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Three Dimensional (3D) bioprinting holds great promise for tissue and organ
regeneration due to its inherent capability to deposit biocompatible materials
containing live cells in precise locations. Extrusion-based 3D bioprinting (EBP)
method stands out for its ability to achieve a higher cell release rate, ensuring
both external and internal scaffold structures. The systematic adjustment of
key process parameters of EBP, including nozzle diameter, printing speed,
print distance, extrusion pressure, material fraction, and viscosity allows for
precise control over filament dimensions, ultimately shaping the desired scaffold
porosity as per user specifications. However, managing these factors with all
possible interactions simultaneously to achieve the desired filament width can
be intricate and resource intensive. This study presents a novel framework
designed to construct a predictive model for the filament width of 3D bioprinted
scaffolds for various process parameters. A total of 157 experiments have been
conducted under various combinations of process parameters and biomaterial’s
weight fraction for this study purpose. A regression-based machine learning
approach is employed to develop the predictive model utilizing Adj. R2, Mallow’s
Cp, and Bayesian Information Criterion (BIC). Following model development,
rigorous experimental validations are conducted to assess the accuracy and
reliability of the model. Based on the cross-validation of randomly split test data,
Adj. R2 model emerges as the highest performingmachine learningmodel (Mean
Squared Error, MSE = 0.0816) compared to Mallow’s Cp and BIC (MSE = 0.0841
and 0.0877, respectively) models. The comparative analysis results between the
experimental and model’s data demonstrate that our predictive model achieves
an accuracy of approximately 85% in filament width prediction. This framework

Abbreviations: 3D, Three Dimensional; AC, AteloCollagen; BIC, Bayesian Information Criterion; CAD,
Computer Aided Design; CMC, Carboxy Methyl Cellulose; DoE, Design of Experiment; EBP, Extrusion-
based BioPrinting; EP, Extrusion Pressure; FW, Filament Width; HML, Hierarchical Machine Learning;
MSE, Mean Squared Error; ML, Machine Learning; NC, Native Collagen; ND, Nozzle Diameter; PEG,
PolyEthylene Glycol; PCL, PolyCaproLactone; PLA, PolyLactic Acid; POI, Parameter Optimization Index;
PS, Print Speed; PT, Platform Temperature; Q-Q,Quantile-Quantile; RSS, Residual Sumof Squares; SVM,
Support Vector Machine; TSS, Total Sum of Squares; WF, Weight Fraction; ZH, Z-Height.
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presents a significant advancement in the precise control and optimization of 3D
bioprinted scaffold fabrication, offering valuable insights for the advancement of
tissue engineering and regenerative medicine applications.

KEYWORDS

3D bioprinting, hydrogel, machine learning, scaffold porosity, extrusion, print
parameters

1 Introduction

The field of tissue engineering has witnessed significant
advancements in recent years, with bio-printing emerging as a
promising technology for the creation of three-dimensional (3D)
tissue scaffolds. This innovative approach utilizes a 3D printing
process to construct intricate tissue structures. Various bio-printing
techniques have been developed, such as inkjet, extrusion-based,
and laser-assisted methods (Murphy and Atala, 2014; He et al.,
2016). Among these techniques, extrusion-based bio-printing
stands out due to its exceptional versatility, enabling the deposition
of a diverse range of bio-inks made out of various hydrogels
and living cells (Hölzl et al., 2016; Ji and Guvendiren, 2017). By
carefully adjusting the printing parameters, it is possible to extrude
both acellular biomaterials (Almeida et al., 2014; Li et al., 2017)
and cell-laden bio-inks (Chung et al., 2013; Tabriz et al., 2015),
facilitating the formation of scaffold structures. Remarkably, this
straightforward technology has achieved impressive outcomes,
with good cell survival rates exceeding 80% and the attainment
of desired cell densities (Jia et al., 2014; Ouyang et al., 2016).
These achievements demonstrate the potential of extrusion-based
bioprinting as a powerful and accessible tool in tissue engineering.

The selection of biomaterials such as alginate, gelatin, chitosan,
collagen, and fibrin, as well as synthetic polymers such as
polycaprolactone (PCL), polyethylene glycol (PEG), and polylactic
acid (PLA) and their rheological and mechanical properties
significantly impact the printability, shape fidelity, and cell
functionality of 3D bioprinted scaffolds (Ozbolat et al., 2012;
Han et al., 2015; Gottipati and Elder, 2017). Layer-upon-layer
fashion material extrusion with proper printability and defined
shape fidelity can confirm precise pore size, geometry, and porosity
(Ribeiro et al., 2017). Figures 1B, C clearly show how a filament
without shape fidelity can hamper the pore geometry and overall
porosity of 3D printed scaffold. Specifically, the first condition of
achieving a complete pore is to ensure a continuous filament release
as shown in Figure 1B. The porosity will be defined by the filament-
to-filament distance for a bi-layer scaffold.Therefore, a scaffold with
variable filament-to-filament distance is depicted in Figure 1B-iii
to clearly indicate the influence of this distance on porosity. For a
multi-layered scaffold, the porosity will be defined combinedly by
the distance and straightness of filament for subsequent layers as
shown in Figure 1C. Filament will lack of straightness can create
uncontrolled porosity (Figure 1C-ii) compared to the controlled
porosity created by straight filament as shown in Figure 1C-i. We
also highlighted the importance of resolution of nozzle diameter
used to control the filament width and consequently to control the
porosity in our earlier published work (Habib et al., 2024).

