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In this work, the hot deformation behavior and microstructure evolution of
ZK60 alloy are investigated. Meanwhile, constructive models and hot processing
maps of ZK60 alloy during thermal tension are also established. Toward
these ends, thermal tensile tests were performed at elevated deformation
temperatures (523 K–673 K) and wide-ranging strain rates (0.0005 s−1 to 0.1
s−1). The findings indicated that as the tensile temperature increases and the
strain rate decreases, the flow stress exhibited a decrease. To better evaluate the
flow behavior of the alloy, Arrhenius model coupled strain effects and particle
swarm optimization support vector machine (PSO-SVM) regression model are
developed. Both the developed Arrheniusmodel and PSO-SVM regressionmodel
could depict the flow stress of the hot deformation ZK60 alloy. However, the
results comparison revealed that the PSO-SVM regression model provides a
more accurate prediction of the stress in the studied alloy with the AARE and
R of 1.12% and 0.9984, respectively. The microstructure observation revealed
that the primary softening mechanism in the alloy is predominantly dynamic
recrystallization (DRX). Using the created hot processing map, the stability
processing areas for this alloy were concentrated in the range of 573 K–653 K
with a strain rate of 0.001 s-1 to 0.08 s-1. The described model is implemented in
the finite element software. Then, the wire-drawing process of ZK60 alloy is also
simulated.

KEYWORDS

ZK60magnesium alloy, hot deformation behaviors, constructivemodel, microstructure,
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Highlights

a) A comprehensive understanding involving the thermal deformation of ZK60 alloy during
hot tensile.

b) Arrhenius model coupled strain effect and PSO-SVM regression model are developed.
c) The developed model is implemented in the FE software and the wire-drawing process of

ZK60 alloy is simulated.
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GRAPHICAL ABSTRACT

1 Introduction

For ZK60 magnesium alloy is commonly employed in
medical implants, aerospace components, and chemical equipment
applications because of excellent biocompatibility and high strength
(Wang et al., 2018; Wu C. L. et al., 2021; Liu et al., 2022). Since
magnesium alloy is a metal with a hexagonal structure and limited
formability and ductility at room temperature, the alloy mainly
adopts a hot forming process (Chen et al., 2020; Duley et al.,
2021; Cao et al., 2022), and the material’s flow characteristics
during the hot forming process are highly intricate. The hardening
and softening mechanisms of ZK60 alloy are influenced by
thermal mechanical parameters like working temperature and
strain rate (Zhang et al., 2020; Guo et al., 2022). Therefore, the
first step in implementing a successful forming process is to
investigate the hot processing characteristics of ZK60 alloy and
comprehend the impact of thermomechanical processing on the
microstructure.

Up to now, many researchers have developed constitutive
models for hot deformation of Mg alloys, revealing in detail the
flow behavior of materials under various deformation conditions
(Hadadzadeh and Wells, 2017; Zhu et al., 2017; Fang et al.,
2022; Yang et al., 2022; Xia et al., 2023; Hu et al., 2024). The
phenomenological constitutive models including Johnson-Cook
(JC), Arrhenius, Zerilli-Armstrong (ZA) and Field-Backofen (FB)
etc., have been used widely for magnesium alloys. These models
incorporate, to varying degrees, the interactions of strain rate,
temperature, and the phenomena of strain hardening or softening.
Gao and Luo (2013) developed the constitutive model of the
compression process of Mg–2Zn–0.4Mn–0.2Ce, calculated the
activation energy of thermal working, and revealed the thermal
deformation behavior and softening mechanism of the alloy
in detail. Wei et al. (2015) found that both the Ludwik and
Zener-Hollomon models exhibit favorable agreement between

the computed stress and the measured stress within a limited
strain range while the modified Hensel-Spittel equation is capable
of characterizing the entire deformation process at the studied
deformation temperature. Wu et al. (2010) developed the Arrhenius
equation and accurately predicted the flow stress of ZK21 alloy.
Also, they obtained optimized processing intervals through
coupling the influence of microstructure. Raghunath et al. (2011),
Mei et al. (2018) and Wang et al. (2022) established constitutive
equations by incorporating Zener-Hollomon parameters to account
for the impacts of temperature, strain, and strain rate. These
investigations primarily center on characterizing peak stress,
determining deformation activation energy, and formulating
constitutive equations for magnesium alloys. Based on a broad
spectrum of experimental data, the prediction accuracy of these
models is relatively high. Furthermore, it is imperative to investigate
deformation behavior and formulate more accurate models within
an extended processing range with a limited dataset. In order to
obtain more accurate results, machine learning (ML) techniques
are introduced and compared with traditional root data (Zou et al.,
2021; Kazi et al., 2022; Huang et al., 2023). The machine learning
model can create an appropriate relationship between input and
output variables. Sani (Sani et al., 2018) developed the Artificial
Neural Network (ANN) model of Mg-Al alloy and found that a
well-trained neural network is more accurate than constitutive
equations in predicting hot flow behavior. Meanwhile, the ANN
model also be established in Mg-3Sn-1Mn alloy and can predict
the hot deformation behavior of the alloy coupled with twinning
effect (Li et al., 2023). Wu J. et al. (2021) used neural networks
to predict the residual stress, microhardness and ultimate tensile
strength of FGH4095 alloy. Zou et al. (2021) successfully predicted
the high strength and ductility of Titanium alloys using the Support
Vector Machine (SVM) method. Xiong et al. (2023) introduced a
ML-inspired Gaussian process regression (GPR) model to the stress
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prediction process of FGHalloys and found that themodel has better
generalization ability than Sellars.Themicrostructure evolution and
hot processing characteristics of alloys are closely related. Yang et al.
(2023) reported that in the Mg-9Li-1Zn alloy, the grain size with
the increase of strain rate, and decreased first and then increased
with the increase of deformation temperature. In addition, the soft
mechanism of the alloy is DRX. Yuan et al. (2023) indicated that the
increase in working temperature is beneficial to the DRX of Mg-
12Y–1Al alloy. The alloy’s DRX mechanism primarily encompasses
discontinuous dynamic recrystallization (DDRX) and continuous
dynamic recrystallization (CDRX), with DDRX being the
predominant mechanism.

