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Finite elementmodel updating provides an important supplement for finite element
modelling. However, some studies have shown that if the tested structure involves
local nonlinearities due to damages,material properties and large deformation et al.,
it is difficult to achieve an accurate modified model using conventional model
updatingmethods that are based on the assumption of linear structures. To address
this issue, a two-stage model updating method separating the effects of local
nonlinearities is proposed in this paper. Firstly, the underlying linear frequency
response function is obtained by using the conditioned reverse path method. Then,
combinedwith the Sherman-Morrison-Woodbury formula and themodel updating
objective function established by the frequency response function similarity metric,
then structuralmodel updating and damage detection are carried out as the second
stage. Three numerical examples are given to illustrate the effectiveness of the
proposed method. This method can not only accurately identify the location and
quantify the extent of structural damages, but also has the advantages of not based
on sensitivity, not depending on the selection of frequency points, not repeatedly
calling the initial model et al. The proposed method has high computational
efficiency and avoids the numerical problems often encountered by
conventional frequency response function-based model updating methods.
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1 Introduction

Model updating theories use structural characteristics through static or dynamic testing
to establish optimization objective functions, and then the finite element models
continuously approach the actual structures driven by the constrained optimization
process, which is an important supplement to the finite element analysis and has
become one of the main means of structural damage identification under the theoretical
framework of structural health monitoring (Friswell and Mottershead, 1995; Hou and Xia,
2022). However, conventional model updating methods based on linear assumptions are no
longer effective for the structures with local nonlinearities originated from material
properties, boundary conditions and large deformation et al. The full-scale shaking table
testing of a 7-story shear wall structure conducted by Moaveni et al. (2010) shows that as the
extent of damages increase, the tested structure displays features of nonlinear dynamics, and
the linear numerical model cannot accurately represent the actual structure.
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Nonlinear model updating has been rapidly developing in recent
years, and its technical roadmap can be seen as an extension of
conventional linear model updating theories. But due to the multi-
dimensional nature, nonlinear characteristics such as nonlinear
normal modes (NNMs) and generalized frequency response
functions (GFRFs) are arduous to directly applied for nonlinear
model updating (Kerschen et al., 2006; Noel and Kerschen, 2017).
Therefore, researchers tend to use degradation forms of the higher-
order nonlinear characteristics mentioned above such as frequency-
energy plot (FEP) and nonlinear output frequency response function
(NOFRF) to address the issue (Zhu et al., 2022). But they are not yet
as mature as the modal theories of linear structures due to the
sophisticated experimental process (Zhang et al., 2020), and the
effectiveness of applying them for nonlinear model updating and
structural damages identification is also limited, especially in
identifying damages of linear and nonlinear parts separately in
tested structures with local nonlinearities (Li et al., 2021).

Nonlinearities are generally located in local regions of actual
structures, and the positions are mostly known (Ewins et al., 2015).
Therefore, it is reasonably expected to separate the nonlinear effects
and obtain the linear parts of structures with local nonlinearities,
namely, the underlying linear system (ULS), and then linear model
updating methods can be used and achieve structural damages
identification. Some researchers think that most nonlinear behavior
is dependent on vibration amplitude, so the linear model updating
methods are available formodifying linear parts of structures with local
nonlinearities under the condition of low vibration amplitude (Wang
et al., 2018). Nonetheless, some researchers consider that it is difficult to
control the degree of nonlinear behavior, and approximating linearity
under the condition of low vibration amplitude may not be reliable
(Richards and Singh, 1998). A nonlinear system identification method,
conditioned reverse path (cRP) method developed by Richards and
Singh (1998), is able to separate local nonlinear effects in frequency
domain and obtains the underlying linear frequency response
functions (FRFs) of the tested structure’s ULS, and several studies
have verified its effectiveness in extracting the linear FRFs and
identifying nonlinear parameters (Wu et al., 2015; Huang and
Ferguson, 2018).

