
TYPE Original Research
PUBLISHED 30 January 2024
DOI 10.3389/fmats.2023.1336837

OPEN ACCESS

EDITED BY

Natrayan L.,
Saveetha University, India

REVIEWED BY

Chandrasekhara Sastry C.,
Indian Institute of Information
Technology Design and Manufacturing
Kurnool, India
Raja T.,
Saveetha University, India
Mahesh Shewale,
ASML, United States

*CORRESPONDENCE

Sachin Salunkhe,
sachinsalunkhe@gazi.edu.tr

RECEIVED 11 November 2023
ACCEPTED 15 December 2023
PUBLISHED 30 January 2024

CITATION

Jatti VS, Tamboli S, Shaikh S, Solke NS,
Gulia V, Jatti VS, Khedkar NK, Salunkhe S,
Pagáč M and Abouel Nasr ES (2024),
Optimization of tensile strength in 3D
printed PLA parts via meta-heuristic
approaches: a comparative study.
Front. Mater. 10:1336837.
doi: 10.3389/fmats.2023.1336837

COPYRIGHT

© 2024 Jatti, Tamboli, Shaikh, Solke,
Gulia, Jatti, Khedkar, Salunkhe, Pagáč
and Abouel Nasr. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Optimization of tensile strength
in 3D printed PLA parts via
meta-heuristic approaches: a
comparative study

Vijaykumar S. Jatti1, Shahid Tamboli1, Sarfaraj Shaikh1,
Nitin S. Solke1, Vikas Gulia1, Vinaykumar S. Jatti1,
Nitin K. Khedkar1, Sachin Salunkhe2,3*, Marek Pagáč4 and
Emad S. Abouel Nasr5

1Department of Mechanical Engineering, Symbiosis Institute of Technology, Pune, India, 2Department
of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,
Chennai, India, 3Department of Mechanical Engineering, Gazi University Faculty of Engineering,
Ankara, Türkiye, 4Department of Machining, Assembly and Engineering Technology, Faculty of
Mechanical Engineering, Ostrava-Poruba, Czechia, 5Department of Industrial Engineering, College of
Engineering, King Saud University, Riyadh, Saudi Arabia

This research focuses on the relationship between the tensile strength of
PLA material and several 3D printing parameters, such as infill density, layer
height, print speed, and extrusion temperature, utilizing the Fused Deposition
Modeling (FDM) method of Additive Manufacturing (AM). Tensile strength of
the samples was determined in compliance with ASTM D638 standard, and
the experiments were carried out according to a planned arrangement. Six
distinct methods were used to optimize the tensile strength: Particle Swarm
Optimization (PSO), Teaching Learning Based Optimization (TLBO), Genetic
Algorithm (GA), Simulated Annealing (SA), and Cohort Intelligence (CI). Several
runs of the optimization methods demonstrated their consistency in producing
the same values of tensile strength, indicating their reliability. The optimization
results showed that JAYA performed better than the other algorithms, resulting
in a material with the maximum tensile strength of 55.475 N/mm2. Validation
experiments were carried out to confirm the efficacy of these algorithms. The
results showed that the ideal input parameters produced tensile strength values
that closely matched the anticipated values with a low percentage error. The
benefits of applying these algorithms to improve the tensile strength of PLA
materials for 3D printing are demonstrated by this study, which also offers
insightful information about how to optimize FDM procedures.

KEYWORDS

tensile strength, fused deposition modeling, JAYA algorithm, teaching learning based
optimization, particle swarm optimization, cohort intelligence