The application of Mg-wire is extensive across various fields,
attributed to its lightweight nature, high strength, and superior
mechanical properties. In the field of medical devices, Mg alloy
finds application in the production of bone implants and surgical
instruments, benefiting from its excellent biocompatibility (Fu et al.,
2020; Ali et al., 2023; Cheng et al., 2023). Additionally, in the
electronics industry, its favorable conductivity and lightweight
properties make it suitable for manufacturing conductive wires,
connectors, and electronic components (He et al., 2022). In the
context of preparing wires from Mg and Mg-based alloys, the
primary emphasis is placed on cold drawing and hot drawing
methods. Sun et al. (2022) reported a study on Mg-Gd alloy and
revealed exceptional super-formability (∼165% in accumulative true
strain) through multiple-pass cold drawing at room temperature.
Simultaneously, the microstructural evolution of nanocrystals
plays a pivotal role in attaining exceptional tensile deformation
capabilities. In addition, they also performed multiple passes
of cold drawing on the Mg-2wt%Zn alloy until the cumulative
true strain reached 91%, highlighting the excellent drawing
deformation ability of the alloy at ambient temperature (Sun et al.,
2017). Moreover, they elucidated the texture formation process,
where the texture component ultimately transitioned from the
extruded basal texture to the typical ⟨10–10⟩ fiber texture in
the drawing direction. Although cold-drawn materials have
high strength and considerable ductility, these improvements
often require a large number of annealing processes and mold
assistance, which prolongs the wire preparation cycle and increases
energy consumption (Chen et al., 2017; Xie et al., 2021; Gao et al.,
2022). The Mg-wire, produced through a hot drawing method,

demonstrates high processing efficiency and excellent ductility
(Seitz et al., 2011). Milenin et al. (2020) investigated the hot
drawing method for Mg-Ca alloy, revealing that decreasing
Ca content reduces biocorrosion rate. The elevating drawing
temperature exacerbates biocorrosion while improving ductility
and diminishing strength. Utilizing hot drawing technology,
Zuo et al. (2022) obtained Mg-0.8Al-0.1Ca-0.6Mn alloy wire with
a tensile yield strength of 394 MPa and ultimate tensile strength of
431 MPa. This exceptional strength is attributed to its distinctive
grain structure, ultrafine dynamic recrystallization grains,
nanoprecipitates, and solute segregation. However, the practical
data applicable to wire-drawing from ZK60 alloy in the literature
are missing.

Although previous researchers have conducted extensive
in-depth research on the thermal processing characteristics
and microstructure evolution of magnesium alloys, research
on the deformation behavior, constitutive description, and
microstructure evolution of the ZK60 alloy is insufficient.
Hence, the thermal deformation behavior of the ZK60 alloy
was systematically investigated, and two constitutive models
based on phenomenology and machine learning, as well as a
thermal processing map, were established. In the prediction of
flow stress, the PSO-SVM model outperforms the Arrhenius
model. The developed PSO-SVM model shows excellent predictive
power and good generalization ability. Additionally, the thermal
deformation stable region of the studied alloy was determined.
The research strategy of establishing the constitutive model,
processing diagram, microstructure analysis and numerical
simulation will offer robust support for the production of ZK60
alloy wire.

2 Materials and methods

The as-received material is a sheet of ZK60 alloy that is
3 mm thick and the chemical compositions are Mg-6.0Zn-0.6Zr
(wt%). The initial microstructure, geometric shape and size of the
uniaxial hot tensile sample are depicted in Figure 1. The tests were
conducted using the SUST-CMT5000GL thermal testing machine.
The sample was rapidly heated to the designated temperature and
maintained at that temperature for 180 s to ensure temperature

FIGURE 1
Initial microstructure and the size of the tensile sample. (A) Microstructure, (B) The geometric shape and size of the uniaxial hot tensile sample.
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uniformity. Water quenching (WQ) is carried out immediately after
the completion of hot stretching, to preserve the instantaneous
state of the deformed grains. The isothermal compression tests
are conducted at temperature from 523 K to 673 K (the interval
of 50 K). And the strain rates are 0.0005 s−1, 0.001 s−1, 0.01 s−1

and 0.1 s−1 respectively. The true strain of each sample is 0.5. The
quenched deformed specimen will be cut along the direction of the
tensile axis by an electric dischargemachine (EDM).Metallographic
preparation involved grinding the specimen surfaces with varying
grit sizes of sandpapers and subsequent mechanical polishing with a
grindingwheel. Etchingwas carried out to reveal themicrostructure.
The metallographic corrosion solution is 5 mL CH3COOH+3.5 g
C6H3N3O7+100 mL C2H6O+20 mL H2O. The etched time is
20–30 s. The microstructure characteristics were examined through
the use of an optical microscope (OM). The described model is
implemented in DEFORM-3D finite element software. Then, the
wire-drawing process of ZK60 alloy is simulated by the established
DEFORM-3D model.