If the underlying linear FRFs of structures with local nonlinearities
can be obtained, then FRFs-based linear model updating methods can
be applied for modifying initial numerical models and handling
structural damages identification. FRF data can avoid errors
introduced by modal analysis (Friswell and Mottershead, 1995)

and ensure relatively high-quality data due to the property of
anisotropy. Therefore, FRFs-based model updating methods have
received widespread attention. Lin and Ewins (1994) proposed a
model updating method based on FRFs’ sensitivity earlier and Lin
and Zhu (2006) subsequently extended it to the modification of
damping matrices. Lin (2017) further proposed the FRFs-based
model updating method using the sensitivity with weighted
function, which avoids the requirement for the accuracy of initial
modeling and expands the applicability of the FRFs’ sensitivity-based
method. Cong et al. (2022) proposed a FRFs-based model updating
method using the zero-pole decomposition of FRFs, which achieved
simultaneous modification of mass, stiffness, and damping matrices.
In addition, researchers have conducted in-depth research on some
detailed issues in FRFs-based model updating. For examples, Hassani
and Shadan (2022) proposed a FRFs-based model updating method
for the issues of dense modes and incomplete modal data. Arora et al.
(2023) established a FRFs-based model updating method for the issue
of non-proportional damping. Nevertheless, FRFs-based model
updating methods, like other conventional model updating
methods based on sensitivity, may encounter issues such as low
computational efficiency of iterative mechanisms, artificial
frequency points selection and ill-conditioned matrices et al.
Which to some extent need further development.

This paper presents a novel two-stage FRFs-based model
updating method for structures with local nonlinearities. Firstly,
underlying linear FRFs of ULS obtained through the first phase of
the cRP method. Then during the model updating process, the
proposed method combines Sherman-Morrison-Woodbury (SMW)
formula and the optimization objective function established by the
FRF similarity metric. It only requires partial FRFs, and has the
advantages of not asking frequency point selection, not reusing the
initial model, and not depending on sensitivity. The effectiveness of
this method is verified by three numerical examples.

2 Theoretical basis

2.1 cRP method

The cRP method is a two-stage nonlinear system identification
method, and only the first stage is implemented here to extract the
underlying linear FRF of the ULS of structures with local
nonlinearities serving as the first stage of the proposed method.

FIGURE 1
Process of the underlying linear model updating for structures with local nonlinearities.
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The cRP method’s main conclusions related to this paper will be
discussed as follows. For more detailed contents, please refer to the
reference provided (Richards and Singh, 1998). Firstly, the nonlinear
structural motion equation is expressed as,

M€x t( ) + C _x t( ) + Kx t( ) +∑n

r�1Aryr t( ) � f t( ) (1)

where M, C, and K are the structural mass, damping, and stiffness
matrices of the linear parts respectively. €x, _x, x represent the
acceleration, velocity and displacement vector of the linear parts
respectively. yr represents the response vector of the rth type

nonlinearity, with a vector length of qr at each time point, indicating
the number of positions where rth type nonlinearity exists. Ar, a matrix
with N rows and qr columns, concludes the nonlinear parameter to be
identified and also expresses the location of the nonlinearity, and N is
the number of degree of freedom (DOF) of the structure. It is worth
noting that the Ar matrix requires the information on the types and
locations of nonlinearities to be known, which can be obtained with the
assistance of nonlinear detection and characterization (Ewins et al.,
2015). Take the Fourier transform on Equation 1,

B ω( )X ω( ) +∑n

r�1ArY r ω( ) � F ω( ) (2)

where B(ω) is the dynamic stiffness matrix of the structure,

B ω( )� −ω2M + iωC + K (3)
According to the theory of conditioned power spectral density

(cPSD), cPSD which is the conventional power spectral density
(PSD) in linear structural dynamics separating nonlinear effects can
be recursively calculated by the equations as follows (Bendat and Piersol,
2010),

Gij −1: r( ) � Gij −1: r−1( ) − Gir −1: r−1( )LT
rj

LT
rj � G−1

rr −1: r−1( )Grj −1: r−1( ) (4)

where G represents PSD or cPSD, when the matrix G has a bracket
label, it signifies the cPSD, or conditioned PSD. Otherwise, it is the
classic PSD in linear structural dynamics without any conditions. L is
a transitional matrix. i and j are the labels related to response or
excitation of underlying linear parts, and r is the label related to
nonlinear response. Labels with brackets indicate the conditions. For
instance, (−1: r) represents the condition that the PSD is independent
of the first to rth type of nonlinearities. Specifically, when r = 1, (−1: 1)
equals (−1), then the cPSD is the PSD separating the first type of
nonlinearity, and (−1: 0) is the unconditional PSD calculated by linear
theory, Gij(-1:0) = Gij. After calculating the required cPSD, the cPSD-
based underlying linear FRF estimation can be derived from the PSD-
based linear FRF estimation theory (Bendat and Piersol, 2010),

H1 −1: r( ) � G−1
FF −1: r( )GFX −1: r( )

H2 −1: r( ) � G−1
XF −1: r( )GXX −1: r( ) (5)

where X and F are related to responses and excitations respectively
similar to the counterparts in PSD-based FRF estimation theories in
linear structural dynamics. The process of using the equations (4)
and (5) to calculate the underlying linear FRFs will be further
illustrated in case 1.