Precise control over pore size, porosity, and interconnectivity
is crucial to mimic the in-vivo microenvironment and promote

tissue formation (Murphy et al., 2010; Perez and Mestres, 2016;
Rahman, 2022). However, challenges arise in achieving defined
fidelity between designed and manufactured scaffolds in extrusion-
based bioprinting due to rheological properties and process
parameters, affecting shape accuracy, mechanical integrity, and cell
growth (Khoda et al., 2011). The rheology of bio-ink is primarily
determined by its viscoelastic and shear behavior, which are
influenced by ink formulation components and concentration
(Schuurman et al., 2013; Chimene et al., 2016). The extrudability
and extrusion uniformity of the bioink also contribute to printability.
Additionally, modifiable functions of the 3D printer, such as bio-
ink reservoir temperature, extrusion pressure, nozzle diameter and
type (flat or conical), print speed, print distance, and platform
temperature (PT), can be adjusted to enhance printability (He et al.,
2016; Abdollahi et al., 2018). Several efforts have been made to
tackle those issues by exhaustively selecting material components,
compositions, and process parameters (Ribeiro et al., 2017;
Jessop et al., 2019; Rahman et al., 2023). Achieving a reproducibly
printable filament width and eventually a 3D scaffold requires
meticulous adjustment of numerous variables, which can be a
tedious and resource-consuming process.

Neglecting to optimize these variables may lead to issues such
as nozzle clogging, under and over deposition, or a structurally
weak 3D print (He et al., 2016) as shown in Figure 1B. Despite
previous research on printability optimization, including studies
on rheological characteristics (Mouser et al., 2016; Kuo et al., 2019),
mathematical modeling of bioink flow behavior (Therriault et al.,
2007), and image analysis of printed scaffolds (Paxton et al.,
2017), researchers still heavily rely on trial-and-error method to
fabricate 3D scaffolds with satisfactory shape fidelity. Computational
methods have emerged as a potential solution to address the
expensive and time-consuming nature of the trial-and-error
process used to evaluate and optimize printing parameters.
Machine Learning (ML) has emerged as a viable solution,
enabling automation, and reducing experimentation time. ML-
assisted print optimization is a new paradigm in the bioprinting
arena. Unlike classical Design of Experiment (DoE) methods,
ML methods allow adaptive sampling during experimentation,
facilitating the development of a database for predicting printability
and providing recommendations to experimenters (Wu and Xu,
2018; Shi et al., 2019). By utilizing computational methods and
machine learning algorithms, researchers can potentially minimize
the number of experiments required to create successful tissue
constructs. This approach offers a more efficient and effective way
of bioprinting, leading to improved accuracy and predictability
in the process. These advancements are crucial for developing
functional and dependable tissue constructs. Due to the complex
relationship between ink composition and mechanical properties
in hybrid hydrogels, it is challenging to analyze the overall
factors affecting printability. To overcome this challenge, a machine
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FIGURE 1
(A) Preparinghybrid hydrogel by mixing 0%–4% (w/v) alginate and 0%–4% (w/v) CMC and (B) Filament geometry Various deposition scenarios: (i)
discontinuous filament for under deposition, (ii) under defined pore geometry for over-deposition, and (iii) defined pore geometry for ideal or proper
deposition, and (C) 3D scaffold fabricated following a (i) proper pore geometry, (ii) improper pore geometry.

TABLE 1 Various process parameters such as Extrusion pressure (EP), Print Speed (PS), Nozzle Diameter (ND), Z-Height (ZH), and material’s Weight
Fraction (WF) used to fabricate filament and determine Filament Width (FW) for this proposed framework.

EP (kPa) PS (mm/s) ND (mm) ZH (mm) WF (%)

34.45, 36.93, 41.34,
55.12, 60, 68.9, 80,
82.68, 100, 103.35,
110, 130, 150, 170,

241.15

4, 5, 6, 7, 8, 9, 10, 15 0.21, 0.25, 0.41 0.3, 0.4, 0.405, 0.6,
0.7, 0.8, 1.0, 1.2, 1.4