1 Introduction

Additive Manufacturing, sometimes known as 3D printing, is one of the most notable
technological developments of the modern age. Building a three-dimensional object layer
by layer from a computer-aided design (CAD) model is what it involves. Although this
technology has several varieties, FDM is the particular subject of this study. Depending
on the material choices and printing parameters selected, FDM can create objects with a
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variety of mechanical qualities. Several investigations have been
conducted in this area, many of which use statistical analysis to
identify the critical factors affecting the tensile strength of materials.
It is important to remember that different operational ranges and
different sets of parameters used in these various researches may
cause changes in the results. To gain an overview of the work
done in this field, a thorough examination of research completed
by many scholars in the past is described in the paragraphs
below. Shashikumar and Sreekanth (Shashikumar and Sreekanth,
2023) employed FDM to assess the mechanical characteristics
of 3D-printed specimens, taking into account factors like raster
orientation and layer thickness, using thermoplastic materials like
Nylon 6 (which is semicrystalline) and Acrylonitrile Butadiene
Styrene (ABS) (which is amorphous). The study involved printing
samples with various raster orientation angles (0, 90, +45/-45, and
0/90°) and different layer thicknesses (0.1, 0.2, 0.3, and 0.4 mm).
The key mechanical properties under investigation included the
modulus of elasticity, ultimate tensile strength, maximum force, and
maximum elongation, with the aim of identifying themost favorable
parameters. Rezaeian et al. (2022) emphasized the influence of
printing parameters on the tensile behavior of both amorphous and
crystalline polymers fabricated through FDM,This study focuses on
investigating how the printing speed affects the tensile and fracture
strength of components made from ABS using the FDM technique.
The research utilizes four different printing speeds, namely, 10, 30,
50, and 70 mm/s, to create dog-bone and Semi-Circular Bending
(SCB) specimens. Based on the experimental findings, specimens
printed at a speed of 70 mm/s exhibit the best performance. Tran
et al. employed (Tran et al., 2022a) a straightforward yet highly
effective method to improve the tensile strength of carbon fiber
(CF)/ABS and glass fiber (GF)/ABS specimens produced through
fused filament fabrication (FFF). The approach involves using
a significantly elevated printing temperature while deactivating
the cooling fan, leading to the overheating of the extruded ABS
composite melt. This overheating enhances the maximum bearing
load, tensile strength, and Young’s modulus when compared to their
conventionally printed counterparts. Kumar et al. (Raam Kumar
and Shakthivel, 2023) focused on a comparative analysis involving
the 3D printing of ABS specimens using three commercial printers
(such as Ultimaker and Stratasys and a newly developed, locally-
made printer). This study varied tool path, material consumption
and changes in production time through variations in raster angles.
The results revealed that the newly designed printer requires less
time for production and consumes less material compared to the
existing commercial printers. Anerao et al. (2023) incorporated rice
husk biochar into polylactic acid (PLA) to develop a bio composite
filament suitable for use in the FDM 3D printing process. The
experimental design employed Taguchi L16, and the significance
of process parameters was assessed through variance analysis
(ANOVA). The highest flexural modulus was achieved with 3%
biochar, 100% infill density, and a 0.1 mm layer thickness. In
addition to the individual test results, a multi-criteria decision-
making model, TOPSIS, was employed to rank the mechanical
performance. In order to optimize the mechanical properties of 3D
printed objects, the study recommended using a layer thickness
of 0.2 mm, an infill density of 100%, and a raster angle of
0° as the FDM process parameters. Yu et al. (2023) introduced
a novel concept known as the “continuous printing filament

