs
yields the desired number of outputs.

2.1 Slope stability

The condition known as slope failure occurs when a slope
abruptly gives way due to the earth’s reduced ability to hold itself
together for a variety of reasons, the two most important of which
are precipitation or an earthquake. The sudden failure of the slope
can result in casualties and different types of injuries. Such events,
as well as their number and duration, are becoming more common
by the day. The explanation is obvious, i.e., technical advances in
the design of heavy earth-moving machines and rapid drilling, as
seen in the mining industry, infrastructural development activities,
and so on. The stability of a slope is the capacity of soil-covered
slopes to accept and withstand displacement. The slope stability
can be evaluated using the interaction of peak strength. A once-
stable slope can become conditionally unstable when it is originally
affected by preparation conditions. Climate-related phenomenamay
be the initiating causes of such slope instability since they can
purposefully make a slope unstable and trigger mass movements.
Increased shear stress, loading, lateral strain, as well as a transient
force all contribute to mass displacement. Weathering, variations in
pore moisture content, and organic content all lower shear strength.
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FIGURE 1
The geometry of opencast mine and some factors affecting slope stability.

Thedynamic and static stability of soil and stone dam slopes, various
types of excavated slopes, and naturally occurring slopes in soft
rock and soil are all included in the concept of slope stability.
Investigation, analysis, and design mitigation of slope stability are
assisted by geologists and geotechnical engineers.

2.2 Factors affecting the stability of slope

The stability of slopes in opencast mines is altered by several
factors which include geometry of slope, lithology, groundwater
and rainfall, geological structure, time, cohesion, internal angle of
friction, dynamic forces, and mining methods. The various factors
affecting slope stability in opencast mines are shown in Figure 1.

2.2.1 Geometry of slope
The most critical element influencing slope stability is slope

geometry.The three primary geometrical slope design factors are the
height of the bench, the total angle of the slope, and the extent of the
failure surface. The slope stability decreases as the height and slope
angle increase. The possible degree of just about any failure towards
the back of the crests increases with the overall slope angle, therefore
it must be taken into account to prevent soil deformations. The
Directorate General of Mines (DGMS) Safety finds an average slope
angle of 45° to be secure. Convex segment slope must be avoided in
slope design since the slope’s curve does have a significant impact
on instability. The slope becomes less stable as it becomes steeper
and higher.

2.2.2 Lithology
The stability of the rock mass depends on the types of rocks that

make up a wide pit slope and is influenced by faults, discontinuities,
bending, old workings, and weathering. The formation of a slope
in huge sandstone is an example of reveling, circular, and rock fall
instabilities, which are all indicators of weak rock mass strength. Pit
slopes with alluvium of soil or weathered rocks on the surface have

weak shear strength, which would be lowered further if water drains
into it.

2.2.3 Groundwater
Due to its tendency to increase upward push and propel water

pressures, groundwater seems to have a detrimental impact on slope
stability. Thus, the cohesion, as well as friction of the discontinuities
face, will alter due to the physical and chemical impacts of porewater
pressure inside the filling materials of joints. Frictional resistances
are physically reduced by elevating the joint plane. This lessens the
shear resistance across the probable failure plane by lowering the
practical normal stress acting on it.The chemical and physical effects
ofwater pressures in rock pores result in a decrease in shear strengths
when the confining tension has been lowered.

2.2.4 Geological structure and time
The slope stability in open-pit mines is most affected by

the following geological characteristics such as proportions and
directions of dips, zones of intra-formational shear, surface joints
and fractures and faults. A slope’s standing period after mining also
needs to be taken into account. Surface mine slopes must stand for
a brief period of time, but they are treated with the same thorough
care as civil ventures. In the long run, slope stability is significantly
influenced by the pace of incremental strain softening.

2.2.5 Cohesion
A rock or soil’s cohesion is a characteristic that reveals how well

it resists breaking or deformation as a result of gravity. Cohesion in
soils and rocks is caused by electrostatic repulsion within rigid over
hardened clays, gluing with Fe2O3, CaCO3, NaCl, as well as other
materials, as well as root cohesion. On the other hand, the evident
cohesiveness is brought on by unskilled loading’s negative capillary
pressure reaction and pore pressure. Less compacted rocks and/or
soils cause slopes to be less stable.
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2.2.6 Internal angle of friction
It is the angle formed between the support force and the resulting

force when the failure occurs only as a result of shearing stress. Its
tangent is the coefficient of sliding friction. The size and sphericity
of the particles have an impact on the slope of internal friction. It
is also influenced by the presence of quartz. In the lab, the internal
angle of friction can be measured using the Direct Shear Test or the
Triaxial Shear Test.

2.2.7 Dynamic forces
The dynamic movement of the material temporarily amplifies

the effects of friction, blast, and shear loads, making stabilizing the
slope face more challenging. It induces rock breaking and earth
movement. The consequences of reckless or incorrectly designed
blasting may be severe for the stability of the bench. Vibrations due
to blasting result in slope failures. With good results, several types
of soft blasting have also been proposed to lessen such impacts on
minor slopes.

2.3 Types of slope failures

Failures in slopes are significant natural disasters that occur in
a variety of locations around the world. Because of their geometry,
slopes show two or three free surfaces. Slopes are prone to planar,
wedge, toppling, rock fall, and rotational failures. The direction and
dispersion of discontinuity planes in relation to the slope face greatly
affect the first four, which are farmore prevalent in rock slopes. Plane
mode failure is common on slopesmade by layered sedimentary and
meta-sedimentary rock formations. On a rock slope, plane failure
occurs when a longitudinal discontinuity plane dips or daylights into
the valley at an angle that is larger than the friction angle of the
discontinuity surface but less than the slope face angle. The surface’s
strike should be nearly parallel to the slope face in order to have
the least amount of resistance while sliding, and there should be
release surfaces on both sides of the sliding mass. Wedge failure
occurs when rock strata cross two intersecting discontinuities and
then fall from the edge inclination at an inclination to the cut surface,
a wedge-shaped square is created.