5, 6, 7, 8

learning approach was used to identify a universal correlation
between rheological properties (such as storage modulus and
elastic modulus) and ink formulations, as well as their printability.
The study found that higher elastic modulus improves shape
accuracy and enables extrusion below the critical yield stress point,
leading to better printability (Lee et al., 2020). A new approach
entitled Hierarchical Machine Learning (HML) was developed
to predict and improve the accuracy of 3D printed hydrogel
structures, specifically in terms of shape fidelity and linewidth
(Bone et al., 2020). The study used a dataset that compared the
original Computer Aided Designs (CADs) with the resulting
prints made from alginate hydrogel, with variations in print input
parameters. These parameters, including ink concentration, nozzle
velocity, flow rate, and nozzle diameter, were characterized using
physical variables like viscosity, applied pressure, and shear rate.
However, the study only focused on alginate as the building
block and further research is needed to understand the complex
relationship and define viscosity and related print inputs for
hybrid hydrogels. A parameter optimization index (POI) has been
developed to establish an inverse relationship with filament width,
nozzle diameter, and applied pressure. This index aims to achieve
high accuracy in 3D printing while minimizing theoretical shear
stress (Webb and Doyle, 2017). Even by employing this method,

there is potential for enhancing the printability of hydrogel blends
through optimization in both the preprocessing and processing
stages. Still, determining POI is a resource-intensive exhaustive
process. The challenge of designing biocompatible 3D-printable
bioinks was addressed using a machine learning-based (the
relative least general generalization algorithm for classification and
multiple regression to support) approach with naturally derived
biomaterials. The research demonstrates that atelocollagen (AC)
exhibits favorable physical properties for printing compared to
native collagen (NC) and establishes a universal relationship
between ink’s mechanical properties and printability, supported
by machine learning, enabling the creation of high-fidelity 3D
constructs with viable and proliferative cells (Lee et al., 2020). It
was reported that models trained on extensive data can accurately
predict trends in cell viability, filament diameter, and extrusion
pressure, showing potential for applying machine learning in
bioprinting experimental design. While classification models for
cell viability achieved an average prediction accuracy of 70%, they
showed limited improvement with variations in input parameters
(Tian et al., 2021). A support vector machine (SVM) model was
developed that creates a process map to guide the selection
of optimal printing parameters, resulting in high-quality prints
with a probability exceeding 75%, offering a practical tool for
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FIGURE 2
A regression-based machine learning framework for 3D bio-printed scaffold structures modeling.

enhancing extrusion-based bioprinting efficiency (Fu et al., 2021).
The use of Machine Learning (ML) to differentiate between printing
configurations likely to yield low-quality prints and those with
higher potential was explored.TheML-based framework, employing
both direct classification and regressionmodels, assessed the quality
of prints based on material composition and printing parameters
(Conev et al., 2020).

The main objective of this study is to introduce a framework
aimed at constructing a predictive model of 3D bioprinted scaffolds
for hybrid biomaterials. The initial phase involves collecting data
on filament width by exploring different combinations of process
parameters and variablesmentioned in Section 2. Once a substantial
dataset is gathered, a linear regression-based machine learning
approach will be utilized to develop the predictive model. After
obtaining the predictive model, experiments will be conducted to
validate the model.

To develop this proposed framework, various weight percent of
naturally derived Alginate (Di Giuseppe et al., 2018) and Carboxy
Methyl Cellulose (CMC) (Agarwal et al., 2015) biopolymers were
used as building blocks to prepare hybrid hydrogel. Alginate is
a well-known biopolymer commonly used for the 3D bioprinting
process because of its ease of preparation and ability to control the
rheological properties (Chen et al., 2020). It is a common negatively
charged bio-copolymer composed of β-D-mannuronic acid (M)
and α-L-guluronic acid (G) blocks. It is soluble in water and
facilitates cell encapsulation. Being a common viscosity modifier,
CMC has been combined with alginate to enhance the physical and
mechanical properties of the hydrogels (Gonzalez-Fernandez et al.,
2021).

2 Experiment setup and data
collection

2.1 Hybrid hydrogel preparation

The hybrid hydrogels formulated in this study were prepared
using alginate (alginic acid sodium salt derived from brown
algae) and medium viscosity carboxymethyl cellulose (CMC)
obtained from Sigma-Aldrich, St. Louis, MO, United States. The
G-block of alginate supports gel formation, while the GM and
M blocks contribute to increased flexibility. CMC is another
water-soluble anionic bio-copolymer composed of β-D-glucose
and β-D-glucopyranose-2-O-(carboxymethyl)-mono-sodium salt
connected by β-1,4-glucosidic bonds (Han and Wang, 2017).
CMC is commonly used as a thickener (Tongdeesoontorn et al.,
2011) and is known for its non-toxic and non-allergenic nature.
The presence of carboxyl groups in this cellulose derivative
enhances its solubility, thickening properties, and stability
(Han and Wang, 2017).

Figure 1A provides an overview of the hybrid hydrogel
preparation process. Various weight percentages such as 0%–4% of
alginate andCMCweremixed intowater to prepare a set ofAlginate-
CMC (AC) compositions. The mixture was stirred overnight to
ensure a homogeneous blend of alginate and CMC. Subsequently,
themixturewas autoclaved at a temperature of 121°C for 20 min that
confirms the sterilization by removing micro-organisms from the
bio-inks to reduce the overall probability of contamination. The
reduction of contamination of scaffold fabricated with living cells
can improve the possibility of higher cell viability and proliferation.
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FIGURE 3
(A, B) Filament width for various EP (110 kPa and 170 kPa), PS (5 mms−1 and 15 mms−1), and ND (0.21 mm and 0.41 mm) where ZH and WF were
considered constant such as 0.30 mm and 8%, respectively, (C) FW with respect to PS (5, 10, 15 mm/s) and EP (60–150 kPa) for 0.41 mm ND for 51
filaments, and (D) FW with respect to PS (5, 10, 15 mm/s) and EP (110–170 kPa) for 0.21 mm ND for 38 filaments.