hypothesis” based on a mesoscopic analysis. This hypothesis aims
to describe the interconnection status of glass fiber reinforced
polymer (GFRP) filaments during FFF 3D printing. This study
investigated the fundamental orthotropic mechanical parameters
and meticulously designs 24 variations of printing laminates.
Ultimate tensile strengths (UTS) were tested and simulated for
both cross-stacking (2/8, 4/6, 5/5) and angle-stacking (30°, 45°,
60°) configurations. Experimental results revealed that the lower
layers of composites exhibit greater ultimate resistance due to
their layer-by-layer characteristics. Fountas et al. (2022) focused on
investigating how various Fused Deposition Modeling parameters
impact the ultimate tensile strength of 3D-printed organic and
biocompatible PLA with wood flour. To carry out this investigation,
Taguchi’s experimental design methodology, involving orthogonal
array experiments, was employed to manufacture test specimens,
following ASTM D638-10 Type I specifications, and to generate
results related to stress-strain curves andUTS.The independent FFF
parameters under examination include layer thickness (LT), nozzle
temperature (NT), raster deposition angle (RDA), and printing
speed (PS). Zhang et al. (2019) introduced a data-driven predictive
model that takes into account the printing process, with a specific
focus on Fused Deposition Modeling (FDM) as a representative
case study. The model employed temperature and vibration data
to uncover the thermal and mechanical behavior occurring at
each printing layer, along with process variations. A Long Short-
term Memory (LSTM) network was used to capture the inter-
relationships among different printing layers. Tran et al. (2022b)
provided guidance for researchers and FFF practitioners in assessing
methods to enhance the mechanical strength of polymer printed
parts for various real-world applications. The paper categorizes,
assesses, and compares a wide range of recent publications
that discuss improvements in tensile properties for FFF printed
parts in both longitudinal and transverse directions. Hikmat et al.
(2021) employed Taguchi’s mixed model fractional factorial design,
conducting eighteen experiments where PLA specimens were 3D
printed on an FDM printer and subsequently tested for tensile
strength using a universal testing machine. Subsequently, the
optimal combination of parameters was determined using the
Signal-to-Noise ratio (S/N), and the Analysis of Variance (ANOVA)
was used to identify significant parameters and assess their effects
on tensile strength. Among these parameters, build orientation
(specifically, being on-edge), nozzle diameter (0.5), and infill
density (100%) were found to be statistically significant and had
a substantial impact on the tensile strength. Sola et al. (2023)
explored the need for standardization in AM, with a specific
focus on mechanical testing. It then delves into the challenges
encountered when applying existing standards to measure the
tensile properties of polymer parts manufactured through FFF, also
known as FDM. The existing standards fall short in accounting
for the various printing parameters that influence the mechanical
behavior of FFF parts. The literature review, complemented by the
experimental results, underscores that until dedicated standards
become available, caution should be exercised when applying
existing tensile testing standards. The review by Nazir et al.
(Nazir et al., 2023) provides insights into the current advancements
and potential commercial applications of 3D-printed composites
reinforcedwith natural fibers or biomass.The study underscores that
3D printing technology can effectively serve various purposes, such
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as producing electroactive papers, fuel cell membranes, adhesives,
wastewater treatment solutions, and biosensors. Palaniyappan et al.
(2022) used organic fillers and a honeycomb lattice structure in
the creation of novel bio-composite materials for 3D printing
represents a practical and eco-friendly approach for producing
lightweight biopolymeric components.This study aims to investigate
the impact of introducing a hexagonal lattice structure into a
polymeric composite made from walnut shells and PLA, using
theFDM method. Various printing process parameters, including
nozzle temperature, layer height, infill density, and printing speed,
were adjusted to optimize the tensile strength and dimensional
accuracy of the resulting components. Tarrés et al. (2018) utilized
two biobased polyethylenes (BioPE) and thermomechanical pulp
(TMP) fibers to create biocomposites, with a specific focus on
examining the influence of TMP fibers on mechanical properties.
The research quantified the increase in the viscosity of the
molten biocomposites and linked it to the incorporation of TMP
fibers, ranging from 0% to 30% by weight. Gauss and Pickering
(2023) developed novel method to disperse nanofibrillated cellulose
(CNF) within polylactic acid (PLA) composites for 3D printing
applications. The nanofibers underwent modification by grafting
PLA onto their surface through in-situ polymerization of L-lactide.
This modification altered the interaction between the fibers and
PLA, allowing for the creation of reinforced microparticles using a
Pickering emulsion technique.

This study examines how the parameters of the 3D printing
process affect tensile strength. Additionally, a multiple regression
equation connecting 3D printing parameters and tensile strength
is established. To achieve the best tensile strength with the best 3D
printing process parameter settings, a comparative comparison
of optimization strategies was conducted utilizing Simulated
Annealing, Teaching Learning Based Optimization, Particle
Swarm Optimization, and Cohort Intelligence. The experiment
results on the FDM OF PLA material utilizing an Ender 3 3D
printer are presented in this paper in an orderly fashion. The
experimental design, materials, and procedure parameters used
in the investigation are all described in the materials and techniques
section. A predetermined experimental plan consisting of a series
of tests was followed when varying the parameters of the 3D
printing print process, such as the Infill Percentage, Layer height,
Print speed, and Extrusion temperature. A mathematical model
that could forecast how the process parameters would react was
then created using the Tensile Strength data that was gathered
throughout the investigation. Ultimately, six distinct optimization
methods are applied and discussed: Particle Swarm Optimization,
Simulated Annealing, Genetic Algorithm, Teaching Learning Based
Optimization, and Cohort Intelligence.The data on Tensile Strength
for every parameter is shown in the results section, which is then
followed by a discussion of the findings and new perspectives
obtained from the research. The study’s conclusion are finally
summarized in the conclusion section.

2 Materials and methods

The Fused Deposition Modeling method, uses thermoplastic
polymers such as polylactic acid to build three-dimensional objects
layer by layer. This process involves preparing a computer-aided

FIGURE 1
(A) FDM printing setup (Potnis et al., 2023). (B) Schematic sketch of
Tensile Specimen (Jatti et al., 2022). (C) 3D printed tensile specimen
(Potnis et al., 2023). (D) Tensile test setup.

design model, converting it into an appropriate file format, then
using specialist software to slice the file into thin horizontal layers.
These layers produce a set of G-code, or guidelines, that the
3D printer must adhere to while printing. The PLA filament, a
biodegradable substance made from renewable resources, is heated
by the printer’s extruder before being deposited onto the build
platform through a nozzle. The object is built layer by layer as
the extruder moves in the X and Y dimensions and the build
platform moves in the Z direction. The final 3D item is created
when the PLA material fuses with the preceding layer and hardens
as it cools. Complex geometries or overhangs may require support
structures during printing, and post-processing techniques like
sanding or painting can be used to get the right finish. The Creality
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TABLE 1 FDM input parameters.