2.2 Correlation analysis for FRF

If underlying linear FRFs are obtained by the cRP method
presented above, the FRF-based model updating methods are
available to modify the linear parts of structures with local
nonlinearities and conduct structural damage identification.
Correlation analysis is an effective tool for evaluating the accuracy
of numerical models and is also a common objective function in model
updating. The correlation analysis methods for FRF data mainly
including the frequency domain assurance criterion (FDAC) and
the frequency response assurance criterion (FRAC) (Lee et al., 2018),

FIGURE 2
Three DOFs mass-spring structure.
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FDAC ωi,ωj( )
� ∑Np

k�1 H1k ωi( )H ·H2k ωj( )( )∣∣∣∣∣ ∣∣∣∣∣2
∑Np

k�1 H1k ωi( )H ·H1k ωi( )( )[ ] ∑Np

k�1 H2k ωj( )H ·H2k ωj( )( )[ ]
(6)

FRAC �
∑Nf

j�1 H1 ωj( )H ·H2 ωj( )( )∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

∑Nf

j�1 H1 ωj( )H ·H1 ωj( )( )[ ] ∑Nf

j�1 H2 ωj( )H ·H2 ωj( )( )[ ]
(7)

FIGURE 3
Calculation flow chart of cPSD.

FIGURE 4
Comparison between FRFs by cPSD and PSD and theoretical FRF.
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whereH1, H2 represents two different FRFs to be compared,Np, Nf are
the number of frequency points in the FRFs. FDAC, also known as
frequency domain MAC, is widely used in frequency domain
correlation analysis. However, FDAC is a frequency-dependent

metric, which may lead to the issue of frequency points selection
(Gang et al., 2014). FRAC describes the overall similarity between two
FRFs by providing a single value in [0,1], which is more suitable for
model updating as an objective function (Zhan et al., 2019). However,

FIGURE 5
Comparison of underlying linear FRFs before model updating.

FIGURE 6
Comparison of underlying linear FRFs after model updating.
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FRAC is not sensitive to differences in the amplitudes of the FRFs.
Therefore, Lee et al. (2018) proposed a new FRF correlation analysis
metric named frequency response function similarity metric (FRFSM),
which is also a single-valued metric in the interval of [0,1] applied for
evaluating the overall similarity between FRFs but more sensitive to
amplitude differences than FRAC. FRFSM is defined as follows,

S � 1
N

∑N

j�1
f εj; 0,σ20( )

f0
(8)

where the function f represents the probability density function of
the standard normal distribution,

f x; μ,σ2( ) � 1
σ

���
2π

√ e−
1
2

x−μ
σ( )2 (9)

εj represents the difference between FRFs, and f0 represents the
reference value when the difference is 0,

f0 � f 0; 0, σ20( ) (10)
εj � 10log10 H1 ωj( )����� �����2−10log10 H2 ωj( )����� �����2∣∣∣∣∣∣

∣∣∣∣∣∣ (11)

where H1 and H2 can be understand as the FRFs calculated by the
finite element model and the FRF data obtained from experiments
respectively in model updating. From equations (8) to (11), it can be
seen that FRFSM is equivalent to assigning weights to the differences
between FRFs at the standard normal distribution probability
density function scale. σ0 is the standard deviation set by the
researcher based on actual situation, and a smaller standard
deviation will result in a smaller FRFSM value.

FIGURE 7
Six DOFs mass-spring nonlinear structure.

FIGURE 8
Comparison of underlying linear FRFs before model updating.
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3 The proposed model updating
method

3.1 Model updating objective function

Based on the single-value similarity metric FRFSM, this paper
defines the following model updating objective function,

obj � 1 − Sij( )����� �����2 (12)

where i, j refers to the labels of the corresponding FRF curves used
for model updating. For example, S21 describes the FRFs’ similarity
of 1 excitation and 2 responses between the FRF from the numerical
model and the FRF from testing in the model updating framework.
Complete FRF data measurement and frequency point selection are
unnecessary.

3.2 SMW formulas

Like other conventional model updating methods, FRF-based
model updating may encounter the issue of computational efficiency
due to reusing the initial numerical model in the iterative
optimization mechanism. Structural reanalysis theories aim to
achieve fast calculation by utilizing initial structural information
once and calculating subsequent responses after structural
modification (Li et al., 2023). Therefore, this paper combines
structural reanalysis theories with model updating to avoid

FIGURE 9
Comparison of underlying linear FRFs after model updating.