2.4 Factor of safety (FOS)

For slope stability analysis, the factor of safety is frequently
estimated as the ratio of final shear strength tomobilized shear stress
during incipient failure. The FOS can be measured using a variety
of methods. The most common approximation for F, expressed
in terms of force equilibrium or moment equilibrium, as follows,
assumes that the factor of protection is constant along the slip
surface:

1. Moment equilibrium is a concept that is frequently applied
in the research of rotating landslides. In the event of a slip
surface, provides the factor of safety Fm defined in aspects of
the moment.

Fm =
Mr

Md

Where,Mr is the total of his recalcitrant times,Md is the total driving
time. The instant spot for such a spherical failure surface is typically
taken to be the circle’s center for the sake of simplicity. Any point
for immediate consideration can be used to examine such as a non-
circular failure surface.

2. Force equilibrium: Force equilibrium is a translational or
rotational failure composed of planar or polygonal slip
surfaces. According to force, the safety factor F f is determined
as follows:

Ff =
Fr

Fd

Where, Fr is the total of resisting forces and Fd is the total of
driving forces

2.5 Slope stability analysis methods

There are primarily two methods for performing slope stability
studies. The successful stress strategy, which is employed in long-
term stability investigations when drained conditions are available,
is the second technique. Taking into account the overall water level
during intense rainstorms, the successful stress approach can be
used to evaluate natural slopes as well as slopes in residual soils.
The slope stability analysis techniques that have been used and put
into effect up to this point include limit equilibrium methods, limit
analysis methods, physical modeling, probabilistic approaches, and
numerical modeling.

2.5.1 Limit equilibrium methods
Engineers can employ a range of research methods to solve

the nonlinear static problem of slope stability. Presently, the
majority of soil stabilization analyses are performed utilizing
computer technologies. Nevertheless, several of the earliest LEMs
are simple to compute manually. More complex techniques have
been developed since the invention of computers. Most LEMs
are built using slice techniques, which can be either vertical,
horizontal, or slanted. In contrast to a strictly mechanical theory,
engineering intuition was stressed in the first-slice approach
(Fellenius, 1927) (Fellenius, 1927). The slice approaches underwent
significant progress in the 1950s and 1960s, which will be
discussed below. The most common features of all the methods are
briefed below:

a) The sliding body is split into something like a limited number
of slices spread well over the failure plane. Typically, the slices
are sliced vertically, but lateral and inclined are also used by
several scientists and scholars.The differences between various
cutting techniques are typically negligible, and most engineers
currently favor vertical cuts.

b) To bring the slipping block or body to a limited condition,
similar amounts of the slip surface’s strength are mobilized.

c) Interslice force assumptions are used to determine
the problem.

d) Equations of a moment or force equilibrium are utilized to
estimate the safety factor.
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2.5.2 Limit analysis method
The breakdown mechanism, such as inflexible

translational/rotational failure mechanisms or block/wedge failure
mechanisms, must be predetermined for this approach, much like
for LEM.The studies have presumed the failure mechanism because
the typical limit analysis approach was utilized to tackle 3D slope
issues (Farzaneh and Askari 2003; Michalowski 2010) (Orang and
Faradjollah, 2003). Recently, Gao et al. (2012) (Gao et al., 2012)
included face and base failures in the research of Michalowski and
Drescher (2009) (Michalowski and Drescher, 2009), who utilized
a toe failure with something like a rotational failure mechanism
in their investigation. Because it is difficult to compute the stress
field required by the lower bound limit analysis system, the majority
of slope stability analyses only have employed the upper bound
limit evaluation technique, which is similar to what was previously
stated. This analysis, often referred to as reliability analysis, was
initially conducted in the 1930s in relation to aircraft failure. People
started to understand the importance of uncertainty in structure
engineering after Freudenthal wrote Degree of Safety in Structure
in 1946 (Freudenthal, 1947) and then invented risk evaluations in
functional engineering design. With the advent of dependability
theory and a greater focus on the uncertainties of slope engineering,
engineers as well as academics began to pay more attention to slope
probabilistic analysis. It was initially utilized in slope engineering
in the 1970s. After that, other people conducted additional research
and created several methods for probabilistic analysis. The Second
Moment Pattern (Cornell, 1969,1971) (Cornell, 1969) was the first
statistical instrument. Such methods result in a linearization of the
performance function with a mean-centered distribution.

2.6 Numerical modelling

The classic limit equilibrium approach, which gives no data on
the actual strain growth, solely considers the system’s ultimate limit
state. If the slope fails owing to dynamic processes, designing it
exclusively utilizing a limiting equilibrium analysis will fail. Some of
the failure masses may likely face considerable stress in the case of a
natural slope, mobilizing residual strength in some areas and adding
final shear strength to other failure masses. In addition to brittle
materials, over-consolidated or fissured clays can also experience
this type of gradual collapse. The approximation of such successive
failures will be improved more by the use of numerical approaches.
The usage of numerical methods in geomechanics has significantly
increased during the past 30 years. Using simple slope geometry
and clear loading situations, traditional research methodologies
have a limited range of applications and insufficient understanding
of the mechanisms underlying slope failure. Investigations into
slope stability employ the continuum, discontinuum, and hybrid
simulation methods of numerical analysis. To optimize their key
benefits, hybrid codes combine these two approaches (continuum
and discontinuum).