3 Results and discussions

3.1 Flow stress

Figure 2 shows the flow stress curves of AZ60 alloy at different
tensile parameters.The hot working process of the alloy involves the
interplay between work hardening and dynamic softening, which
includes dynamic recovery (DRV) and DRX. The former raises

the deformation resistance, while the latter diminishes it. During
the initial phases of tensile loading, deformation is predominantly
controlled by the work hardening mechanism, directly associated
with the accumulation of dislocations during plastic deformation
(Jabbari-Taleghani and Torralba, 2014). The accumulation and
entanglement of a significant quantity of dislocations will lead to
an increase of stress. When the strain continues to increase, a
portion of the deformation work persists within the alloy in the
shape of defects or dislocations, which will provide the driving
force for DRV and DRX (Silva et al., 2021). At this time, the stress
increase caused by work hardening and the stress reduction caused
by dynamic softening will be in a state of dynamic competition.
When dynamic softening is dominant, the slope of the flow stress
curve gradually diminishes until it reaches the peak stress, where
the work hardening and dynamic softening tend to reach a dynamic
balance. Following the peak stress, dynamic softening predominates,
with DRX being the primary mechanism for dynamic softening
in magnesium alloys. From the deformation conditions at 623 K
and 673 K (Figures 2C, D), the dynamic soft fully counteracts the
influences of strain and work hardening, resulting in a steady state
of flow stress.

3.2 Microstructure

The microstructures of AZ60 alloy under various tensile
temperatures are displayed in Figure 3. And the strain ratemaintains
a constant value of 0.001 s-1. It is evident that both the grain size

FIGURE 2
The flow stress curves of ZK60 alloy at different tensile temperatures of: (A) 523 K, (B) 573 K, (C) 623 K, (D) 673 K.
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FIGURE 3
The microstructures of AZ60 alloy at 0.001 s−1 with different temperatures of: (A), (C) 573 K, (B), (D) 623 K.

of DRXed grains and the fraction of coarse deformed grains are
temperature-dependent. The tensile alloys exhibit a non-uniform
microstructure composed of fine equiaxed grains generated by
DRX and some coarse elongated patches. In the deformation
microstructures at 573 K (Figures 3A, C), a limited quantity of
DRXed grains can be discerned at the grain boundaries, signifying
the nucleation and growth of DRXed grains. However, the content
of DRXed grains is lower. For the alloy deformed at 573 K, the
average grain size of the DRXed grains is about 6.8 μm. When
the deformation temperature escalates to 623 K (Figures 3B, D),
a large number of DRXed grains appear and the number of
DRXed grains also increases. Meanwhile, the DRXed grains grow
and the average grain size is approximately 10.3 μm. DRXed
grains are predominantly situated along the grain boundaries
of parent-phase grains, signifying that DDRX is the primary
softening mechanism in the alloy. In addition, there are often
a few DRXed grains near the formed micro-voids. Prior to the
formation of micro-voids, a significant quantity of dislocations
gather near the micro-voids to be formed, which increases the local
dislocation energy and promotes the nucleation of DRXed grains
(Chen X. et al., 2023).

3.3 Constructive model

Constitutive models for metallic materials are crucial in
understanding their mechanical behavior. The Arrhenius equation
is widely employed for describing the temperature-dependent
properties of metals, accounting for the influence of temperature
on material strength and deformation (Chen L. et al., 2023). In
addition, machine learning models have emerged as powerful
tools for developing data-driven constitutive models in recent
years. By training on extensive experimental or simulated data,
these models can simulate complex, non-linear relationships
betweenmaterial properties, temperature, and other factors, offering
enhanced predictive capabilities and insights into the behavior of
metal materials. Based on the characteristics of different models,
phenomenological and machine learning constitutive models have
been established.

3.3.1 Strain-compensation Arrhenius model
The Arrhenius model is well-suited for constructing high-

temperature constitutive models for metallic materials and has
gained extensive usage. The equation incorporates both the
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temperature (T) and the activation energy (Q) (Lei et al., 2021):

̇ε =

{{{{{{{
{{{{{{{
{

A[sinh (ασ)]n exp(− Q
RT
) for all σ

A1 exp(χσ)exp(−
Q
RT
) for ασ < 0.8

A2σ
n1 exp(− Q

RT
) for ασ > 1.2

(1)

where ̇ε denotes the strain rate, σ is the true stress, the gas constant
R equals 8.314 J/mol ·K, and α, χ, A, A1 , A2, n and n1 are material
parameters.

The impact of forming temperature and strain rate on
deformation characteristics can be characterized using Z parameter
(Lei et al., 2023).

Z = ̇εexp( Q
RT
) (2)

Operating Eqs 1 and 2, and logarithmically transforming:

ln ̇ε+ Q
RT
=
{{{{
{{{{
{

ln A+ n ln [sinh (ασ)]

ln A1 + χσ

ln A2 + n1 ln σ

(3)

According to Eq. 3, the relevant parameter values can be
obtained by performing linear fitting on the scattered points of the
stress under varying deformation parameters. Figure 4 shows the
linear fitting lines derived from the measured data at a strain level
of 0.1. The inverse of the mean slop of the linear regression lines

for ln ̇ε− ln σ, ln ̇ε− σ, ln [sinh (ασ)] − ln ̇ε and ln [sinh (ασ)] − 1
T
are,

respectively, n1, χ, n and Q
nR
. Therefore, the values of n1, β, n and Q

nR
are 3.48302, 0.0864, 2.50116 and 0.0002071, respectively. The stress
level parameter α (χ/n1) and the activation energy are 0.024807 and
100.417 kJ/mol. In addition, the value of lnA is 14.0.

The relationship between σ and Z can be established as follows:

σ = 1
α
ln
{
{
{
(Z
A
)

1
n +[(Z

A
)

2
n + 1]

1
2}
}
}

(4)

Finally, the material parameters were substituted into Eq. 4
to obtain the stress constitutive equation for ZK60 alloy at a
strain of 0.1.

σ = 1
0.024807

ln
{
{
{
( Z
1.203× 106

)
1

2.50116 +[( Z
1.203× 106

)
2

2.50116 + 1]

1
2}
}
}
(5)

In the established Eq. 5, the impact of strain on flow stress
during tensile deformation is ignored, making it difficult to predict
stress under different strains. Additionally, strain affects both Q
and material parameters. Therefore, to develop an Arrhenius model
incorporating strain-related effects, α, n, Q and lnA are assumed to
be polynomial functions involving strain. A fifth-order polynomial

FIGURE 4
The linear fitting lines of: (A) ln ̇ε− ln σ, (B) ln ̇ε− σ, (C) ln [sinh (ασ)] − ln ̇ε and (D) ln [sinh (ασ)] − 1

T
.
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TABLE 1 The parameters for the Arrhenius model at the stain in the range of
0–0.5.