FIGURE 4
Scatter plot between process parameters and output variable.
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FIGURE 5
Correlation matrix plot between process parameters.

In Figure 1A, alginate and CMC are denoted by “A” and “C”,
respectively, with the subscripts indicating the correspondingweight
percentages.

2.2 Rheological experiments

A rotational rheometer (ARES-LS2, TA instruments, New
Castle, DE, United States) equipped with parallel plate geometry
(20 mm flat plate) was used to conduct rheological measurements.
The measurements were taken at a gap width of 1.0 mm and a
temperature of 25°C. Flow curves were generated by assessing the
viscosities and shear stresses of various compositions across a range
of shear strain rates from 1.0 to 100 s−1. To identify the shear-
thinning behavior of the materials considered and determine the
coefficients, the Power-Law Equation (Eq. 1) was fitted to the linear
region of the shear rate vs. viscosity plot (Therriault et al., 2007).

η = K′ ̇γn
′−1 (1)

Where η is the viscosity, ̇γ is the shear rate, K′ and n′ are shear-
thinning coefficients. While the material is extruded through the
nozzle, the material experiences shear stress across the cross-
sectional area of the nozzle, which is larger near the nozzle wall.

2.3 Scaffold fabrication

An extrusion-based 3D bio-printer [BioX (CELLINK, Boston,
MA)] has been used to fabricate the filaments and scaffolds. The
generation of vectorized tool paths for the scaffold was achieved
using a Visual Basic-based scripting language, which was then
converted into a machine-readable format. The hybrid hydrogels
were stored in a disposable barrel reservoir (EFD, Nordson,
Westlake, OH, United States) and dispensed by applying air pressure
through a dosing nozzle (EFD,Nordson) onto a stationary print bed.

The scaffold was fabricated in a grid pattern, with layers of bio-ink
extruded in a 0°/90° orientation. Filament width and pore size were
measured using ImageJ software, with three random measurements
(n = 3) taken for each data point, and the results were presented as
the mean ± standard deviation. Table 1 represents various process
parameters used in bioprinting experiments for this study.

2.4 Data collection procedure

All process parameters were selected based on the authors’
expertise and widely used in other literature. Process parameters
were changed in a systematic way to capture the effects of specific
process parameters. To enhance measurement precision, a pixel-
based image analysis method was employed to determine filament
width as mentioned in our earlier published work (Quigley et al.,
2023). In short, microscopic images of deposited filaments were
captured within a minute of printing. The scale of the microscope
image was determined to calculate the width in pixels. Subsequently,
MATLAB’s image batch processing toolbox was utilized for the
analysis. The images were loaded into the program, processed, and
converted to binary format.Thefilamentwidthwas then determined
by identifying the coordinates of the initial and final pixels. These
measurements were conducted thrice to obtain an average diameter
for the printed filament.Thediscrepancy between the filamentwidth
and the diameter of the extrusion nozzle was defined as the diffusion
rate [(actual filament width - nozzle diameter)/nozzle diameter ×
100] in this study.

3 Machine learning framework for 3D
bioprinting

In this work, a framework has been proposed to develop a
predictive model for 3D bio-printed object’s structure. The first
step is to obtain the filament width data for various combinations
of process parameters and other variables mentioned in Section 2.
Once the experimental data set is obtained, a regression-based
machine learning method will be implemented to obtain the
predictive model. The overall framework implemented in this work
is illustrated in Figure 2.

3.1 Initial data processing

In the first stage, a simple descriptive analysis of data can help to
understand the data and its related process behavior. The normality
assumption is considered in regression-based modeling, however,
for the larger dataset, the regression-based model is still very robust
even if data are not perfectly normally distributed.

The Pearson correlation coefficient would be used initially
to understand the linear relationship between process variables
including the process output. Considering X1 and X2 represent two
variables with having n amount of dataset, the Pearson correlation
can be found using the following equation (Weiss and Weiss, 2017):

Cor (x1,x2) =
∑n

i=1
(x1i − x1)(x2i − x2)

√∑n
i=1
(x1i − x1)

2√∑n
i=1
(x2i − x2)

2
(2)
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TABLE 2 Optimal variable selection under different model criteria.