Sr No. Parameter Values

1
Infill

10%, 33%, 55%, 78%,
100%

Percentage

2
Layer 0.08mm, 0.16mm,

0.24mm, 0.32mm,
and 0.4 mmThickness

3 Print Speed 20 mm/s, 35 mm/s,
50 mm/s, 65 mm/s,
and 80 mm/s

4
Extrusion

190°C, 200°C, 210°C,
220°C, 230°C

Temperature

Ender 3 machine, depicted in Figure 1A, was utilized to create
Fused Deposition Modeling (FDM) samples, featuring a 220 × 220
× 250 mm bed size. The Creality Ender 3 machine, depicted in
Figure 1A, was utilized to create Fused DepositionModeling (FDM)
samples, featuring a 220 × 220 × 250 mm bed size. The Creality
Ender 3 3Dprinterwas used to carry out the FDMtrials. Popular and
dependable, the desktop 3D printer Creality Ender 3 is renowned
for its open-frame design, low cost of ownership, and simplicity of
assembly. It has a heated bed and a single extruder configured in the
Bowdenmanner. PLAof 1.75 mmdiameter filament ofWol3Dmake
was used in this study. 3D printing was performed within controlled
environmental conditions, maintaining a humidity level of 50% and
a temperature of 23°C.

The tensile specimens’ dimensions, as indicated in Figure 1B,
were 63.5 × 9.53 × 3.2 mm, meeting the specifications of the ASTM
D638 standard. Figure 1C depicts the actual 3D printed tensile
specimens.

Three fundamental components make up Design of
Experiments (DOE): factors, levels, and responses. Levels are the
unique arrangements or values assigned to every component.Design
matrices, which are tables with all possible combinations of levels
across different parameters, are used to aid DOE. For example,
Table 1 shows the parameters of the 3D printing method and the
related levels that were examined in the current study.

In Table 2, the experimental runs are displayed according to the
central composite design of response surface methodology, along
with the observed values of the response variable. To conduct the
tensile tests, specimenswere prepared and examined in adherence to
the ASTM D638 standard. The tensile testing was carried out using
a universal Testing Machine from VEEKAY TESTLAB as shown
in Figure 1D.

Synthetic data, often known as artificial data, was produced
to help in the optimization process. Generating synthetic data is
creating data that mimics actual data characteristics while making
sure sensitive information is left out. In this instance, the data was
produced using aMathWorksMATLABmethod, yielding 102 values
in total. We then used this freshly created dataset for the remaining
steps of our optimization procedure.

2.1 Formulation of equation

Using experimental data, a regression equation was first
created to predict tensile strength. Tensile strength is one of
the anticipated results that this equation accounts for, along
with input characteristics like print speed, layer height, extrusion
temperature, and infill %. The multiple regression equation will
be used to predict tensile strength. This equation, along with an
optimization method, made it possible to significantly improve the
algorithm’s performance and achieve more accurate results in this
specific study.

2.2 Optimization algorithms

Six distinct optimization strategies were used in this study to
increase tensile strength. Finding the parameter settings that would
produce the best results, as judged by a particular performance
indicator, was the main objective. The JAYA Algorithm, Teaching
Learning-Based Optimization, Genetic Algorithm, Simulated
Annealing, Particle Swarm Optimization, and Cohort Intelligence
are the optimization techniques used in this study, respectively.
Figures 2–7 depict the flow chart for the aforementioned
algorithms.

3 Results and discussion

A material’s tensile strength indicates how well it can tolerate
deformation under load. Several factors, such as Infill Percentage,
Layer Height, Print Speed, and Extrusion Temperature, can have
a substantial impact on it. Several investigations into the effects
of these variables have highlighted how important it is to choose
the right values in order to obtain the required Tensile Strength.
Tensile strength increases with increasing Infill Percentage, Layer
Height, and Extrusion Temperature; nevertheless, increased Print
Speed has a marginally detrimental effect. Reduced Infill Percentage
leads to reduced material density, which makes the produced part
weaker since there is insufficient internal support. As a result, these
components are more likely to fracture under stress. Conversely,
raising the Infill Percentagemakes the part stronger, which raises the
tensile strength. It is important to keep in mind that changing more
than one parameter at a time will typically result in more noticeable
changes in properties.

The experimental data are analyzed using F test (Standard
analysis) and analysis of variance (ANOVA). ANOVA analysis is
required to determine how process parameters affect performance
metrics or parameters. The F-test is used to assess the relevance
of process parameters. The most significant component is often
one with a p-value of less than 0.05 and at least 95% confidence
levels. Based on ANOVA it was found that infill percentage is
most significant parameter followed by layer height, extrusion
temperature and printing speed (Table 3).