Strain α n lnA Q (kJ/mol)

0.05 0.02707 2.46142 14.97218 101.19776

0.1 0.02481 2.50116 14.87535 100.41687

0.15 0.02385 2.52615 14.50323 98.39105

0.2 0.0235 2.53587 14.27337 97.20687

0.25 0.02367 2.62712 14.4 96.01235

0.3 0.0233 2.60765 13.71705 94.44786

0.35 0.02389 2.61607 13.45921 93.37265

0.4 0.02441 2.70651 13.33956 92.86756

0.45 0.02481 2.79 12.5 89.00113

0.5 0.02755 2.9078 11.36244 83.65534

is employed to fit the above parameters, as shown in Eq. 6.

{{{{{{{
{{{{{{{
{

α(ε) =Mα
0 +M

α
1ε+M

α
2ε

2 +Mα
3ε

3 +Mα
4ε

4 +Mα
5ε

5

Q(ε) = NQ
0 +N

Q
1 ε+N

Q
2 ε

2 +NQ
3 ε

3 +NQ
4 ε

4 +NQ
5 ε

5

n(ε) = On
0 +O

n
1ε+O

n
2ε

2 +On
3ε

3 +On
4ε

4 +On
5ε

5

ln A(ε) = PA0 + P
A
1 ε+ P

A
2 ε

2 + PA3 ε
3 + PA4 ε

4 + PA5 ε
5

(6)

True stress values are extracted at intervals of 0.05 across the
entire true strain range of 0–0.5. So, the values of α, n, lnA and
Q can be acquired at each strain level (Table 1). Based on Table 1,
the fifth-order polynomial fitting curves are shown in Figure 5. The
coefficients of each fifth-order polynomial in Eq. 6 are listed in
Table 2. Therefore, the constructive model of ZK60 alloy during hot
tensile deformation is given by:

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

σ = 1
α(ε)

ln
{
{
{
( Z
A(ε)
)

1
n(ε)
+[( Z

A(ε)
)

2
n(ε)
+ 1]

1
2}
}
}

Z = ̇εexp(
Q(ε)
RT
)

α(ε) =Mα
0 +M

α
1ε+M

α
2ε

2 +Mα
3ε

3 +Mα
4ε

4 +Mα
5ε

5

Q(ε) = NQ
0 +N

Q
1 ε+N

Q
2 ε

2 +NQ
3 ε

3 +NQ
4 ε

4 +NQ
5 ε

5

n(ε) = On
0 +O

n
1ε+O

n
2ε

2 +On
3ε

3 +On
4ε

4 +On
5ε

5

ln A(ε) = PA0 + P
A
1 ε+ P

A
2 ε

2 + PA3 ε
3 + PA4 ε

4 + PA5 ε
5

(7)

where the involved parameters are characterized in Table 2.
Figure 6 illustrates the correlation between the predicted stress

and the measured stress. At lower tensile strain rates, the predicted
values from the constitutivemodel closely alignwith the actual stress
values. Although there is a slight discrepancy between the predicted
values and experimental results at high strain rates, the developed
constitutive model remains capable of forecasting the flow stress
during the thermal tensile deformation process of ZK60 alloy.

3.3.2 PSO-SVM regression model
3.3.2.1 SVM regressionmodel

SVM regression model is employed for addressing regression
and classification tasks, which was first proposed by Vapnik
(Peng et al., 2013). Many drawbacks in traditional machine learning
techniques can be avoided by SVM based on structural risk
minimization (SRM), such as local minima, low convergence rate,
the need for diverse training data and underfitting/overfitting
(Sheykhmousa et al., 2020). A special training dataset is set as
a = {(x1,y1), (x2,y2),…,(xn,yn),xi ∈ R,yi ∈ R} where xi and yi are the
input data and the corresponding output, respectively. The SVM
model is given by the following equation.

f(x) = ω · xi + b (8)

To widen the classification range and accommodate limited
noisy data, relaxation variable ηi is introduced to quantify the
irregularity of the classifier. The following Eq. 9 can be employed to
address the classification tasks:

min 1
2
ω2 + P f

n

∑
i=1

ηi

s.t yi[ωxi + b] ≥ 1− ηi,ηi ≥ 0 and i = 1,2,3,…,n
(9)

where ω is the weight vector, the penalty factor P f is employed to
equilibrate the complexity of the machine.

The Lagrange operators βi (βi ≥ 0) and γi are introduced
to convert the constrained original objective function into an
unconstrained Lagrange function, shown in Eq. 10 below.

L(ω,b,η,β,γ) = 1
2
ω2 + P f

n

∑
i=1

ηi −
n

∑
i=1

γiηi −
n

∑
i=1

βi[yi(ωx+ b) − 1+ ηi]

(10)

For the maximum, minimum and duality problem, let
∂L
∂ω
= ∂L
∂b
= ∂L
∂η
= 0 . Then Eq. 10 can be obtained as follows:

{{{{{{{{
{{{{{{{{
{

ω =
n

∑
i=1

βiyixi
n

∑
i=1

βiyi = 0

P f = βi + γi

(11)

Then, the following Eq. 12 also can be obtained.

max g(x) =
n

∑
i=1

βi −
1
2

n

∑
i=1

n

∑
j=1

βiβjyjyixjxi

s.t

{{{{{{{{{
{{{{{{{{{
{

n

∑
i=1

βiyi = 0

βi[yi(ωx+ b) − 1+ ηi] = 0

γiηi = 0

0 ≤ βi ≤ P f

(12)

Once the Lagrange operator βi is determined, the values ofω and
b can also be solved. Hence, the ultimate expression of an SVM for
a classification model is expressed as:

f(x) = βiyiφ(xi)

φ(xi) + b =
n

∑
i=1

βiyyK(xi,x) + b
(13)
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FIGURE 5
Fifth-order polynomial fitting curves of material parameters with strain ε: (A) α, (B) n, (C) lnA and (D) Q.