2.7 Hybrid approach

In slope analysis, hybrid techniques are widely used. This may
entail joint investigations using limit equilibrium stability analysis,

groundwater flow, and finite element modeling, such as those found
in the GEO-SLOPE applications package (Geo-Slope 2000). Hybrid
computational models, such as coupled boundary/distinct element
and paired boundary/finite component solutions, have been used for
a very long time in underground rock engineering. Coupled particle
flow andfinite difference calculations using PFC3DandFLAC3Dare
two examples of advancements. 2005 (Itasca), for the data analysis,
the hybrid technique was employed to characterize the micro-
mechanical interactions between the particles and forecast how they
will affect stability analyses. To help people understand how complex
slope stability is, a soft computing technique model is offered. Since
a few years ago, sophisticated machine learning methods have been
employed to assess the FOS. Other researchers used a variety of
novel soft computing techniques to predict FOS, including Multiple
Regression (MR),GeneticAlgorithm (GA), SupportVectorMachine
(SVM), Support Vector Regression (SVR), K-Nearest Neighbors
(KNN), Extreme gradient boosting (XGBoost), Random Forest
(RF), Decision Tree (DT), and hybrid models, Gradient Boosting
Decision Tree was used in several applications, and the results were
found to be noticeably superior to those attained by employing
traditional techniques. (Marrapu and Jakka, 2017; Lin et al., 2018a;
Bui et al., 2020a; Huang et al., 2020; Deris et al., 2021; Jingjing et al.,
2021; Kardhani et al., 2021; Sina et al., 2021; Christoph et al., 2022;
Feezan et al., 2022;Gagan et al., 2022;Gexue et al., 2022; Zhihao and
Zhiwei, 2022; Mahmoodzadeh and Mohammadi, 2023; Xu et al.,
2023). Arunav Chakraborty and Diganta Goswami (Arunav and
Diganta, 2017) carried out their work on slope stability prediction
utilizing artificial neural networks, very advanced modeling
methods that can be suitable for modeling highly complicated
functions. In this study, an ANN-based prediction method for
the slope safety factor was developed. Using Bishop’s Simplified
Method, they examined 110 cases with varying geometric and soil
conditions. A backpropagation learning algorithm was used as the
computational technique in this case for the training procedure.

Farzad Farrokhzad et al. (Choobbasthi et al., 2009) researched
the prediction of slope stability using ANN. In this paper, artificial
neural networks are utilized to analyze slope stability in a selected
area. The findings are then contrasted with earlier research
approaches to verify the ANN model validity. Total stress, effective
stress, angle of slope, angle of internal friction, cohesion, and slope
stability are the relevant input parameters used in this article,
and slope stability is the output. Geotechnical engineering is a
discipline that, Sakellariou and Ferentinou (Michael and Maria,
2021) submitted work on identifying the nonlinear nature of
multidimensional dynamic systems. The training computation was
carried out using a back-propagation learning technique. In this
article, the source data for the stability of the slope computation are
the parameters of the geotechnical and geometrical input variables.
The FOS of the slope scenarios under consideration is calculated by
the network.According to research byArunavChakraborty (Arunav
and Diganta, 2016), the influence of specific factors on slope failures
can be described using statistical techniques like regression analysis,
neural networks, and other techniques. The geotechnical as well as
geometrical input parameters are used as the input data for the three-
dimensional slope stability computation in this article This study
contains the geotechnical and geometrical input characteristics as
the input data for the three-dimensional slope stability calculation,
and the output data is the 3-D crucial protection factor (FOS).
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TABLE 3 An overview of prior studies on the subject of FOS prediction.

Author(s) Technique(s) Inputs No. of data sets R2

Marrapu and
Jakka, (2017)

MR C, ϕ, β, γ, H, Γu 15,000 0.949

Lin et al., 2018a RF, SVM, BAYES, GSA C, ϕ, β, γ, H 107 0.889

Bui et al., 2020a M5Rules and GA, SVR, ANN
5-8-1, ANN 5-11-1

C, ϕ, β, γ, H 450 0.983

Kardhani et al.,
2021

SVM, KNN, DT, Extreme Gradient
Boosting, RF, LR, Hybrid Stacking

Ensemble

C, ϕ, β, γ, H, Γu 257 0.91

Huang et al.,
2020

KNN, WKNN, DWKNN C, ϕ, β, γ, H, Γu, GWL, EI, RI 64 0.923

Zhihao and
Zhiwei, (2022)

ANN, BPNN, MARS C, ϕ, β, γ, H, Γu 153 0.893

Mahmoodzadeh
et al. (2021)

GPR, SVR, DT, LSTM, DNN, KNN C, ϕ, β, γ, H, Γu 327 0.814

Deris et al., 2021 SVM, DT C, ϕ, β, γ, H, Γu 148 0.966

Sina et al., 2021 HS, K- means C, ϕ, ϕ˄', γ, H, Γu 19 0.89

Jingjing et al.,
2021

ANN C, ϕ, β, γ, H 234 0.999

Christoph et al.,
2022

RBF, RF, KNN, MLP C, ϕ, β, γ, H, Γu, mT, mR, βR, ϰ 100 0.889

Feezan et al.,
2022

TAN γ, c, ϕ, β, H, Γu 87 0.853

Gagan et al., 2022 DT, GB, MNL, RF, SVM C, ϕ, β, γ, H 158 0.915

Gexue et al., 2022 SVM, DT, KNN, ADA, RF, ANN,
GBDT

C, ϕ, β, γ, H, Γu 102 0.84

Xu et al., 2023 KRR, SVR, RF, XGBOOST, LGBM,
LASSO

RWL, GWL, SD, DD 1975 0.971

Cohesion (C), Friction Angle (ϕ), Slope angle (β), Unit weight (γ), Mining Depth (H), Pore-Water ratio (Γu), Groundwater level (GWL), Earthquake intensity (EI), Rainfall intensity (RI),
Standard normal probability density (ϕ), Shearing resistance (ϕ’), Intergranular strain (mT, mR, βR, ϰ), Rainfall level (RWL), Surface displacement (SF), Deep displacement (DD).