For optimization purpose the function for tensile strength is
obtained given in Eq 1.

X = 25.841+ 0.084y1 − 0.57667y2+ 0.0392y3+ 0.04989y4 (1)
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TABLE 2 Input and output parameters (Jatti et al., 2022; Mishra and Jatti, 2023; Mishra and Jatti, 2023; Mishra et al., 2023).

Infill percentage (%) Layer height (mm) Print speed (mm/sec) Extrusion temp (℃) Ultimate tensile strength (MPa)

78 0.32 35 220 46.17

10.5 0.24 50 210 42.78

33 0.16 35 220 45.87

33 0.32 35 200 41.18

33 0.16 65 200 43.59

100 0.24 50 210 54.2

78 0.16 35 200 51.88

33 0.32 65 200 43.19

78 0.32 65 200 50.34

33 0.16 65 220 45.72

78 0.16 35 220 53.35

55.5 0.24 50 210 49.67

33 0.32 35 220 45.08

55.5 0.24 50 190 47.56

55.5 0.24 50 210 48.39

78 0.32 65 220 46.49

55.5 0.24 50 210 47.21

55.5 0.24 50 210 48.3

55.5 0.24 50 230 50.15

33 0.32 65 220 43.35

55.5 0.24 50 210 45.33

55.5 0.24 80 210 45.56

78 0.16 65 200 49.84

55.5 0.24 20 210 48.51

55.5 0.08 50 210 42.63

55.5 0.4 50 210 42.87

55.5 0.24 50 210 47.14

78 0.32 35 200 45.17

55.5 0.24 50 210 47.07

78 0.16 65 220 50.99

33 0.16 35 200 43.17
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FIGURE 2
Jaya algorithm.

FIGURE 3
Teaching learning algorithm.

FIGURE 4
Cohort intelligence algorithm.

where, X =Tensile Strength, y1 = Infill percentage, y2 = Layer height,
y3 = Print speed, y4 = Extrusion temp.

The optimization problem is mathematical expressed as below:
Objective Function:
Maximize X = 25.841 + 0.084y1 -0.57667y2 +0.0392y3

+ 0.04989y4.
Subjected to constraints:
Lower bound = [2.6142, 0.07720, 190]
Upper bound = [101.0779, 0.4404, 82.5129, 230]

3.1 JAYA algorithm results

The Jaya Algorithm is a simple yet incredibly powerful
optimizationmethod designed to find the best answer to a particular
issue. It works by improving a population of possible solutions
iteratively in an effort to converge on the best one. It evaluates
the objective function for every member of the population in
every iteration, enabling it to discern between the best and worst
options. This algorithm promotes collaboration among individuals
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FIGURE 5
Genetic algorithm.

FIGURE 6
Simulated annealing algorithm.

FIGURE 7
Particle swarm algorithm.

by updating the population jointly, as opposed to emphasizing
competition or selection. All members of the population are
guided toward the best solution while the substandard options
are excluded; this cooperative movement is made possible by
linear interpolation between members. The JAYA algorithm is a
parameter-less optimization algorithm that collaboratively finds
better solutions to update the population. The JAYA algorithm has

demonstrated remarkable efficacy in optimizing complex functions
with numerous input parameters, even in the absence of any
algorithm-specific parameters. The best fitness value of 55.475
for the Tensile Strength function with these configuration choices
obtained, as shown in the Figure 8. This strategy worked well since
it was straightforward and only required the beginning population
and the objective function.
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TABLE 3 ANOVA for ultimate test strength

Source DF Seq SS Adj SS Adj MS F P

Regression 14 292.429 292.429 20.888 8.53 0.000

Linear 4 211.534 211.087 52.772 21.55 0.000

Infill percentage (%) 1 180.832 180.603 180.603 73.76 0.000

Layer height (mm) 1 21.965 21.569 21.569 8.81 0.009

Print speed (mm/sec) 1 0.756 0.759 0.759 0.31 0.585

Extrusion temp (0C) 1 7.981 8.156 8.156 3.33 0.087

Square 4 51.985 51.985 12.996 5.31 0.06

Infill percentage (%) * Infill
percentage (%)

1 2.575 1.123 1.123 0.46 0.508

Layer height (mm)* Layer height
(mm)

1 45.941 44.254 44.254 18.07 0.01

Print speed (mm/sec)* Print speed
(mm/sec)

1 1.186 0.851 0.851 0.35 0.564

Extrusion temp (0C) * Extrusion
temp (0C)