TABLE 2 Fifth-order polynomial coefficients for characterization parameters.

α Q n lnA

Mα
0 0.03054 NQ

0 100.84567 On
0 2.50972 PA0 15.3838

Mα
1 −0.08399 NQ

1 26.67348 On
1 −2.06868 PA1 −11.27024

Mα
2 0.28581 NQ

2 −443.6305 On
2 29.61135 PA2 91.67993

Mα
3 0.04547 NQ

3 1,271.5765 On
3 −134.3559 PA3 −498.0372

Mα
4 −1.7471 NQ

4 −759.4804 On
4 259.30757 PA4 1,192.6292

Mα
5 2.2724 NQ

5 −997.3337 On
5 −172.1939 PA5 −1,075.161

where K(xi,x) is the inner product core function, which is an
optional kernel function in SVM. In the present work, K(xi,x) is
expressed as:

K(xi,x) = exp(−
|x− xi|

2

2δ2
) (14)

3.3.2.2 PSO algorithmmodel
PSO algorithm model is employed in this work as a prevalent

tool, which is a form of swarm intelligence in which birds cooperate
in groups to find the best places to get food (Jakubcová et al., 2014).
The population in the D-dimensional target search space consists

of bird flocks whose amount is m and known as “particles”. The
space vector SVi = (svi1, svi2, svi3,…, sviD) is represented as the ith
element. Here, i = 1, 2, 3, … ,m. The velocity of each particle i) is
vi = (vi1,vi2,vi3,…,viD)

T.The individual optimal value is represented
as poi = (p

o
i1,p

o
i2,p

o
i3,…,p

o
iD)

T. Also, the global optimal value of the
population is denoted by gpi = (g

p
i1,g

p
i2,g

p
i3,…,g

p
iD)

T. It is a commonly
utilized method for addressing variable optimization problems due
to its ease of comprehension and rapid convergence rate. The model
will update the velocity and position of the particle in each iteration
and the subsequent updating formula is given by:

vt+1id = λ · v
k
id + c1 · r1 · (p

o
id − sv

t
id) + c2 · r2 · (p

o
gd − sv

t
id) (15)

svt+1id = sv
t
id + v

t+1
id (16)
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FIGURE 6
Experiment and simulation stress of AZ60 alloy at different tensile temperatures of: (A) 523 K, (B) 573 K, (C) 623 K, (D) 673 K.

where vid is the velocity of the particle (i). d = 1, 2, … , D.
i = 1, 2, … , n. λ is the inertia PSO weight. c1 and c2 are
acceleration factors. r1 and r2 are random numbers ranging between
0 and 1. In order to prevent particles from conducting unguided
searches, the position and velocity of particles are constrainedwithin
specific limits.

3.3.2.3 SVM optimized by PSO technique
The performance of SVM regression model for classification is

highly dependent on P f and δ (Liu et al., 2019; Samantaray et al.,
2023). Therefore, P f and δ must be chosen carefully to improve
classification accuracy. In the PSO-SVM regression model,
P f and δ will be selected by the PSO technique. The most
suitable parameter is the controlled parameter with the smallest
error. As a result, it becomes necessary to find the optimal
parameters. After finding the optimized parameters of the SVM,
they are used for retraining the model. The model is now
ready to recognize new samples during the test period after the
training period. By conducting feature selection on the initial
dataset, a test set is simultaneously chosen. Then, the imputation
of the test pattern is performed on the trained multi-layer
SVM classifier.

3.3.2.4 Forecasting flow stress of ZK60 alloy
Before starting prediction, it is necessary to prepare training

and prediction datasets separately. The datasets involving the
temperature, the strain rate, the strain and the flow stress are
prepared. The input data consists of temperature, strain rate, and

FIGURE 7
The iteration process of the PSO algorithm.

strain, while the output is the flow stress.The datasets collected from
523 K to 573 K are applied for training, and from 623 K to 673 K are
employed for testing.

Figure 7 illustrates the iterative process of the PSO algorithm,
where both the average fitness and optimal fitness are updated and
substituted in each iteration step. From Figure 7, the particle swarm
searched for the global optimal fitness value when the iteration step
is 18th. Currently, MSE = 0.088, C = 32.5, g = 0.3, and the average
fitness value after each iteration has also been approaching the global
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FIGURE 8
The PSO-SVM regression model predicted and experimental flow stress curves of AZ60 alloy at different tensile temperatures of: (A) 523 K, (B) 573 K,
(C) 623 K, (D) 673 K.

FIGURE 9
The comparison of predicted accuracy between the strain-compensation Arrhenius model and the PSO-SVM regression model: (A) Arrhenius model,
(B) PSO-SVM regression model.

optimal fitness value, indicating that the particle swarm is moving
towards the optimal position every iteration.

Figure 8 displays the flow stress curves of AZ60 alloy, as
predicted by the PSO-SVM regression model and compared
with measured stress. The stress predicted by the PSO-SVM
regression model closely matches the experimental flow stress
throughout the entire tensile process (Figures 8A, B). This is

because the data collected from 523 K to 573 K are applied
for training datasets. At the onset of deformation with the
temperatures of 623 K and 673 K, as depicted in Figures 8A, C, D
minor deviation exists between the predicted stress and the
experimental stress. In general, the PSO-SVM regression model
demonstrates good consistency between predicted stress and
test stress.
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FIGURE 10
Hot processing map and deformation microstructure located in areas (A,B) (A) 0.1, (B) 0.5, (C) Area A, (D) Area (B).