A summary of all researcher’s investigations in the field of FOS
estimation and their prediction performances are illustrated in
Table 3.

Slope stability evaluation is an important problem in
construction projects, according to Zhihao and Zhiwei (2020). This
study looks into the application of multivariate adaptive regression
splines (MARS) to represent this same underlyingmultidimensional
and nonlinear relationship between the factors involved in assessing
slope stability. A comparison of backpropagation neural network
(BPNN) and MARS-based machine learning approaches were
implemented for the evaluation of slope stability. The model was
built using a single data set that contained actual slope failure
events, and the performance of BPNN and MARS was contrasted.
In light of the research results, the BPNN and MARS models
will simulate the relationship between both the safety factor and
the slope parameters. Erzin and Cetin (2011) (Yusuf and Tulin,
2012) researched the creation of Artificial Neural Network (ANN)

and Multiple Regression (MR) models in order to ascertain the
critical factor of safety (FOS) value of a typical artificial slope
subjected to seismic pressures. This was accomplished by altering
the natural subsoil qualities during slope stability tests while
maintaining the slope’s structure and the attributes of man-made
soil, namely, cohesion, internal angle of friction, bulk unit weight of
the crust beneath the ground surface, and seismic coefficient. Maria
Ferentinou and Muhammad Fakir (2018) (Maria and Muhammad,
2018) proposed an optimized back-propagation network and
trained it on a large collection of 141 open-pitmine case studies from
around the world.The extended parameters’ values, which comprise
18 open pit slope stability parameters, are the inputs. The possibility
for instability is approximated as a result. As a result, a function
approximation is used to simulate the slope stabilization problem. To
estimate the future status regime comprehensively, the presentation
of a new open-pit mining slope stability index. By contrasting the
actual values with the stability status that was observed, these values
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are verified. A. J. Choobbasti and others (2009) (Choobbasti et al.,
2009) based on location inspection data from Nobad, Mazandaran,
Iran, this study developsmultilayer perceptron network-basedANN
systems to forecast slope stability. The input parameters were total
stress, effective stress, slope angle, coefficient of cohesion, internal
friction angle, and horizontal earthquake coefficient. The output
value was slope stability.

Kanule Jason and Ngetich Wilson (2018) (Kanule, 2021)
proposed an ANN model to predict the factor of safety of a
slope using a set of numerical simulations. To determine the
factor of safety for each situation, the author included six slope
characteristics: slope angle, cohesion, internal angle of friction,
pore water pressure, and water content. These parameters were
then fed into a model. More simulations are run under various
scenarios to determine the appropriate level of safety for the data
acquired. The ANN model is then trained, tested, and validated
using these data sets. The results are compromising and the ANN
model approximated the factor of safety close to the actual values.
In their research on slope stability risk analysis, Prashant K. Nayak
et al. (2020) (Paliwal et al., 2022) noted that it is crucial for every
mining engineer to offer a reasonable slope safety factor. The study
area’s slope face has been separated into cells in this work, each with
a homogeneous aspect, a slope angle, rock characteristics, and joint
set orientations. This study develops an ANNmodel and uses a mix
of slope geometry and discontinuity characteristics to determine the
likelihood of failure. Fattahi Hadi and Mahdi Hasanipanah (2021)
developed four improved ANN models include cascaded forward
neural network (CFNN) trained by Levenberg-Marquardt algorithm
(LMA) andConjugate gradient back propagation (CGP), radial basis
function neural network (RBFNN) was optimized by the Dragonfly
Algorithm (DA) and teaching-learning-based optimization (TLBO)
to predict the rock fragmentation. The outcomes evident that
CFNN-LMA exhibits lowest RMSE over other models (Fattahi and
Hasanipanah, 2021). Mahdi Hasanipanah et al. (Hasanipanah et al.,
2022a) adopted a novel hybrid ANN based on the adaptive
musical inspired optimization methods such as ANN coupled with
adaptive dynamical harmony search (ANN-ADHS), ANN coupled
by harmony search (ANN-HS) and particle swarm optimization
(ANN-PSO) for accurate prediction of fly rock induced by blasting
operation in mines. In their study, the results confirmed that
ANN-ADHS model shows high predictive performance over other
models. Mahadi Hasanipanah et al. (Hasanipanah et al., 2022b)
utilized three novel hybrid models named as CFNN-LMA, CFNN-
Bayesian regularization (BR), and CFNN-scaled conjugate gradient
(SCG) to estimate the rock mass deformation modulus (Em).
The computational outcomes revealed that developed CFNN-LMA
model provides better results than othermodels. Ding et al. (2023a);
Ding et al. (2023b)developed improved hybrid models includes
CFNN-LMA, CFNN-CGP, RBFNN-DA, RBFNN-TLBO and least
squares support vector machine (LSSVM) based gravitational
search algorithm (GSM), whale optimization algorithm (WOA),
ant bee colony (ABC) for predicting rock fragmentation and
fly rock, respectively. The performance of all adopted algorithms
were analyzed with various evaluation metrics. The outcome of
computational evident that CFNN-LMA and LSSVM-WOAprovide
better results than other to predict the rock fragmentation and fly
rock, respectively. Wang et al. (2023) proposed a novel hybridize
adaptive neuro fuzzy inference system (ANFIS) coupled with two

optimization algorithms named as differential evolution (DE) and
the firefly algorithm (FA) to assess the rock elastic modulus (E).
The results conclude that ANFIS-FA algorithm shows superior
performance to the ANFIS-DE and ANFIS-NN algorithms.