Number of variables Model criteria

Adj R2 Cp BIC

[1,] 0.2615 85.6737 −28.3824

[2,] 0.5687 1.9503 −90.2215

[3,] 0.6029 −6.3187 −96.5302

[4,] 0.6179 −9.2568 −97.4532

[5,] 0.6256 −10.1995 −96.1945

[6,] 0.6347 −11.4602 −95.4430

[7,] 0.6421 −12.2301 −94.1906

[8,] 0.6446 −11.7047 −91.3203

[9,] 0.6491 −11.6896 −89.1687

[10,] 0.6464 −9.7899 −84.5003

[11,] 0.6439 −7.9800 −79.9537

[12,] 0.6407 −5.9972 −75.1729

[13,] 0.6374 −3.9999 −70.3726

[14,] 0.6340 −2.0000 −65.5687

[15,] 0.6306 0.0000 −60.7646

[16,] 0.6270 2.0000 −55.9606

Bold numbers are the optimal value of the corresponding model. For Adj R-2 it is the
highest and for Cp, BIC those are lowest value.

Here X represent the sample mean of each dataset. The Pearson
correlation ranged between −1 and 1. The sign represents the
relationship between variables whereas the quantitative value
represents the strength of the relationship.

As it is intended to apply the machine learning approach to
develop our predictive model, it is necessary to split our data into
two parts: training and test datasets.The training data would be used
to establish different regression-based machine learning models
whereas test data would be used to validate and compare the model
performances. The data would be randomly split between 75% and
25% of the original dataset approximately for training and test
purposes, respectively.

3.2 Regression process and variable
selection

The 3D bio-printed structure’s output and process parameters
are a quantitative type of variable that generates level-type data.
Therefore, the linear regression-based method will be implemented
considering the supervised machine learningmodeling.The general
least-square approach will be used for regression coefficient
estimates. As there exist several process parameters in this study,

TABLE 3 Selected variables based on different model fit criteria.

Best model fit variables by

Adj R2 Cp BIC

EP PS ZH

ND WF EP∗ND

WF EP∗PS ND∗ZH∗WF

ZH∗WF EP∗ND∗ZH EP∗PS∗ND∗ZH

EP∗PS∗ND PS∗ZH∗WF

EP∗PS∗WF ND∗ZH∗WF

EP∗ND∗ZH

EP∗PS∗ZH∗WFEP∗ZH∗WF

ND∗ZH∗WF

the multiple-regression modeling will be utilized. The process
parameters in engineering applications have higher tendencies to
interact and therefore, it is considering all possible interaction
terms in the model selection approach. However, higher-order
polynomials will not be considered in this work as they have little
to no meaning in explaining the 3D bio-printing physical process.
Let’s consider a random variable Y represents the filament width
of the printed object and a random variable X represents process
parameters that influence the filament width. Then the regression
model would be,

yi = β0 +
q

∑
j=1

βjxj +
q

∑
j,k = 1,
j ≠ k

βjkxjxk +………+
q

∑
j,k, l…q = 1,
 i ≠ j ≠… ≠ q

βjkl…qxjxk…xq + ϵ (3)

Here q represents the number of process parameters for the 3D
bioprinting process, β′s represents the coefficient of the regression
equation, and ε represents the error term. The residual sum of
squares (RSS) then can be estimated by Eq. 4,

RSS =
n

∑
i=1
(yi − ŷi)

2 (4)

The total sum of squares (TSS) can be obtained by Eq. 5,

TSS =
n

∑
i=1
(yi − y)

2 (5)

Both Eqs 4, 5 would be useful for the selection of different
statistical model criteria in the later section. The β coefficients
of a regression model are estimated considering minimizing the
Eq. 4. For a decently larger number of process parameters, the
number of total variables will be exponentially increased especially
as it is considered all levels of interaction effects between process
parameters. To handle this large amount of regression variable it is
necessary to have a systematic process to select the best variables
which influence the filament width with statistical significance.
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FIGURE 6
Best model fit by number of variables considering (A) Adj. R2 (B) Cp (C) BIC method.

TABLE 4 Selected model’s MSE for different criteria.

MSE of different models

Model
criteria

Training
MSE

Test MSE %
difference

from
lowest test

MSE

Adj R2 0.0796 0.0816 0.00

Cp 0.0782 0.0841 3.07

BIC 0.0857 0.0877 7.46

Three classic stepwise methods are used to select the best variables
for the multiple regression model: forward, backward, and mixed
stepwise selection methods (Harrell, 2001; Zhang, 2016). The
forward selection method started with only intercept and with no
variable. Step by step it added one after one variable and stopped
the process once the selection criteria were met. The backward
selection method starts with all possible variables and step by step it
removes each variable following the selection criteria until it reaches
an optimal number of variables. The backward selection method
requires a larger number of datasets compared to the number of
variables and the forward selection method might include some
variables very earlywhich become redundant later.Themixedmodel
is a combination of forward and backward section processes where
it adds variables to the model but may be removed variables later
steps if the variable does not improve the model fit (James et al.,
2013). The mixed model method has been adopted in this work for
the best set of variable selections for the regression-based machine
learning model.

