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Asphalt mixture is a temperature sensitive material. With the change of external
environment temperature, asphalt pavement is prone to temperature-related
diseases. Adding phase change material (PCM) to asphalt pavement to adjust
pavement temperature is one of the effective methods at present. At present,
there are many types of research on PCMs, but the research on PCMs added to
the pavement structure is very scarce. In this paper, through the temperature test of
rutting plate specimens with different layer combinations, the cooling effect of
pavement structure combinations with PCMs added to different layers (upper
layer, middle layer, and bottom layer) in pavement structure under different
illumination times are discussed. Through the self-designed environmental
simulation box, the real-time monitoring of the temperature of different layers in
the pavement structure is realized. The cooling effect between different layers in
different phase change pavement structure combinations is analyzed, and compared
with each layer of ordinary pavement structure, and the best addition method is
obtained for phase change materials, which provides a certain reference for the
construction and specific application of PCM asphalt pavement, and made important
contributions to the development of asphalt cooling pavement. The results show that
the PCM can effectively reduce the temperature of each layer of the pavement
structure. Under different illumination durations, the cooling effect of the samples
with PCM in the upper layerwas theworst. The sampleswith phase changematerial in
the middle layer had the best cooling effect in the upper and middle layers of the
pavement. The addition of phase changematerial to both the upper andmiddle layers
had the most obvious cooling effect on the lower layer of the pavement. Therefore,
combinedwith the comprehensive consideration of economy and cooling effect, the
comprehensive cooling effect of addingPCMs to themiddle surface layer is thebest. It
is recommended to add phase change materials to the middle surface layer during
asphalt cooling pavement construction.
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1 Introduction

Road performance has always been a concern (Wang et al., 2022; Wang et al., 2023), and
asphalt roads are an important part of it. Asphalt mixture is a kind of black material which is
highly absorbing solar radiation (Cheng et al., 2023). The temperature of asphalt pavement is
higher than the atmospheric temperature, which leads to the occurrence of high temperature

OPEN ACCESS

EDITED BY

Chuanbao Cao,
Beijing Institute of Technology, China

REVIEWED BY

Peiwen Hao,
Chang’an University, China
Jiaqing Wang,
Nanjing Forestry University, China

*CORRESPONDENCE

Xiangbing Gong,
xbgong@csust.edu.cn

RECEIVED 21 September 2023
ACCEPTED 13 November 2023
PUBLISHED 23 November 2023

CITATION

Huang P, Fan D, Li D, Gong X, Jiang Y,
Liu Z and Huang X (2023), Layer
combination design and effect evaluation
of phase change cooling
asphalt pavement.
Front. Mater. 10:1298241.
doi: 10.3389/fmats.2023.1298241

COPYRIGHT

© 2023 Huang, Fan, Li, Gong, Jiang, Liu
and Huang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Materials frontiersin.org01

TYPE Original Research
PUBLISHED 23 November 2023
DOI 10.3389/fmats.2023.1298241

https://www.frontiersin.org/articles/10.3389/fmats.2023.1298241/full
https://www.frontiersin.org/articles/10.3389/fmats.2023.1298241/full
https://www.frontiersin.org/articles/10.3389/fmats.2023.1298241/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2023.1298241&domain=pdf&date_stamp=2023-11-23
mailto:xbgong@csust.edu.cn
mailto:xbgong@csust.edu.cn
https://doi.org/10.3389/fmats.2023.1298241
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2023.1298241


deformation. In addition, the heat absorption of asphalt pavement
not only leads to the increase of pavement temperature but also
releases a lot of heat to the surrounding environment, resulting in
pavement diseases and ’ urban heat island effect (Wen-Juan et al.,
2008; FENG et al., 2011; Takebayashi andMoriyama, 2012). Asphalt
is a temperature-sensitive material. Therefore, its mechanical
behavior and performance are significantly affected by the
ambient temperature as it is directly exposed to the external
environment. This may lead to high temperature distress, such as
rutting, bleeding, and slipping, as well as low temperature cracking
after continuous high temperature or low temperature and rapid
cooling (Mallick et al., 2015; Behnia et al., 2017; Alimohammadi
et al., 2020). Therefore, some scholars began to study the use of
cooling pavement to reduce the heat island effect brought by asphalt
pavement in summer and increase the durability of pavement in
high temperature environments (Chen et al., 2009; Li, 2012; Qin and
Hiller, 2014).

Some scholars have studied the thermal reflective layer and
thermal resistance technology to reduce the pavement

temperature (Doulos et al., 2004). The thermal reflective layer
improves the reflectivity and radiation efficiency of the
pavement surface and then reduces the pavement temperature
by preventing external heat transfer to the pavement structure
(Sujith Kumar et al., 2014; Zheng et al., 2015). However, the use
of thermal reflective technology is too costly, the durability is
flawed, and the application of coatings is limited because it may
affect the skid resistance of the pavement and cause safety
hazards. The thermal resistance technology to reduce the
pavement temperature is to add thermal resistance materials,
which can effectively reduce the pavement temperature. Heat-
resistant materials include ceramics, ceramic sand, diatomite,
bauxite, and refractory (Huang et al., 2009; González-
Corrochano et al., 2011; Ren et al., 2014; Pancar, 2016).
Phase change materials (PCM) are functional materials that
absorb or release heat energy (phase change enthalpy) by
undergoing phase change. The stored energy can be used to
adjust the ambient temperature. This temperature regulation
function of PCM has been widely used in the construction,

FIGURE 1
Gradations of different types of asphalt mixture.