3 Description of the experimental
study region and the data gathered

The Ostapal Chromite Mines is located in the Sukinda
Ultramafic Complex to the North of Damsala Nallah. Villag of
Gurujanga, taluka of Sukinda, district of Jajpur, and State of Odisha,
India. The area is bounded by Latitude 21°0′ to 21°5′ N and
Latitude 85°40′ E to 85°53′E. The location of the lease area is under
Survey of India, Topo Sheet No. 73 – G/16. Serpentinite, quartzite,
pyroxenite, dolerite, nickeliferous limonite, and other lithological
units are found in the leasehold area. Serpentinite is the chromite
host rock. All over the lease area, the ultrabasic bulk has weathered
to a laterite capping of 10–20 m in thickness. Talus and clayey
soil cover the lease area’s northern, southern, and western regions.
Clayey soil with a thickness ranging from 1 to 3 m cements the
detrital deposit. The ultramafic body has a strike length of 15 km
in NE–SW direction from Kana to Kalarangi and breadth ranging
from 1 to 4 km. The widest part of redefinition is confined to the
southwestern part, tapering gradually to the northeast, and dying
out entirely against quartzite.TheSukinda ultramafic field’s chromite
deposits appear as six more or less parallel bands in Serpentinite.
These Chromite bands, known locally as Bands 1, 2, 3, 4, 5, and 6, are
separated from one another by Serpentinite/Pyroxenite ranging in
thickness from 120 M to 600 M. These chromite bands are exposed
intermittently in quarries throughout a 15-km strike length, with the
majority of these bands hidden beneath laterite capping.The bottom
sequence of the Iron ore super group has been folded structurally
into overseas syndrome, which plunges at a low angle of 150–200°.
The Sukinda syndrome is formed as an asymmetrical syncline based
on the direction obtained from cross beddings, with the apex of the
fold centered around Kansa village. The excavated overburden mass
of the Ostapal quarry has been placed in a waste dump near the
northern limit of the Ostapal Chromite Mines license.The collected
data set with ranges were summarized in Table 4.

Figure 2 presents the current state of the workings as of 9 June
2017.Themaximumdumpheight in theNorth and the South dumps
is approximately 87 and 41 m, respectively. North and South dumps
have a maximum of 6 and 3 decks, respectively. The maximum deck
height in the North and South dumps is approximately 17 and 15 m,
respectively. The mine is located in a subtropical climate. In total,
79 samples were gathered for this current research work. Figure 3
reflects the mine’s plan view as well as the dumps.

4 Estimation of FOS using MLR
technique

Multiple variables are modeled and examined using this kind of
analysis. MLR is a statistical strategy for predicting the outcome of
a response variable, often referred to as multiple correlation, may be
used. By evaluating the relation between the independent variable
(xi) and the connected variable, a correlation model that gives the
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TABLE 4 Summary of collected dataset.

Parameter Symbol Unit Minimum Maximum Mean SD

Unit Weight γ kN/m3 12.00 28.44 19.74 3.87

Cohesion c kPa 0.00 150.05 20.63 31.53

Friction Angle ϕ θ 0.00 45.00 27.47 11.80

Slope Angle Β θ 16.00 53.00 33.94 10.00

Mining Depth H M 3.66 214.00 44.70 46.08

Factor of Safety FOS - 0.62 2.05 1.20 0.37

FIGURE 2
Working at ostapal chromite mine, M/S factor Ltd, odisha.

researcher access to the dependent variable (y) and helps them to
comprehend dependent connection variables andmultiple variables
may be produced (y) (Lee et al., 2020). The following equation
represents the MLR model:

y = β0 + β1 x1 + β2 x2 + βp xp + ε

Where, y is the response (predicted) variable, x1,x2,x3….xp are
the predictor inputs,β0 is called intercept,β1,β2,βp are the coefficient
of corresponding predictor epsilon is the error. Table 5 listed the
overall analysis of theMLRmodel. Eventually, an empirical equation
was found to assess the FOS, as presented in the following Equation.

FOS = 0.0121(Unit weight) + 0.00593(cohesion) + 0.01856

(f rictionangle)−0.032(slopeangle) − 0.0026)

(mining depth) + 1.539

Figure 7 shows the correlation relation graph between actual and
MLR-predicted FOS. The observed R2 of 0.596, is evident that wide
scattering compared to actual FOS.

FIGURE 3
Plan view of mine along with dumps.

5 Estimation of FOS using ensemble
machine learning algorithms

Five machine learning models were developed to estimate
the FOS including Decision Tree, Random Forest (RF), eXtreme
Gradient Boosting (XGBoost) and an ensemble hybrid model
combining eXtreme Gradient Boosting and Random Forest
(XGBoost-RF) models. The total database with 79 samples was
randomly divided into two parts: (i) 85% for training, and (ii) 15%
for testing. All adopted models use similar training and testing
datasets. A trial-and-error method was implemented in all used
ML models.

5.1 Decision tree regression

Decision Tree Regression model is a tree-like model which is
constructed based on Decisions about whether the value of the
feature is exceeding a particular value or not. The feature to be
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TABLE 5 MLR model performance.

Coefficients Standard error t-Stat p-value Lower 95% Upper 95%

Intercept 1.538888 0.186877 8.234774 5.1E-12 1.166443 1.911333

Unit Weight 0.012131 0.008684 1.396931 0.166666 −0.00518 0.029439

Cohesion 0.00593 0.001089 5.447288 6.58E-07 0.00376 0.008099

Friction Angle 0.018563 0.003169 5.857862 1.25E-07 0.012247 0.024878

Slope Angle −0.032 0.003634 −8.80577 4.31E-13 −0.03924 −0.02476

Mining Depth −0.00263 0.000775 −3.38801 0.001138 −0.00417 −0.00108

TABLE 6 Key parameters and feature importance of decision
tree model.