3.3 Statistical model criteria

It has been considered three prominent statistical criteria for
the variable selection method: adjusted R-square (Adj. R2) Mallow’s
Cp, and Bayesian information criterion (BIC) (Zhang, 2016). The
traditional R-square value is influenced by the number of variables

and hence it is adjusted. Using Eqs 4, 5, the adjusted R-square can be
estimated by Eq. 6,

AdjR2 = 1−
RSS(n− 1)

TSS(n− d− 1)
(6)

Here, n is the total number of data points and d represents
the total number of all possible variables including interaction
terms. As these model selections are implemented using the
training data therefore total number of data would be the total
number of the training dataset instead of the full dataset. The
adjusted R-square ranged between 0 and 1 and it interpreted
how much the regression model can explain the variability of
the data. The larger adjusted R-square value indicates a stronger
model fit.

The second model criterion we adopted in this work is Mallow’s
Cp measurement. The Cp can be estimated from the Eq. 7,

Cp =
1
n
(RSS+ 2dS2) (7)

Here S2 represents the unbiased estimator of residual variance
and is calculated as S2 = RSS/(n− d).TheCp is awell-knownmethod
for addressing model overfitting. Unlike the adjusted R-square,
lower Cp represents a better model fit.

The third model criterion is the Bayesian information criterion
(BIC) which considers the Bayesian perspective in model selection.
The BIC can be computed using Eq. 8,

BIC = 1
n
(RSS+ log (n)dS2) (8)

Similar to Cp criteria, the model with lower BIC represents the
strongermodel fit. Due to the logarithmic penalty in BIC estimation,
typically it heavily penalizes a larger number of variable inclusions
in the model, thus BIC criteria usually have a smaller number of
variables in the model (James et al., 2013).

3.4 Best model selection using
cross-validation

In stepwise method mentioned in the previous section used
training data to select the best set of variables for amodel fit. As those
machine learning models are obtained using training data there

Frontiers in Materials 08 frontiersin.org

https://doi.org/10.3389/fmats.2023.1337485
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Limon et al. 10.3389/fmats.2023.1337485

are high chances of model overfitting meaning the models perform
very well with the training dataset however with the new dataset it
does not perform satisfactorily. To address this overfitting issue we
will utilize the cross-validation method (James et al., 2013). The test
Mean Square Error (MSE) measurement will be used to perform the
cross-validation of previously selected models. The test MSE can be
obtained by following the equation,

MSE = 1
n

n

∑
i=1
(yi − ŷi)

2 (9)

In variable selection, we have used Adj. R2, Cp, and BIC criteria
to choose the best-fit model. All these models will be used to
estimate test MSE using the test dataset for selecting the best-
performed model. The lower test MSE indicates that the model
performs better with unknown or new datasets. The training MSE
can be also estimated by Eq. 9 using the training dataset instead of
the test dataset.

3.5 Bootstrap estimation of the model
coefficients

The cross-validation method would provide the best regression-
based machine learning model considering the current dataset.
The model coefficient would vary based on training and test
data. To address this uncertainty issue and increase the mode
coefficient’s estimation accuracy, the bootstrap method is adopted.
The bootstrap is a type of nonparametric Monte Carlo method
that estimates coefficients using the resampling of data (Efron,
1992). The bootstrap process has been depicted in Figure 2 method
framework in detail. In the first step of the bootstrap method, the
sample size needs to be determined. In this work, it is considered
that the sample size would be the same as the number of original
datasets which is n. In the next step, generate a random sample
also known as a resample from the original dataset using the
random replacement of data points. The usual resample replicates
(B) are 50 to 100 in number, however, for higher accuracy of
estimation a larger number of replicates is considered such as
10,000 replicates (Limon et al., 2016).Once the resampling replicates
are generated then for each replicate the model coefficients (βi)
are estimated. Assume the bootstrap replicates for b = 1,2,3,
….B, the bootstrap estimate of the coefficient can be calculated
using Eq. 10,

β̂*i =
1
B

B

∑
b=1

β̂bi (10)

As a non-parametric type estimation, bootstrap estimates are
free from any assumption of distribution fit.

3.6 Predictive model application

The best-fit model using the test data validation with the
bootstrap coefficient estimate would be our final regression-
based machine learning model. Several new experiments could be
conducted to compare and further validate the experimental scaffold
data with machine learning model data. When there are new sets of

TABLE 5 Bootstrap coefficient of the cross-validated best-fit model.

Variables Training
data

estimate

Test
data

estimate

Random
bootstrap,
B = 1

Bootstrap
estimate,

B =
10,000

Intercept −13.440490 −10.426000 −14.070650 −11.395090

EP 0.023536 0.019920 0.020529 0.022738

ND 29.415560 3.290200 32.008350 25.214680

WF 0.111722 −0.076688 0.075355 0.075081

ZH∗WF 5.438861 0.114910 5.889944 4.573848

EP∗PS∗ND 0.000132 −0.001094 0.000793 −0.000095

EP∗PS∗WF −0.000049 0.000021 −0.000077 −0.000036

EP∗ND∗ZH 0.104048 0.021923 0.081662 0.088501

EP∗ZH∗WF −0.008564 −0.003509 −0.006666 −0.007550

ND∗ZH∗WF −12.864390 NA −14.059300 −10.778640

more experimental data, the total framework can be re-run to update
the machine learning model to search for a better model fit with
higher accuracy of the coefficient estimates.