TABLE 1 Model updating results of submatrix parameters.

No. of submatrix
parameters

2 3 4 5

Updated values −0.002 −0.2003 −0.0060 −0.2997

Real values 0 −0.2000 0 −0.3000

Relative errors — 0.15% — 0.10%

FIGURE 10
Nonlinear cantilever beam structure.
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FIGURE 11
Comparison of underlying linear FRFs before model updating.

FIGURE 12
Comparison of underlying linear FRFs after model updating.

TABLE 2 Numerical model parameters for the nonlinear cantilever beam model.

Length m) Section width m) Section thickness m) Elastic modulus (Pa) Density (kg/m3) knl (N/m3)

0.5 0.025 0.005 7.17 × 1010 2.7 × 103 1 × 108
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recalling the initial model, thereby improving the computational
efficiency of model updating process.

The SMW formula is widely used in structural reanalysis. Akgun
et al. (2001) have investigated that several common structural
reanalysis methods are actually equivalent to the SMW formula
under certain conditions. The SMW formula mainly solves the issue
of taking inverse matrices of locally modified matrices. Fortunately,
the dynamic stiffness matrix of Equation 3 and FRF matrices are
exactly a pair of inverse matrices, H(ω) = B(ω)−1, and dynamic
stiffness matrix includes structural characteristic matrices.
Therefore, the SMW formula can be reasonably combined with
FRF-based model updating. If the dynamic stiffness B is modified by
ΔB with rank p, andΔB = UVT, the mathematical expression of the
SMW formula is (Akgun et al., 2001)

B + UVT( )−1 � B−1 − B−1U I + VTB−1U( )−1VTB−1 (13)
If the rank of ΔB is 1 and ΔB = uvT, the SMW formula

degenerates into the Sherman-Morrison (SM) formula, which is
mathematically expressed as (Akgun et al., 2001)

B + uvT( )−1 � B−1 − B−1u 1 + vTB−1u( )−1vTB−1 (14)
It can be seen that if this formula is applied to FRF-based model

updating, it can avoid repeatedly calling the overall finite element
model and only the initial model is used to calculate the FRFs after
each modification.

Additionally, it should be noted that when applying the SMW
formula to FRF-based model updating, a key step is how to
decompose the dynamic stiffness modification matrix ΔB in a
reasonable manner to satisfy Eq. 13 or (14). This paper selects
sub-matrix parameterization for the parameters to be updated
(Friswell and Mottershead, 1995). Taking the stiffness matrix as
an example, the modified stiffness matrix Ku can be
represented as,

Ku � K0 +∑l

i
piK

e
i (15)

where pi is the sub-matrix parameter, and each sub-matrix Ke
i can be

composed of one certain element matrix or the sum of several
element matrices.K0 is the stiffness matrix of initial modelling. It can
be seen that for structural damage identification problems, the sub-
matrix parameters should be real numbers within the range of [-1,0],
where 0 represents the undamaged condition and −1 represents
complete failure. Therefore, the modification matrix ΔB is a real
symmetric matrix, which can be represented by the symmetric Schur
decomposition theorem as (Golub and van Loan, 2013),

ΔB � QΛQT (16)
where matrix Q is a real orthogonal matrix, and each column is
composed of the eigenvectors of matrix ΔB. Matrix Λ is a diagonal

matrix composed of eigenvalues of matrix ΔB. Therefore, take: U =
QΛ, V = Q in Equation 13 in this paper.

3.3 Summary

This paper establishes a two-stage model updating method for
the linear parts of structures with local nonlinearities. Firstly, cRP
method is employed to separate nonlinear effects to obtain the
underlying linear FRFs. Secondly, the FRFSM metric is utilized to
establish the model updating objective function. Meanwhile,
based on the relationship of inverse matrices between FRF and
dynamic stiffness matrix, the symmetric Schur decomposition of
the structural sub-matrix is taken as the modification matrix in
the SMW formula, and the SMW formula is reasonably integrated
into the model updating process. The flowchart of the proposed
method as seen in Figure 1. To further illustrate the details of the
method and validate its efficacy in model updating and structural
damage identification, three numerical examples are provided
below.