Parameter Decision tree model

Criterion and Max Depth Squared_error and 6

Unit Weight 0.1185

Cohesion 0.1982

Friction Angle 0.2012

Slope Angle 0.3844

Mining Depth 0.0977

considered is selected based on the kind of Information Gain
(IG) obtained from the feature. Information Gain is based on the
expected reduction of entropy, in other terms reducing the impurity
of the data. The features with more Information Gain are chosen
and if-then conditions are applied recursively and split the data into
smaller regions. This splitting of data is stopped when a certain
parameter among the set of parameters is reached. Outputs obtained
are the mean or the median of the training values that belong to
the particular section. So, the data should be arranged in ascending
order. Then after the midpoint of ai, ai is found and subsequently,
entropy is calculated. The entropy of the probabilities is calculated
by:

H(p) = −∑pi log2(pi)

Finally, Information Gain is computed by the summation of all
the entropies before and after the split of the node.

Inf ormation Gain =H(pi) −H(pf )

Where, H(pi) = Entropy at the root node and H(p f) = Entropy
after the split of the node. Here, Distance is considered the decision-
making parameter for the root node and considered a continuous
variable. The Information Gain obtained by the Distance feature is
5.21. Different combinations of maximum depth and criterion were
tested. The maximum depth of the tree was considered as 6 and
the Squared_error criterion (which uses Poisson deviance to find

the splits among the data) is used for splitting the values to get the
optimum solution. All the other parameters are set to default values.
The values of Slope Angle less than or equal to 960 go to the left side,
and those of greater than 960 go to the right side.The accuracy score
of the training data set is 0.973 and the accuracy score of the testing
data is 0.373. The feature importance of various features is listed in
the below table (See Table 6). It is observed that the Slope Angle
was given more importance, i.e., 0.6961. Figure 8 demonstrates the
relation between actual and predicted FOS and R2 was observed
as 0.893.

5.2 Random forest model

The random forest approach, a tree-based ensemble
learning technique where every tree is reliant on numerous
randomly selected factors, was invented by Leo Breiman
(Breiman, 2001). In order to forecast slope stability and
landslide susceptibility, the Random Forest has been applied
(Youssef et al., 2015; Lin et al., 2018b). Random forest is often
considered to be a rival to the boosting and the continuation
of bagging (Breiman, 1996). The random forest theory is
illustrated in Figure 4. Due to their superior performance,
machine learning techniques including support vector machines,
random forests, and neural networks are utilized generally
nowadays. These function effectively, however, practitioners
who consider themselves to be domain-independent frequently
do not comprehend how they operate and instead simply
input data into these algorithms without considering how they
might be used (Vigneau et al., 2018). As a result, this study
will begin with an examination of the benefits and drawbacks
of the random forest before delving into its applicability.
The following questions will be answered as a result of this
research: What types of data or forecasts are appropriate
for random forests and which are not. This work principal
research method is assessing and combining current literature
study results.

The purpose of this research is to assist people who are having
trouble choosing a goodmachine-learning algorithm. Significant RF
regression variables including ntree, maximum depth, subsample,
and mtry are said to have an impact on the effectiveness of
the produced RF model as well as its application for error
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FIGURE 4
Random forest understanding (towardsdatascience, 2022)

TABLE 7 Key and feature importance parameters used in random
forest model.

Parameter Random forest- model

N estimators 10

Learning Rate 0.3

Max Depth 7

OOB score TRUE

Max feature 0.2

Min sample leaf 50

N jobs 1

Random state 10

Verbose 1

Unit Weight 0.1937

Cohesion 0.1870

Friction Angle 0.1657

Slope Angle 0.2864

Mining Depth 0.1669

minimization. (Sharafati et al., 2019; Bui et al., 2020b). A huge
proportion of relatively irrelevant models working together as a
committee will perform better than any individual constituent
model by mitigating and shielding one another from one another’s
flaws (Huang and Boutros, 2016). Computational benefits: Issues

with classification and regression, such as multi-class classification,
can be handled by the astonishingly adaptable and very accurate
Random Forest (Zhu, 2020). It is also relatively quick to train
and predict. Table 7 presented the key and feature importance
parameters considered while optimal results. Finally, the ideal
RF model was defined with the Number of estimators was 10,
and the maximum depth was selected at 7. Figure 9 declares
the plot between actual and predicted FOS. In addition, the
recorded R2 of 0.886.

5.3 XGBOOST model

The XGBoost ensemble method (Zhang et al., 2022) uses a
grade-boosting frame and has been extensively employed in the
famed Kaggle contests because of its high efficacy and enough
stiffness (Chen and Guestrin, 2016; Ragam et al., 2022). The
XGBOOST technique, developed in 2016 byChen andGuestrin, can
efficiently construct boosted trees (Chen and Guestrin, 2016). This
method’s fundamental premise is that classification or regression
trees (RTs) are generated one at a time, and the subsequent model
is trained using the residuals from the earlier trees. It combines
the calculated values based on the first trained trees to improve
the training process. Pruning is required to avoid overfitting, which
shrinks the size of the decision tree by deleting nodes that do not
significantly contribute to the goal values (Zhang et al., 2022). This
is how the prediction was calculated.

ŷ(t)i = Σ
t
k−1f k(xi) = ŷ

(t−1)
i + f t(xi)

Where, ŷ(t)i represents the finished tree model, ŷ(t−1)i is the
former tree model, xi represents the features corresponding to the
sample i, t is indeed the sum of the number of base tree models,
and ft(xi) is the most recently generated tree model. To achieve
the best performance, it is essential to choose the right depth
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TABLE 8 Key and feature importance parameters used in XGBoost model.