4 Case study analysis and results

4.1 Preliminary observations

Out of 157 data, we have selected 8 of them that were obtained
for various process parameters such as 110 kPa and 170 kPa EP,
5 mms−1 and 15 mms−1 PS, 0.21 mmand0.41 mmNDtodiscuss the
usual effects of them on filament width. All possible combinations
are (EP, PS, ND): (110, 5, 0.21), (110, 15, 0.21), (110, 5, 0.41),
(110, 15, 0.41), (170, 5, 0.21), (170, 15, 0.21), (170, 5, 0.41), and
(170, 15, 0.41). Filament widths for all those combinations are
shown in Figure 3. A set of phenomena was observed such as (i)
with increasing EP, FW increased for constant ND and PS, (ii)
bigger ND extrude filament with larger FW for constant EP and
PS, (iii) with increasing PS, FW increased for constant ND and EP.
For instance, when the EP was raised from 110 kPa to 170 kPa, a
115% increase in FW was measured during the extrusion process
through a 0.21 ND at a PS of 5 mms−1. On the other hand, a
similar EP change and ND size, but with a higher PS of 15 mms−1,
resulted in a 110% increment in FW. ZH and WF were considered
0.3 mm and 8%, respectively for all combinations. Figure 3C shows
filament widths with respect to PS and EP for 51 filaments extruded
through 0.41 mm ND maintaining 8% solid content and 522 Pa s
viscosity. Figure 3D represents FWs with respect to PS and EP for
38 filaments extruded through 0.21 mm ND maintaining 8% solid
content and 522 Pa s viscosity. Both figures even show some trends
such as (1) FW increases with increasing EP, (2) EP reduces with
increasing PS, and (3) FW increases with increasing ND, the change
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FIGURE 7
Residual analysis of best model using test data (A) residual plot (B) Q-Q plot.

TABLE 6 Comparison with experimental and model filament width.

Sample EP PS ND ZH WF FW-Exp. FW-Mod. % error

1 55.12 9 0.41 0.7 5 0.9150 0.9466 3.4552

2 55.12 10 0.41 0.7 6 0.701 0.8063 15.0267

3 55.12 4 0.41 0.7 7 0.8577 0.7754 9.5913

4 100 10 0.41 0.3 8 1.024 1.1347 10.8474

of FW may not be straightforward to estimate and can be material
properties and process parameters dependent (Chung et al., 2013;
Diamantides et al., 2017; Habib et al., 2018). Therefore, for a large
set of data, ML can be an efficient tool to identify a predictive model
to estimate FW.

4.2 Machine learning observations

As mentioned in Section 2, our case study dataset contains five
process parameters, and the filament width of the printed object
would be the dependent output variable. In total, there are 157
experimental data for this demonstration case study purpose. All
analysis of this work has been performed by R Statistical Software
(v4.3.1, R Core Team 2023). Figure 4 shows the scatterplot of the
relative relation between process parameters including the output
variable. The different data density of the scatterplot indicates that
all combination of process parameter is not varied in the same
proportion during the experimental test.

The scatterplot in Figure 4 provides a visual depiction of the
parameters’ relation, however, it does not provide the strength of the
relation.The correlationmatrix in Figure 5 provides the strength and
direction of the variable’s relation using Eq. 2. It is very clear from the
correlation matrix that several variables are significantly correlated
such as extrusion pressure (EP) with print speed (PS) or material’s
weight fraction (WF) with Z-height (ZH) between print nozzle and

print bed. This correlation also justifies our initial assumption of
possible interaction between process parameters and considers them
during the best variable selection method.

4.3 Establishing the machine learning
model

As we mentioned in Section 3.2, after the approximately 75/25
random split of the original dataset of 157 data, there are 122
data points for training the machine learning model and 35 data
points for testing the model obtained using the training dataset.
Considering all possible interactions for five process parameters
there are a total of 31 variables. However, while we ran the mixed-
type stepwise regression model selection algorithm, 15 of the
interaction variables were omitted due to linear dependencies. A
higher number of training datasets would help to reduce this issue.
Therefore, the mixed stepwise selection algorithm would search for
the best model fit among 16 variables using the training dataset.

Table 2 and Figure 6 show the stepwise iteration results
considering the three different model criteria. The bold number
in Table 2 represents the optimal value of corresponding model
criteria whereas the red marks in Figure 4 indicate the optimal
number of variables considering each model criteria. Though it
shows only the number of variables, the specific variables are not
the same in each iteration when it considers different model criteria.

Frontiers in Materials 10 frontiersin.org

https://doi.org/10.3389/fmats.2023.1337485
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Limon et al. 10.3389/fmats.2023.1337485

FIGURE 8
(A) Fabricated filaments for validation and (B) FW comparison between experimental and Model data.