1 2.83 2.83 2.83 0.93 0.349

Interaction 6 28.910 28.910 4.818 1.97 0.131

Infill percentage (%) * Layer height
(mm)

1 9.517 9.517 9.517 3.89 0.066

Infill percentage (%) * Print speed
(mm/sec)

1 0.018 0.018 0.018 0.01 0.932

Infill percentage (%) * Extrusion
temp (0C)

1 5.198 5.198 5.198 2.12 0.164

Layer height (mm) * Print speed
(mm/sec)

1 6.126 6.126 6.126 2.50 0.133

Layer height (mm) * Extrusion
temp (0C)

1 2.434 2.434 2.434 0.99 0.334

Print speed (mm/sec)* Extrusion
temp (0C)

1 5.617 5.617 5.617 2.29 0.149

Residual Error 16 39.175 39.175 2.448

Lack-of-Fit 10 27.979 27.979 2.798 1.50 0.321

Pure Error 6 11.195 11.195 1.866

Total 30 331.604

3.2 Teaching learning based optimization
results

An optimization technique called Teaching Learning Based
Optimization (TLBO) is inspired by the dynamics of teaching
and learning in a classroom. Its main objective is to replicate the
teaching and learning processes in order to get the best answer. It
accomplishes this by combining exploration and exploitation tactics

to enhance a population of viable solutions. Better solutions are
exchanged, and TLBO promotes this, much like the teaching phase
where knowledge is transferred among individuals. People modify
their solutions in a parallel learning phase using the knowledge
they have learned. Every iteration involves TLBO evaluating
each population member’s objective function to determine the
average and optimal solutions. The method iteratively improves
the overall fitness of the solutions by going through these
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FIGURE 8
JAYA Algorithm: fitness value versus iteration number.

phases for a predetermined number of times. The population
size and the number of iterations are the only two parameters
needed by the Teaching Learning based Optimization method; no
further algorithm-specific parameters are needed. It focuses on
the processes of knowledge transfer via student-teacher interaction
and knowledge transfer via student-student interaction. Both the
teacher phase and the learner phase are how the algorithm operates.
The population size and number of iterations were 30 and 50,
respectively. With the previously specified parameters, it was able
to reach the maximum fitness value of 55.473 as seen from Figure 9.
The simplicity and efficacy of this method are particularly evident
when it comes to solving optimization problems with complex
solution spaces or unclear gradient information.

3.3 Cohort intelligence results

An optimization method influenced by how cohorts or groups
behave in the natural world. It is intended to use collaboration and
the kind of collective intelligence found in natural systems to solve
challenging optimization problems. It accomplishes this by applying
an intelligence algorithm to analyze cohort data, such as customer
behavior, and producing the best possible outcome. A customer
who tries to imitate a behavior is likely to grow personally from
such features. Cohort applicants will use this concept to accomplish
common goals in self-organizing systems. It is a group of contenders
interacting and contending with one another. In essence, the idea of
a cohort stems from social people’s propensity to imitate, absorb, and
adjust to the traits of others. A cohort of candidates usually exhibits
a particular pattern of behavior that can improve the candidates’

own behavior. A candidate is likely to take on these traits in an
attempt to emulate a specific behavior that possesses certain features
in order to enhance their own behavior. With these parameters,
we were able to achieve, as the figure illustrates, an ideal function
tensile strength value of 54.104, depicted from Figure 10. Because
everything worked well, it turned out to be beneficial.

3.4 Genetic algorithm results

An approach to problem solving known as the Genetic
Algorithm imitates the evolutionary concepts seen in biological
systems. Chromosomes are a population of possible solutions
that this algorithm manages and directs the evolution of over
a series of generations. The processes of crossover, mutation,
and selection aid in this evolution, which ultimately aims to
increase the population’s overall fitness. This resembles the natural
processes of genetic recombination and survival of the fittest. Every
iteration, the GA evaluates each member of the population’s fitness
according to an objective function. In contrast to crossover, which
mimics genetic recombination by exchanging genetic information
among chosen people, selection entails choosing individuals based
on their fitness. To increase diversity and exploration, mutation
introduces haphazard changes in the genetic composition of
progeny.

A mix of pattern search and GA to maximize the function.
With a crossover fraction of 0.9 in the GA component of the
optimizer, 90% of the genes on the parent chromosomes were used
to make the child. The fitness scaling prop, which scales the fitness
values according to their percentage to the population’s overall
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FIGURE 9
Teaching learning based optimization: fitness value versus iteration number.