Parameter XGBoost

Learning 0.3

Booster Gbbooster

Max Depth 6

Subsample 1

Max Bin 256

Lambda 4

Gamma 0

Alpha 0.4

Scale pos Weight 1

Num parallel tree 1

Random state 1

Verbosity 1

N Tree 100

Unit Weight 0.0759

Cohesion 0.0994

Friction Angle 0.2204

Slope Angle 0.4086

Mining Depth 0.1955

and quantity of trees. As a result, the objective function Obj(t) can
be expressed as:

Obj(t) = Σt
i=1 l(yi, ŷ

(t)
i ) +Σ

t
i=1Ω( f i)

Where, yi is the factual value, howwell themodel fits the training
set of data is described by the loss function l(yi, ŷ

(t)
i ), and the

punishment term for normalization to prevent overfitting is Ω( fi) .
Following (Friedman, 2000), the objective function can be converted
into

0bj(t) = [g i f i(xi) +
1
2
hi f

2
t (xi)] +Ω( f t)

Where, gi = ∂ŷ
(t−1)
i l(yi, ŷ

(t−1)
i ) and hi = ∂2ŷ

(t−1)
i l(yi, ŷ

(t−1)
i )

are the loss function’s first and second-order partial
derivations, respectively. To lessen model complexity, prevent
overfitting, and enhance generalizability, the penalty term
Ω( ft) is employed. It is predicted by the following equation:
Ω( f t) = γT +

1
2
λ‖w‖2

With default values of 1 and 0, respectively, w is the weight
assigned to each leaf, T is the total number of leaves, and λ and γ
are the coefficients. The parameters adopted during the selection of
optimal results are shown in Table 8. The correlation graph reveals
that the R2 between actual FOS and predicted FOS was 0.927, as
shown in Figure 10.

TABLE 9 Key and feature importance parameters used in XGBoost-RF.

Parameter XGBoost-RF model

Learning 0.99

Booster Gbtree

Max Depth 9

ETA 1

Reg Alpha 0

N tree 300

Subsample 0.99

Gamma 0

Random state 1,234

Verbosity 0

Unit Weight 0.0375

Cohesion 0.0901

Friction Angle 0.2151

Slope Angle 0.4738

Mining Depth 0.1832

TABLE 10 List of performance metrics.

Name of the metric Equation

R2 { 1
N
∗
∑(Xi−X)∗(Yi−Y)

(σX−σy)
2 }

RMSE √ Σn
ⅈ=0|Ai−Pi|

2

N

MSE Σn
ⅈ=0|Ai−Pi|

2

N

NRMSE RMSE
Ymax−Ymⅈn

MAPE 1
N

n
∑
i=1
| Ai−Pi

Ai
|

MAD 1
N

n
∑
i=1
|xi −m(X)|

Ai, Pi, are measured and predicted values; N is the number of observations; Xi and Yi is the X
and Y value of observation i; X and Y is the mean X and Y ; σX and σY is the
standard deviation.

5.4 Ensemble hybrid XGBOOST- RF model

Gradient-boosted decision trees and other gradient-boosted
models are frequently trained with XGBoost. XGBRF also referred
to as the implementation of Random Forest on the Extreme
Gradient Boosting Regression, is used to provide improved results
and predictions. XGBoost comes under the Boosting Algorithm,
while RF comes under the bagging algorithm. Here for the base
estimator, RFs are used. The model structure and inference are the
same for Random Forests and Gradient-Boosted Decision Trees,
but the training methodology is different. Various combinations of
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FIGURE 5
Pair plot correlation coefficient between input and target variable.

FIGURE 6
Heat map of Pearson’s correlation coefficient for all FOS variables.

Maximum Features, Number of Estimators, and Random State is
made todiscover thebestfit.Optimumaccuracy is achievedwhen the
number of estimators is 300, and the maximum depth is considered

as 9. All the other parameters are set to default. The accuracy score
of the training data set is 0.988 and the accuracy score of the testing
data is 0.568. One of the crucial hyperparameters to choose for the
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TABLE 11 Parameters evaluation of created prediction models.

Model R2 MSE RMSE NRMSE MAD MAPE

MLR 0.596 0.002 0.005 0.113 0.007 0.218

Decision Tree 0.893 0.015 0.123 0.086 0.054 4.965

Random Forest 0.866 0.014 0.118 0.082 0.070 6.021

XGBoost 0.927 0.009 0.099 0.069 0.031 3.133

XGBoost – RF 0.931 0.009 0.098 0.069 0.037 3.581

XGBoost-RF is the number of trees. Typically, the number of trees
is increased until the model performance stabilizes. Intuition might
suggest that more trees will lead to overfitting, although this is not
the case. Both bagging and RF algorithms appear to be somewhat
immune tooverfitting the trainingdataset given the stochastic nature
of the learning algorithm. The most crucial element to select for RF
could be the number of features that are randomly sampled at each
splitpoint.Here,autonomousRFtraining is themajor focus.Since the
beginning,providednativeAPIsfortrainingrandomforests,andwith
version 0.82, included a fresh Scikit-Learn wrapper (not included
in 0.82). Here, it reserves the right to modify the user interface
as necessary because the new Scikit-Learn wrapper is currently in
the experimental stage. Important XGBoost-RF ensemble algorithm
properties to consider when tuning for the best results and feature
importance parameters are illustrated in Tables 9. In addition,
Figure 11 includes a comparison of the estimated and actual FOS
along with the linear relationship of the XGBoost-RF model. In
this process, the R2 between the actual and estimated FOS is
0.931. It is inferred that the proposed ensemble hybrid XGBoost-
RF model has the ability to estimate the slope FOS close to
actual FOS values.