4 Numerical verification

4.1 Case 1

This example is primarily employed to demonstrate the intricate
details of the proposed method, with the model data being sourced
from reference (Richards and Singh, 1998). The three DOFs spring-
mass structure shown in Figure 2 is a structure with local
nonlinearities of single location and multiple types. Quadratic
and cubic types of nonlinearities are positioned between the
second and third DOFs. The underlying linear structural mass
M, damping C, and stiffness K matrices are

M �
1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,C �
10 −10 0
−10 20 −1
0 −10 20

0⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,K �
1 −1 0
−1 2 −1
0 −1 2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × 105

(17)
The restoring force between the second and the third DOF is

expressed as,

fnl23� −8 ×106 × x2 − x3( )2+5 ×108 × x2 − x3( )3 (18)
The first step is to extract the underlying linear FRFs using the

cRP method. Convert Equation 4 into a block diagram as shown
in Figure 3, and take the H2 estimation of Equation 5 as an
example. Based on this block diagram, cPSD can be hierarchically
solved. Due to the existence of two types of nonlinearities, it is
necessary to firstly calculate the cPSD that is independent of the
first type of nonlinearity, i.e., cPSD with the condition of (−1), and
then further calculate the cPSD independent of the second type of
nonlinearity, i.e., cPSD with the condition of (−1:2). The
subscripts 1 and 2 in Figure 3 represent nonlinearity, and the
labels between the two types of nonlinearities can be arbitrarily
assigned. All PSD are solved according to relevant linear theories.
It is worth noting that the calculation of the L matrix of the first
layer in the block diagram only requires conventional PSD data,

TABLE 3 Model updating results of sub-matrix parameters.

No. of submatrix parameters 3 4 5

Updated values −0.0001 −0.2965 −0.0130

Real values 0 −0.3 0

Relative errors — 1.17% —
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while the L matrix of the second layer in the block diagram
requires the corresponding cPSD. The calculation of L matrix
process is similar to the block diagram shown in Figure 3 and will
not be repeated.

A zero-mean Gaussian white noise excitation with a mean
square value of 5 kN is applied at the first DOF. Taking the FRF
calculated from the response of the second DOF as an example, the
FRF calculated using PSD data directly, namely, H21 and the FRF
calculated using cPSD data using the cRP method, namely, Hc21
are compared with the underlying linear FRF calculated
theoretically, as shown in Figure 4. It can be seen that the
presence of nonlinearities causes significant distortion in the
estimated FRF. In contrast, the conditioned FRF after cRP
operation is very close to the theoretical FRF, indicating that
the cRP method can effectively extract the underlying linear
FRF of structures with local nonlinearities.

Subsequently, the model updating method proposed in this
paper is applied for structural damage identification. Assuming
that there is 30% damage to k1. Then the damaged FRF is taken as
the experimental data, and the undamaged FRF is taken as the
numerical data. Taking the FRF data excited at the first and the
second DOF as an example, before the process of model updating,
the comparison between the experimental FRF estimated by cPSD
and the theoretically calculated FRF is shown in Figure 5. The
difference between the FRF curves indicates the need for model
updating. Taking the standard deviation σ0 in Equation 8 as 1, and
the FRFSM value at this time is 0.6362. The fmincon function in the
The Mathworks, Inc., (2021) optimization toolbox is used to
optimize Equation 12. The frequency range is [0, 120] Hz, and
the experimental FRF data used is the first column representing the
overall FRF matrix of the structure excited at the first DOF,
namely, Hc11, Hc21 and Hc31. Taking Hc21 as an example, the
comparison between the updated FRF and the experimental FRF is
shown in Figure 6, and the two curves are already very close with a
FRFSM value of 0.9930. And the updated sub-matrix parameter of
the first element is −0.2958 with an error of only 1.4% between the
true value −0.3 of the sub-matrix parameter corresponding to the
30% damage of k1. The results show that the model updating
method proposed in this paper can effectively quantify the
damages extent and identify their locations for structures with
local nonlinearities. Notably, all response data and excitation data
are used for the cRP calculation, and only one element in overall
FRF matrix at one frequency point is employed for model
updating. The same applies to following cases. It should be
noted that the data requirement of the cRP method is not
higher than that of other common nonlinear identification
methods.