3.3.3 Comparison of different prediction models
To assess the predictive capability of Arrhenius model and PSO-

SVM regression model, the average absolute relative error and the
correlation coefficient, denoted by AARE and R, are utilized.

AARE(%) = 1
N

N

∑
i=1
|
Eexpi − P

cal
i

Eexpi

| × 100 (17)

R =
∑N

i=1
(Pcali − P

cal)(Eexpi −E
exp)

√∑N
i=1
(Pcali − P

cal)
2
∑N

i=1
(Eexpi −E

exp)2
(18)

where Eexpi represents the experimental stress, Pcali denotes the
calculated stress, Eexp and Pcal are, respectively, the average value
of Eexpi and Pcali . It is recognized that an AARE value approaching 0
indicates a minimal difference between the compared entities, while
an R value nearing 1 signifies a robust correlation.

Figure 9 illustrates a comparison of predicted accuracy between
the strain-compensation Arrhenius model and the PSO-SVM
regression model. The AARE of the strain-compensation Arrhenius
model and the PSO-SVM regression model are 8.96% and 1.12%,
respectively. In addition, the values of R of the two models are,
respectively, 0.9736 and 0.9984. The findings indicate that the flow
stress response of ZK60 alloy during hot tension can be effectively
described by both the Arrhenius model, which accounts for strain
compensation, and the PSO-SVM regression model. However, it
is not accurate enough for the established strain-compensation
Arrhenius model. The PSO-SVM regression model significantly

enhances model accuracy and minimizes prediction distortion,
particularly at high strain rates, achieving a high level of precision.

3.4 Hot processing maps

The hot processing map identifies a material’s machinability and
instability intervals by correlating flow data with microstructural
evolution. The hot processing map encompasses both a power
dissipation efficiency map and an instability map. It effectively
portrays the correlation between thermal deformation parameters
and the mechanism of microstructure evolution (Zhi et al., 2023).
The model treats the thermal processing of materials as an energy-
consuming system, in which the total power Ptot of the system
includes two parts. One part is the power Pdef and the other part
is the power Pmicro . Pdef and Pmicro are, respectively, consumed by
plastic deformation and microstructure evolution. A relationship
between these powers is defined as:

Ptot = Pdef + Pmicro = σ · ̇ε (19)

The strain rate factor ms serves as an indicator for assessing
the material’s plastic deformation capacity and can be employed to
depict the connection between temperature and strain rate when
operating under constant temperature and strain conditions:

ms =
dPmicro

dP
= d ln σ

d ln ̇ε
|
T,ε

(20)
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FIGURE 11
The simulated thermal tensile process of ZK60 alloy under different parameters. The variations of (A) strain and (B) stress deformed at 523 K-0.001 s-1,
(C) The stress deformed at different temperatures and the strain rate is 0.001 s-1, (D) The stress deformed at different strain rates and the temperature is
573 K, (E) and (F) The comparison between experimental and simulated stress.

For an ideal linear dissipater, Pmicro obtains its maximum value
Pmax
micro when ms equals 1. For a nonlinear dissipater, the power

dissipation efficiency ηp is calculated as the ratio of Pmicro and P
max
micro.

ηp =
Pmicro

Pmax
micro
=

2ms

ms + 1
(21)

A larger ηp value means that the microstructure evolution
consumes more energy, but it does not mean that the alloy has
better processability, because the ηp value under the conditions
corresponding to the processability instability domain may also be
larger. Therefore, the criterion established by Prasad is employed to

determine the instability and stability domain.

ζ( ̇ε) =
∂ ln( ms

ms+1
)

∂ ln ̇ε
+ms (22)

Plastic flow instability will occur when ζ is less than 0, such
as microstructural defects such as adiabatic shear bands and flow
localization during deformation.This indicates that the deformation
in the region where ζ is greater than 0 will be stable.

The hot processing maps of ZK60 alloy at strains of 0.1 and
0.5 are displayed in Figures 10A, B, where instability region occurs
in low temperature and high strain rate as the strain increases.
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FIGURE 12
Model and dimensions of ZK60 alloy drawing simulation process.

When the strain is low (Figure 10A), the instability area is mainly
concentrated in the high strain rate area, and the region of instability
predominantly centers around the low-temperature and all strain
rate zone. This means that the sensitivity of the deformation
parameters to the instability shifts gradually from the strain rate
to the processing temperature as the deformation strain increases.
The stability processing range for this alloy are concentrated in
the range of 573 K–653 K with a strain rate of 0.001 s−1 to 0.08
s−1. Figures 10C, D shows the microstructure of areas A (instability
region) and B (stability region) in Figure 10B. When deformation
is carried out in an unstable region (Figure 10C), a small number
of fine dynamic recrystallization grains can be observed. At this
point, due to the higher deformation rate, twinning needs to be
activated to accommodate the strain. Furthermore, because the
degree of recrystallization is low, a large number of original coarse
grains can be seen. When the deformation conditions are within
the stable zone, a small number of coarse grains and a substantial
amount of dynamically recrystallized precipitation can be observed.
This phenomenon primarily occurs due to deformation taking place
in a high ηp region (0.68–0.82), resulting in a high degree of
recrystallization, effectively refining the original coarse grains.

3.5 Application of constitutive model and
numerical simulation verification

To facilitate the practical application of the established
constitutive model in engineering, the model described
in Section 3.3.1 is implemented in the FE software. The

tensile process is reproduced by FE method in Figure 11.
Then, the drawing process of ZK60 alloy wire is also
simulated.