6 Evaluation metrics

Numerous widely used statistical performance evaluation
standards can be used to assess the efficacy of developed machine
learning algorithms. The coefficient of determination (R2), root
mean square error (RMSE), mean square error (MSE), normalized
root mean square error (NRMSE), mean absolute percentage
error (MAPE), and mean absolute deviation (MAD) are the
evaluation statistical measures used in this context are listed
in Table 10.

7 Results and discussion

FOS is key parameter to measure the slope stability to
avoid the mishaps due to slope failure in opencast mines. To
determine optimal solution for such failures and analyse the
connection between slope failure and its indispensable properties,
this current study made an endeavour to propose ensemble
based machine learning algorithms which capable of establishing
a relationships between FOS and its influenced parameters. In

FIGURE 7
MLR model.

this context, developed and applied ML estimated models such
as MLR, Decision Tree, RF, XGBoost, and an ensemble hybrid
model XGBoost-RF by taking into account of five input influenced
parameters such as unit weight, cohesion, friction angle, slope
angle, minimum depth, and one out parameter (FOS). The
prediction capabilities of the suggested and developed predictive
models must be carefully examined while modeling FOS. Other
input variables, however, may have an impact on the slope
stability FOS.

7.1 Data exploratory analysis

The optimal strategy to solve the high non-linear issues
determine by the behavior of adopted dataset during simulation
procedure. Hence, it is essential to aware the statistical dataset
description at the pre-processing stage in ML modelling. Table 4
depicts the statistical data and its range in FOS estimation process.
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FIGURE 8
Decision tree regression.

FIGURE 9
Random forest model.

Similarly, Figure 5 demonstrates the pair plot correlation coefficient
between all variables in the dataset.

The heat map depicting the Pearson correlation is shown in
Figure 6. It evaluates the linear connection between two attributes
by calculating their values. The Pearson correlation was used to
calculate the correlation between the two characteristics. The values
of the correlation coefficients varied from −1 to +1. There is less
association when the value is closer to 0. A value of 0 indicates no

FIGURE 10
XGBoost regression model.

FIGURE 11
XGBoost-RF regression model.

association. A stronger positive or negative correlation is indicated
by a number that is closer to 1 or -1, respectively. The Slope
Angle and Friction Angle were shown to have the highest positive
correlation.

The key findings of this current work indicate that the ensemble
hybrid techniques performed well than the others. The 79 slope
stability event values are collected from Ostapal Chromite Mines,
India to assess the FOS. All used models were implemented using
the same amount of training and testing, i.e., 85% for training and
15% for testing datasets.
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FIGURE 12
Performance evaluation metrics of all predicting models.

7.2 Outcomes of modelling

The accuracy and agreements of the developed ensemble hybrid
ML algorithms are analysed using six comparative evaluation
metrics such as coefficient of determination (R2), means square
error (MSE), rootmean square error (RMSE), normalized rootmean
square error (NRMSE), mean absolute deviation (MAD), and mean
absolute percentage error (MAPE). The evaluation error matrix is
implemented to show the agreement and accuracy level of developed
models. Five algorithms were performed based on training and
testing process and evaluated their performance. Table 11 shows
the MSE, RMSE, NRMSE, MAD and MAPE values attained by
developed ML models. It evident that XGBoost-RF outperformed
the other models in predicted the FOS.

In addition, Figures 7–11 demonstrate the correlation graph of
predictedFOSof allMLmodelswith actual FOS.Theobtained results
reveal that the XGBoost-RF hybrid ensemble approach provides
high R2 (0.931), MSE (0.009), RMSE (0.098), NRMSE (0.069), MAD
(0.00370), and MAPE (3.85), among all other ML approaches for
accurate prediction of FOS. For better understanding, the stack bar
diagram of all attained performance metrics of predicted models
shown in Figure 12. FromFigure 12, it is observed that theXGBoost-
RF model yielded significant performance as compared to the other
predictionmodels to estimate theFOS.Thebesthyperparameters are
tunedusing sklearn.model_selection.GridSearchCV.GridSearchCV
is a method used to find the hyper parameters that five optimum
accuracy using K-Fold Cross Validation technique.

8 Conclusion

The present study in this work is the current research and
development trend towards the transformation of traditionalmining
into intelligent mining. The necessity for transformation is to
estimate slope safety (FOS) in open-cast mines. The mine named
Ostapal Chromite Mine, M/s Facor Limited in India is selected

for carrying out this study and the details of the mine including
geological information, mine workings, and data required for the
completion of the current study were collected. The following
conclusions were drawn from the present investigation. They are:

• In estimating the levels of FOS atOstapal ChromiteMine, India,
ensemble machine learning models outperformed traditional
predictor models, according to the study’s main findings. It
should be emphasized that on 79different input datasets, each of
the developed machine learning models performed admirably.
Particularly, throughout modeling, there were no overfitting
issues. A trial-and-error procedure was implemented to get the
optimal architecture.

• Machine learningmodels includeMLR,DecisionTree, Random
Forest (RF), XGBoost, and ensemble hybrid XGBoost-RF were
successfully applied for prediction of slope’s FOS. In this
study, five input parameters such as unit weight, cohesion,
friction angle, slope angle, minimum depth, and single output
parameter i.e., FOS are considered.

• From the obtained results (see Table 11), it interprets that
the ensemble hybrid-based XGBoost-RF model showed a
significant R2 (0.931), MSE (0.009), NRMSE (0.069), MAD
(0.037), MAPE (3.581) and least RMSE (0.098) compared with
the other ML model analysis.

• For future investigation, complex hybrid metaheuristic
architecture algorithms such as PSO-XGBoost, XGBoost
optimization with gray wolf, whale, and Bayesian, can be
implemented to enhance the XGBoost algorithm performance
to assess the FOS.
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