FIGURE 10
Cohort intelligence: fitness value versus iteration number.

fitness, was the fitness scaling function that was employed. Selection
roulette served as the selection function, choosing individuals for
reproduction according to their fitness levels. Using a heuristic
method, the crossover function integrates genetic material from

two parent chromosomes. Mutation power, a crossover mutation
that introduces unique variations into the population by adding a
random value to the gene with a given probability, was the crossover
mutation employed.
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FIGURE 11
Genetic algorithm: fitness value versus iteration number.

Until a termination condition is satisfied—which could be
reaching a maximum number of generations or a suitable fitness
level—the algorithm keeps going through this iterative loop. A
fitness value of 54.8888 was found from this optimization as seen
from Figure 11. The GA shown efficacy in effectively navigating the
solution space and pinpointing the ideal input parameter values that
provide the intended result. These outcomes highlight how well the
GA performswhen optimizing intricate functions with several input
parameters.

3.5 Simulated annealing results

The gradual cooling technique used in material science to
minimize flaws and reach a stable state served as the model
for the optimization technique known as “simulated annealing.”
This method simulates the heating and cooling stages by using a
temperature variable. The algorithm starts by creating a random
trial point. It then uses a probability distribution, which is affected
by the current temperature, to calculate the distance between the
trial point and the current point. It then evaluates the goal function
at the trial point. The trial point becomes the new solution if
the objective function value there is greater than the value at the
current point.

With a chance dependent on the temperature and the extent of
the objective function’s decline, the trial point may nevertheless take
over as the new current point even if it produces a poorer objective
function value.

Because the SA algorithm was set up using data type double,
decimal values for input parameters can be handled. The default

function, which accepts moves that produce a lower fitness value
than the present state, was set as the acceptance function. During
the optimization process, the temperature is lowered exponentially
by the temperature function, which was temperature exp. We
were able to narrow down the search space and identify the
ideal input parameters that produced the required outcomes
by combining the SA algorithm with the hybrid optimizer for
pattern search.

By using this method, we were able to obtain an ideal fitness
value of 55.344, seen in Figure 12. When it comes to methodically
examining several solutions and determining the ideal input
parameters to attain the intended result, Simulated Annealing
has shown to be incredibly successful. This result highlights
the Simulated Annealing algorithm’s effectiveness in simplifying
and optimizing intricate functions with a large number of input
parameters.

3.6 Particle swarm optimization results

Theoptimizationmethod known as particle swarmoptimization
(PSO) is inspired by the group dynamics of natural phenomena
such as fish schools and bird flocks. Its main goal is to simulate
the social interactions and movement of particles inside a swarm in
order to find the optimal solution to a problem. With this approach,
the best solution is found by a population of particles working
together to explore the search space. As a prospective solution,
each particle moves across the search space at a different speed
and place according to its own experience as well as the collective
knowledge of the swarm. Each particle’s optimal solution is known
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FIGURE 12
Simulated annealing: fitness value versus iteration number.

FIGURE 13
Particle swarm optimization: fitness value versus iteration.

as its “personal best,” while the optimal solution attained by the
entire swarm is known as the “global best.” Particles adjust their
velocities according to the global best and their own best during
each cycle.

With a minimum neighbor fraction of 0.25 set, the PSO
algorithm ensures that every particle has a minimum of 25% of its
neighbors within its local search space. The particle’s movement is
influenced by the global best position only to the extent that the
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TABLE 4 Comparative analysis of optimization techniques.

Algorithm No. of
runs

Infill
percentage

Layer
height
(mm)

Print
speed
(mm/sec)

Extrusion
temp (oC)

Fitness
value

(N/mm2)

Standard
deviation

JAYA 100 100.0988 0.087 62.2915 230 55.475 6.7E-14

CI 100 100.0988 0.087 62.2915 230 54.104 0.0119

GA 100 100.0988 0.087 62.2915 230 54.888 0.2311

PSO 100 100.0988 0.087 62.2915 230 55.474 0.00438

SA 100 100.0988 0.098 43.147 230 55.344 0.2587

TLBO 100 90.035 0.087 62.2915 230 55.473 0.0672

TABLE 5 Validation test.