3.5.1 Thermal tensile process
Figure 11 shows the simulated thermal tensile process of

ZK60 alloy. Figures 11A, B reveal non-uniform distributions of
strain and stress along the tensile direction of the material. As
tension continues, the strain increases while the stress slightly
decreases, attributed to recrystallization softening.The distributions
of the stress at different temperatures and strain rates are
shown in Figures 11C, D. Obviously, with an increase in tensile
temperature and a decrease in strain rate, the flow stress exhibited
a decrease (Figures 11C, E). Furthermore, at elevated temperatures,
the reduction in stress becomes less pronounced as the temperature
continues to rise. At high strain rates, there is a notable discrepancy
between simulated and experimental stresses (Figure 11F), which
also noted in Section 3.3.1. Some researchers have addressed the
impact of these high strain rates (Wu et al., 2010; Raghunath et al.,
2011). Overall, simulated stresses show strong alignment with
experimental results.

3.5.2 FE analysis of wire-drawing process of ZK60
alloy

The analysis uses the elastic-plastic analysis finite element
method to analyze the drawing process of ZK 60 alloy wire. The
initial diameter of the wire is 4 mm. Assume that the wire is made of
isotropic and nonlinear elastic-plastic material with elastic modulus
E of 154 GPa and Poisson’s ratio v of 0.3. The drawing and traction
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FIGURE 13
Figures of (A) simulated equivalent stress, (B) equivalent strain, (C) drawing force and (D) Y-axis displacement of point P1 of ZK60 alloy drawing at 523 K
with different speeds.

dies are treated as rigid bodies. The reductions in the semi-die angle
and cross-sectional area, when the diameter is decreased from 4 mm
to 3 mm, amount to 7° and 43.7%, respectively. To facilitate the wire
drawing process, the initial wire, which was approximately 9 mm
in length upon entering the drawing die, was transformed into a
frustum-like structure with a half-angle of 3°. The FE model and
dimensions of ZK60 alloy drawing simulation process is shown
in Figure 12. In light of the findings presented in Sections 3.2
and 3.4, a drawing temperature of 623 K has been established.
Additionally, five drawing speeds, namely, 0.025 mm/s, 0.05 mm/s,
0.5 mm/s, 1 mm/s and 2 mm/s, were selected to investigate
their impact on wire formation and enhance the efficiency of
wire preparation.

Figure 13 shows the simulation of ZK60 alloy drawing at
623 K with different speeds. At slower drawing speeds, ranging
from 0.025 mm/s to 0.05 mm/s, the wire experiences increased

friction and shear deformation as it traverses the drawing die. This
leads to the concentration of stress primarily on the deforming
wire. It is noteworthy that a minor residual stress exists in the
deformed wire, primarily attributable to the lower strain rate and
reduced deformation resistance of the material during low-speed
drawing. As the drawing speed increases (0.5 mm/s to 2 mm/s),
the wire experiences its highest equivalent stress at the point
where it passes through the drawing die. The formed wire exhibits
non-uniformly distributed residual stress, with the residual stress
gradually increasing from the wire’s center to the surface area.
While the maximum equivalent stress is observed on the wire’s
surface during the drawing process, the minimum equivalent
stress in the formed wire is located near the wire’s center. The
faster the drawing speed, the greater the residual stress. Under
various drawing speeds, while the distribution of equivalent stress
may vary, the strain remains uniformly distributed, as shown

Frontiers in Materials 14 frontiersin.org

https://doi.org/10.3389/fmats.2023.1334815
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Liu et al. 10.3389/fmats.2023.1334815

FIGURE 14
Simulation process of ZK60 alloy drawing at 623 K with a speed of 0.05 mm/s. (A) Equivalent stress, (B) Equivalent strain.

in Figure 13B. Figure 13C depicts the drawing force required at
varying drawing speeds for reducing the diameter from 4 mm to
3 mm. It demonstrates a significant influence of drawing speed
on the drawing force. As the drawing speed rises, so does the
drawing force. At a drawing speed of 0.025 mm/s, the drawing
force remains relatively low but exhibits fluctuations. In the range
of drawing speeds between 0.05 mm/s and 1 mm/s, the drawing
force remains fairly stable, showing a steady or gradual increase,
which is conducive to wire forming. At a drawing speed of 2 mm/s,
the drawing force is relatively high, reaching around 300 N during
stable drawing. Nevertheless, there are significant fluctuations in the
drawing force during the drawing process, with the maximum value
reaching 450N, which does not promote the stable formation of
the wire.

In the wire drawing and forming process, circular runout may
occur at the wire’s end or at a position distant from the drawing die.
Consequently, the P1 point at the end of the wire is selected and
the displacement of the Y-axis will be recorded to evaluate whether
the drawing process proceeds stably. The Y-axis displacement of
point P1 is depicted in Figure 13D. When the drawing speed is
low, the fluctuated amplitude of the Y-axis displacement is smaller.
With increased drawing speed, the fluctuated amplitude grows.
Notably, at a drawing speed of 2 mm/s, the fluctuation amplitude
decreases. This is attributed to the swifter drawing speed, shorter
forming duration, and the greater force applied by the drawing
die, which constrains the extent of fluctuations. At speeds of
0.025 mm/s, 0.05 mm/s, 0.5 mm/s, 1 mm/s, and 2 mm/s, the Y-
direction displacement of point P1 measures 0.05 mm, 0.32 mm,
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TABLE 3 Comparison between the value ofQ for ZK60 alloy and other Mg-based alloys (kJ/mol).

Material Temperature (K) Strain

0.1 0.2 0.3 0.4 0.5

ZK60 alloy in this work 523–673 100.41 97.20 94.45 92.87 83.66

Mg-3Sn-1Mn 523–673 168.34 173.31 149.10 132.34 120.13

Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr 673–773 300.17 285.32 258.64 247.96 240.05

Mg–8.1Gd–4.5Y–0.3Zr 673–773 201.05 196.32 188.77 183.92 179.61

Mg–9Li–3Al–2Sr–2Y 423–573 112.43 111.52 110.85 — —

0.45 mm, 0.47 mm, and 0.22 mm, respectively. When the drawing
is completed, the radii of the wire at point P1 are 1.5377 mm,
1.5304 mm, 1.5014 mm, 1.4902 mm and 1.4767 mm respectively.
Therefore, based on the previous analysis, in order to stabilize
the wire drawing process and prepare qualified ZK60 alloy wire
efficiently, the recommended drawing temperature is 623 K and the
drawing speed is 0.05–0.5 mm/s.