4.2 Case 2

The six DOFs spring-mass structure depicted in Figure 7
constitutes a multi-type multi-location nonlinear system, where
the cubic and quadratic nonlinearities located at the first and the
fourth DOFs respectively, both of which are grounded nonlinear
springs. The model data comes from the reference (Zhang et al.,
2017), and the stiffness coefficients of the two nonlinear springs are
knl1 = 1010 N/m3, knl2 = 107 N/m2, respectively. The elements of the

underlying linear structural mass M, damping C, and stiffness K
matrices are,

m1 � m2 � m3 � m4 � m5 � m6� 1 kg
k1 � k2 � k3 � k4 � k5 � k6� 3.6 ×105 N/m
c1 � c2 � c3 � c4 � c5 � c6� 18N · s/m

⎧⎪⎨⎪⎩ (19)

Assuming that k3 and k5 sustain 20% and 30% damage, respectively.
Apply a zero-mean Gaussian white noise excitation with a mean
square value of 5 kN at the sixth DOF. Similarly, the cRP method is
first used to estimate the experimental FRF from cPSD. Taking the
FRF calculated from the response of the third DOF as an example,
the comparison between the initial modeling FRF and the
experimental FRF is shown in Figure 8, where the FRFSM value
is 0.6368. Take the second to fifth sub-matrix parameters as the
parameters to be updated. The experimental FRF data used is the
sixth column of the overall FRF matrix representing the excitation at
the sixth DOF within the frequency range of [0, 500] Hz; Similarly,
the fmincon function in the Matlab (2021a) optimization toolbox is
used to optimize Equation 12, and the standard deviation σ0 in
Equation 12 is still taken as 1. Figure 9 indicates that the two FRF
curves of updated and experimental FRFs are very close, with a
FRFSM value of 0.9818. The updated second to fifth sub-matrices
parameters are listed in Table 1. The results show that the proposed
method can locate the damage and qualify the extent of the damages.

4.3 Case 3

Figure 10 is a widely used numerical model for nonlinear system
identification (Kerschen et al., 2003), which represents a nonlinear
cantilever beam structure consisting of 6 Euler beam elements and
12 DOFs. At the beam end, there is a cubic stiffness grounded spring
with a stiffness coefficient of 108 N/m3. An excitation of zero-mean
Gaussian white noise with a mean square value of 50 N is imposed at
the 11th DOF of the beam end. The basic parameters of the model
are presented in Table 2, and the data is adopted from the reference
(da Silva et al., 2010).

Assuming a 30% stiffness damage occurs at the fourth element,
and the sub-matrix parameters of the third to fifth elements are
used as the parameters to be updated. Taking the FRF from the
response of the third DOF as an example, before model updating,
the comparison between the FRF estimated by the cPSD of the
damaged model and the FRF from the initial modeling without
damage is shown in Figure 11. The frequency band is taken as
[0.500] Hz, and the FRFSM value at this time is 0.8970; The
comparison of the two FRFs after model updating is shown in
Figure 12. Under the same frequency range for analysis, the
FRFSM value is 0.9994. The stiffness sub-matrix parameters of
the third to fifth elements after updating are shown in Table 3. It
can be seen that the proposed method in this paper accurately
identifies the location and the extent of damages for structures with
local nonlinearity.

5 Conclusion

This paper proposes a novel two-stage model updating method
for structures with local nonlinearities and applies it to structural
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damage identification. In the first stage, the method utilize the cRP
method to extract the underlying linear FRF of tested structures, and
then uses the FRFSM-based model updating objective function to
conduct the constrained optimization process as the second stage.
Simultaneously, based on the theoretical relationship between the FRF
and the dynamic stiffness matrix, which is the inverse matrix of each
other, the SMW formula is appropriately integrated into the model
updating constrained optimization process. Owing to utilization of the
sub-matrix parameterization and the symmetric Shur decomposition
theorem in this paper, modification matrices at each iterative step
during the optimization process can consistently meet the requirement
of the SMW equation. Three numerical cases demonstrate that the
proposed method can accurately identify the location and extent of
damages in the presence of nonlinearities. Meanwhile, as an FRF-based
model updating method, it has the advantages of not requiring
frequency point selection, not depending on sensitivity, not recalling
the initial finite element model, which avoids ill-conditioned issues and
has high computational efficiency. Furthermore, benefiting from the
excellent performance of the objective function for model updating, the
proposed method is capable of achieving satisfactory results using even
incomplete FRF data. Therefore, themethod proposed in this paper can
effectively and reliably conduct the tasks ofmodel updating and damage
identification in the structural health monitoring framework, and its
application to more complex actual structures will be further expanded
in subsequent research. Notably, nonlinearities discussed in this paper
are belong to the weak nonlinearities. Additionally, research on the
impact of noise is beyond the scope of this paper due to its involvement
in nonlinear random vibration issues, but will also be a focus of future
study.
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