Parameters Optimal values (oC) Predicted Actual (average
of six readings)

Percentage error

Tensile Strength
(N/mm2) (JAYA)

Infill percentage = 100.0988, Layer height = 0.087 mm, Print
Speed = 62.2915 mm/sec, Extrusion Temperature = 230

55.475 55.075 0.72

Tensile Strength
(N/mm2) (CI)

Infill percentage = 100.0988, Layer height = 0.087 mm, Print
Speed = 62.2915 mm/sec, Extrusion Temperature = 230

54.104 53.98 0.23

Tensile Strength
(N/mm2) (Genetic
Algorithm)

Infill percentage = 100.0988, Layer height = 0.087 mm, Print
Speed = 62.2915 mm/sec, Extrusion Temperature = 230

54.888 53.98 1.6

Tensile Strength
(N/mm2) (PSO)

Infill percentage = 100.0988, Layer height = 0.087 mm, Print
Speed = 62.2915 mm/sec, Extrusion Temperature = 230

55.474 54.88 1.084

Tensile Strength
(N/mm2) (SA)

Infill percentage = 100.0988, Layer height = 0.098 mm, Print
Speed = 43.147 mm/sec, Extrusion Temperature = 230

55.344 54.387 1.76

Tensile Strength
(N/mm2) (TLBO)

Infill percentage = 90.035, Layer height = 0.087 mm, Print Speed
= 62.2915 mm/sec, Extrusion Temperature = 230

55.473 55.164 0.56

social adjective weight (1.2) is controlled. Setting the self-adjective
weight to 1.49 modifies the particle’s propensity to gravitate toward
its optimal position.

Following this idea, we used the PSO method to obtain
an ideal fitness value of 55.474, as seen in Figure 13. PSO has
shown to be an extremely effective technique for methodically
exploring the solution space and determining the ideal values
of the input parameters that result in the desired output. This
result emphasizes how well the PSO method optimizes complicated
functions with several input parameters while keeping things
simple.

3.7 Comparative analysis and validation

Table 4 displays the results of 100 repetitions using the JAYA
Algorithm, Simulated Annealing, Genetic Algorithm, Particle

Swarm Optimization, Teaching Learning Optimization, and
Cohort Intelligence. These optimization techniques’ remarkable
consistency in output demonstrates how well they work to solve
optimization problems in a variety of fields. In particular, the
JAYA method fared better than the others for optimizing tensile
strength, with Cohort Intelligence, Particle Swarm Optimization,
and Teaching Learning-based Optimization coming in close second
and third. Remarkably, these techniques demonstrated low standard
deviations in their performance during the 100 runs, highlighting
their dependability and resilience in producing excellent
outcomes.

Validating the appropriate process parameter setting for
achieving the best performance measure values is the last phase in
this investigation. In the course of the confirmation experiments, the
analysis yielded optimal settings for the relevant parameters, while
the most economical level was established for the inconsequential
ones. In order to determine whether the real mean of the
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performancemeasure value falls within the two confidence intervals,
at least three validation experiments must be carried out. The
actual mean of the performance measure value is then compared
with the estimated mean of the performance measure value. In
this study six validation experiments were performed for each
optimization technique. The values from these studies are shown in
Table 5, where they are contrasted to the values that the algorithms
predicted. The percentage error had to be calculated for the
comparison. The results showed that the model’s experimental
validation showed a good match between the predicted values
and the actual outcomes, indicating a high degree of prediction
accuracy.

The results of the study might only apply to PLA, and
the optimization algorithms’ application to other 3D printing
materials with different mechanical characteristics and behaviors
might vary. Findings from a specific FDM machine—like the
previously stated Creality Ender 3—might not translate to other 3D
printers with dissimilar build volumes, settings, or technological
specs. Differences in real-world printing settings, such as changes
in temperature and humidity, may not have been taken into
consideration in this study. These differences can have an impact
on the performance of the printer and PLA material. The study
may have limited our understanding of the full capability of
the optimization algorithms by not examining a wide range of
parameters for each approach. Uncertainties can be introduced and
the repeatability of results impacted by variations in experimental
setups, such as minor variations in filament batches or machine
calibration. In summary, optimization algorithms have the potential
to enhance 3D printing procedures; however, their practical
implementation requires that their features be carefully evaluated,
that parameters be adjusted, and that the unique circumstances
of the research—such as the PLA material and FDM machine
employed—be acknowledged.

4 Conclusion

The current work used the CI, GA, SA, JAYA, TLBO, and
PSO algorithms to optimize the Fused Deposition Modeling
(FDM) method in order to 3D print PLA material with the
maximum potential tensile strength. The following are the main
observations:

1. Tensile strength is maximized when using a lower layer height, a
higher infill percentage, a medium extrusion temperature, and a
medium printing speed.

2. JAYA algorithm outperformed PSO, GA, SA, JAYA, and TLBO in
optimizing the process.

3. The algorithms’ robustness was tested through multiple runs,
and consistent tensile strength values were obtained. Found
that all algorithms are capable in optimizing the tensile
strength.

4. Validation experiments affirmed that the optimal input
parameter settings determined by the algorithms resulted
in tensile strength values closely matching the predicted
values.

5. These findings have implications for various fields that
utilize 3D printing technologies and provide a valuable

direction for future research in the realm of Additive
Manufacturing.
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