Figure 14 shows the entire drawing simulation process of ZK60
alloy drawing at 623 K with a speed of 0.05 mm/s. As the drawing
time increases, the higher equivalent stress is mainly concentrated at
the position of the deforming wire.The equivalent strain on the wire
appears uniformly distributed. However, due to the strong friction
between the wire surface and the mold, the equivalent stress and
equivalent strain on the surface are slightly higher than the core.
Overall, there is less residual stress in the wire drawn at this speed.

4 Discussions

4.1 The value of Q between ZK60 alloy and
other Mg-based alloys

Table 3 listed the comparison of the value ofQ between the alloy
in thiswork and otherMg-based alloys reported in reference. Several
Mg-based alloys including Mg-3Sn-1Mn (Xiong et al., 2023), Mg-
8.5Gd-4.5Y-0.8Zn-0.4Zr (Hu et al., 2023), Mg-8.1Gd-4.5Y-0.3Zr
(Xia et al., 2020) and Mg-9Li-3Al-2Sr-2Y (Wei et al., 2015) are
selected for comparison of the value of Q. It can be observed that
the Q value for ZK60 alloy in this work gradually decrease with
increasing strain. This implies an instantaneous reduction in the
energy demand during the thermal deformation of the alloy as
strain increases, which is likely linked to the initiation of DRX
with escalating strain. Also, the alloys discussed in these reports
also demonstrate a decrease in Q values as strain increases. In
contrast to the reported Mg-based alloys, the Q value of ZK60
alloy is relatively low. This discrepancy can be attributed to a
lower content of alloying elements and variations in deformation
conditions (Shi et al., 2022). Furthermore, the substantial extent
of recrystallization also contributes to the reduction in the Q
value of the alloy (Ciccarelli et al., 2015). Upon comparing the
Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr and Mg-8.1Gd-4.5Y-0.3Zr, it becomes
evident that, despite having identical deformation conditions, a

slight variation in alloy elements can result in a significant alteration
in the Q value. Indeed, initial grain size, crystal orientation and
the occurrence of twins during thermal deformation also stand out
as crucial factors influencing the Q value (Ciccarelli et al., 2015;
Tahreen et al., 2015; Lei et al., 2021).

4.2 The generalization ability of the
established prediction model

The generalization ability of the established prediction model
is pivotal, particularly in industrial applications. In this work,
the strain-compensation Arrhenius model based wide range of
experimental data is established. This phenomenological model is
capable of predicting the thermal deformation behaviour under
various working conditions within the range of experimental
deformation conditions. These calibrated model parameters or
material parameters can be promoted and used wherever they
need to be implemented, such as cellular automaton (CA), phase
field (PF), finite element (FE), etc. In industrial applications, it is
beneficial to reduce the parameters of the model at the expense
of a small amount of accuracy, rather than blindly pursuing the
accuracy of the model and coupling multiple model parameters
(Lin et al., 2010). As mentioned earlier, the established model can
only be effectively generalized within the known deformation
interval, and its predictive ability beyond this interval is unreliable.
However, the data-driven PSO-SVM regression model exhibits
robust generalization ability for the following reasons (Feng et al.,
2002; Zhang et al., 2021).

i) Kernel function implementation: The PSO-SVM regression
model employs a kernel function to map input data into
a high-dimensional feature space. This mapping enhances
the linearity of separability in the data and enables implicit
nonlinear mapping.

ii) PSO optimization of hyperparameters: Utilizing the PSO
algorithm, the PSO-SVM regression model optimizes
hyperparameters such as the penalty parameter P f and the
kernel parameter δ of SVM. This optimization enhances the
generalization performance of the model.

iii) k-fold cross-validation technique: The PSO-SVM regression
model incorporates k-fold cross-validation technology, dividing
the training set into k subsets. During each iteration, one subset
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serves as the validation set, while the remaining subsets function
as the training set. This approach reduces model variance and
helps prevent overfitting.

These factors collectively contribute to the strong generalization
ability of the PSO-SVM regression model, allowing it to effectively
predict outcomes beyond the known data range and demonstrating
its suitability for diverse applications.

5 Conclusion

Thedeformation behavior,microstructure andDRXmechanism
of the ZK60 alloy during hot tensile deformation were investigated.
The primary findings are outlined as follows.

(1) With an increase in tensile temperature and a decrease in strain
rate, the flow stress exhibited a decrease. At the deformation
conditions at 623 K and 673 K, the dynamic soft fully balances
the effects of strain and work hardening, leading to a steady
state of flow stress. Raising the temperature while maintaining a
constant strain rate favors the occurrence of DRX.The softening
mechanism of the alloy mainly is DRX.

(3) The developed constructive modes including the Arrhenius
model and the PSO-SVM regression model can describe the
flow stress of the alloy during hot tension. However, the PSO-
SVM regression model can more accurately predict the stress
of the studied alloy with the AARE and R of 1.12% and 0.9984,
respectively.

(4) Based on the hot processing maps, the sensitivity of the
deformation parameters to the instability shifts gradually
from the strain rate to the deformation temperature as the
deformation strain increases. The stability processing range
areas for this alloy are concentrated in the range of 573 K–653 K
with a strain rate of 0.001 s−1 to 0.08 s−1.

(5) The distribution of physical fields in ZK60 alloy during both
tensile and drawing processes can be accurately predicted by the
established Arrhenius model. Based on the FE analysis, in order
to stabilize the wire drawing process and prepare qualified ZK60
alloy wire efficiently, the recommended drawing temperature is
623 K and the drawing speed is 0.05–0.5 mm/s.
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