It is found that Adj R2 criteria reached optimal variable number
selection by 9 with the highest value of 0.6491 or 64.91%, the
Cp criteria reached optimal variable number by 7 with the lowest
value of −12.2301, and the BIC criteria reached optimal variable
number by 4 with the lowest value of −97.4532. As mentioned in
Section 3, the Cp and BICmethods put extra penalties for additional
variables inclusion in the model. Thus, the number of variables is
higher in the Adj R2 method than in the Cp method and lowest
in the BIC method. For our case study, the Adj R2 is not in the
upper value. However, this model could be useful for predicting the
porosity of the printed scaffolds. For the demonstrated case study,
we have considered the most critical process parameters in our
work for efficient and cost-effective experimentation. Considering
a few more environmental variables such as curing temperature
and humidity through the Design of the Experiment method can
increase the accuracy of the model. In case of a higher number
of outliers present, data transformation could further improve the
prediction model as well. In our future work, we plan to integrate
DoE [showed better R2 in our earlierwork (Quigley et al., 2023)] and
ML, increasing variables, and appropriate data transfer to potentially
improve the resulting Adj-R2.

The combination of selected variables under each model
criterion is listed in Table 3. From all three model criteria, the best-
fit model has a heavy presence of interaction terms. This is intuitive
because process parameters interact with each other in a 3D printing
process. Additionally, this confirms correlation matrix results that
indicate a higher correlation between variables.

4.4 Cross-validate and fine-tuning the
model

All model best-fit criteria have been derived using training data.
However, the performance of the best model will be cross-validated
with the test data.The testMSEhas been considered to cross-validate
the training best-fit model listed in Table 3. Table 4 tabulated both
the training and test MSE of each model obtained using the training
dataset. It is observed that for every case, the training MSE is

lower than the test MSE. This is very common because the training
MSE uses the same data it used for model selection. The test MSE
of Adj. R2, Cp, and BIC models are 0.0816, 0.0841, and 0.0877,
respectively. Thus, the Adj. R2 model with 9 variables becomes the
best performance machine learning model for our current dataset.
The percentage difference of testMSE compared with the bestmodel
is also listed in Table 4. Based on the difference it can be concluded
that the other twomodels are also very competitive compared to the
best performance model.

The residual analysis of the best performance model is
conducted which is the Adj. R2 criteria-based model. The residual
analysis is conducted using the test dataset. Figure 7 depicts
the residual plot and QQ plot based on the test dataset for
the best model. Both the figures confirm that data are fairly
randomized and follownormalitywith fewoutliers both in the upper
and lower ends of data.

The presence of an outlier can heavily impact the model
coefficient estimate. In machine learning models, data are typically
in large numbers with higher chances of being skewed in nature.
The Bootstrap estimation method mentioned in Section 3 can
significantly help to reduce the uncertainty, outlier issues, and
asymmetric nature of data. Table 5 lists the coefficient estimate
for the best performance model obtained after the cross-validation
method. It is observed that the variation of coefficient estimates
among the training and test datasets. In the current case scenario,
one of the variables does not have an estimate for test datasets
due to the test datasets are typically lower in number. The
Bootstrap resampling method generates new sample data using
randomized with replacement and estimates the coefficient for
larger datasets. Therefore, the Bootstrap estimate is a very robust
estimate of the coefficient and very useful especially when
datasets are further departed from normality. The last column of
Table 5 shows each variable estimate using 10,000 resamples of
the Bootstrap method.

Once the coefficient value of the best performance model
is estimated, then the final predictive model based on Eq. 3
is established. To further understand and validate our machine
learning model, there are conducted 4 more new 3D bio print
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experiments with different sets of process parameters. The
experimental FW (FW-Exp.) would be measured in a similar
fashion mentioned in Section 2. The process parameter value of
these new experiment samples is used in the best-fit machine
learning model and estimates the FW (FW-Mod). The different
sets of process parameters, experimental and model-based FW
are listed in Table 6. The comparison between experimental
and model FW is depicted in Figure 8. The percentage error
indicates the model fairly closely predicted the FW within an
acceptable range.

5 Conclusion

D bioprinted scaffold structures with desired mechanical
and bio-properties play a key role in the development
and growth of encapsulated cells and eventually tissue and
organ regeneration. A noble photo-pixel method has been
used in this work to measure the printed object’s filament
width. To establish the predictive model a regression-
based supervised machine learning approach has been
adopted in the proposed methodology. The test MSE
of three statistical models has been estimated using the
randomly split test data which resulted from the MSE of
Adj R2, Cp, and BIC models being 0.0816, 0.0841, and
0.0877, respectively. The Adj R2 model with 9 variables
becomes the best performance machine learning model for
our current dataset. The other two models are also very
competitive and can be used by trading off slightly higher
MSE. To deal with the nonnormality of data and fine-
tuning of the model coefficient bootstrap method has been
implemented. Based on comparative analysis results our
model can predict filament width with at least approximately
85% accuracy.

The proposed method has been demonstrated on hybrid
hydrogel (alginate and CMC) biomaterials. Therefore, the resulting
best-fit model is limited to the specific material type. However,
the proposed framework is equally applicable to biomaterial types.
Different types of biomaterials with additional combinations of
process parameters are in our future research scope. Several other
environmental parameters such as curing temperature and humidity
could be considered in future work.
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