TABLE 1 The main technical indexes of SBS modified asphalt.

Performance
index

Penetration (25°C, 100g
and 5s) (0.1 mm)

Ductility
(5°C) (cm)

Softening
point (°C)

Thin film oven test (163°C, 5 h)

Mass
loss (%)

Penetration
ratio (%)

Ductility
(5°C) (cm)

Test value 51 37 87 −0.039 88 30

Standard value 40–60 ≥25 ≥75 ±1.0 ≥75 ≥20
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electronics, and textile industries (Oró et al., 2012). The research
on the application of PCMs in asphalt pavement began in 2010,
and then the related research increased year by year. The active
temperature regulation of asphalt pavement can be achieved by
PCM doping, thereby slowing down the temperature change rate

and maintaining the ideal working temperature more
continuously (Manning et al., 2015).

Initial research was based on fatty acids, paraffin, and their
composite PCMs, which are used to regulate the temperature of
asphalt pavements to prevent cracking, freezing, and frosting at
low temperatures (Chao et al., 2010; Ma et al., 2011a; Ma et al.,
2011b; Chen et al., 2011; Ma et al., 2011c; Bian et al., 2012; Ma
et al., 2014). Subsequently, it was found that the heat absorption
of PCMs under higher temperature conditions can be used to
reduce the rutting and urban heat island effect of asphalt
pavement. Among them, PCMs based on polyols such as PEG
show good functionality and applicability (He et al., 2013; Jin
et al., 2017; Liu et al., 2021). At present, many PCMs are suitable
for temperature regulation of asphalt pavement, but
unencapsulated solid-liquid PCMs are prone to volatilize, leak,
and damage the performance of asphalt and asphalt mixture
when directly used in asphalt or asphalt mixture (Dai et al., 2021;
Kakar et al., 2020). Therefore, a lot of research has been carried
out on the preparation method of CPCM. Ahmed (Sari, 2004)
prepared two kinds of paraffin high density polyethylene
composites by melt blending. Chen et al. (2010) A novel
shape-stabilized phase change material (SSPCM) was prepared
by melt intercalation (Sarier and Onder, 2007). Four different
microcapsules were prepared with urea and formaldehyde as

TABLE 2 Properties of the aggregate and filler.

Indicator Result Technical requirements Method (JTG E42-2005)

Aggregate

Apparent density 2.83 ≥2.60 T0304

Crushing value (%) 16.8 ≤26.0 T0316

Los Angeles abrasion value (%) 17.3 ≤28.0 T0317

Elongated particles content (%) 6.0 ≤15.0 T0312

Water absorption (%) 0.7 ≤2.0 T0304

Particles content (%) 1.2 ≤3.0 T0333

Filler

Apparent specific gravity 2.70 ≥2.50 T0352

Water absorption (%) 0.02 ≤1.0 T0103

Hydrophilic coefficient 0.8 ≤1.0 T0353

Plasticity index (%) 3.2 <4.0 T0354

FIGURE 2
Phase change material (PCM).

TABLE 3 Technical indicators of phase change materials.

Technology index Measured value Standard value

Specification size (mm) Diameter 3.1, length 3.3 Cylindrical (spherical), diameter 3 ± 1, length 3 ± 1

Latent heat value (J/g) 59.8 >50

PH value 5–7 6.3

Dry apparentnsity (kg/cm3) 695 ≤870
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shell materials and n-octadecane, n-octadecane-PEG600,
n-eicosane -n-hexadecane, PEG1000-Na as capsule materials.
Ma et al. (2013) by using a thin film layer to encapsulate
PCM, a composite shape-stable phase change material is
prepared to ensure stability. Liu et al. (Xing et al., 2006)
Paraffin and high density polyethylene (HDPE) were used as
core materials, and sodium silicate monohydrate
(Na2SiO3.9H2O) and hydrochloric acid (HCl) were used as
coating materials to prepare microcapsules.

So far, there are many studies on cooling materials, but
research on which pavement structure to add cooling

materials is very scarce. In this paper, the temperature test is
carried out on the rut plate specimens of different layers, and the
use method of cooling materials is optimized, which is of great
significance to the construction and application of phase change
asphalt pavement.

2 Materials and methods

2.1 Materials

In this paper, the gradation of each layer of the experimental
asphalt pavement is shown in Figure 1. The asphalt used is SBS
(I-D) modified asphalt produced by Dongguan Taihe Asphalt
Products Co., Ltd. The basic performance indicators are shown in
Table 1. The technical indicators of aggregate and filler are shown
in Table 2. The phase change material is DTC phase change
material produced by Beijing Qintian Technology Group, as
shown in Figure 2 and the relevant technical parameters are
shown in Table 3. The type and additional amount of each
structural layer of asphalt pavement in the experiment are
shown in Figure 3.

FIGURE 3
Schematic diagram of pavement structure layer.

FIGURE 4
Road environment simulation box.

FIGURE 5
Temperature recorders and sensors.
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2.2 Test equipment

2.2.1 Road environment simulation box
In this paper, different combination design schemes are tested

by using the self-developed pavement environment simulation box.

The road environment simulation box can achieve continuous
heating at a maximum temperature of 80°C, and simulate the
relevant air humidity, and realize the automatic adjustment of
the set temperature through the relevant temperature sensing
device, as shown in Figure 4.

FIGURE 6
Layer combination design.

FIGURE 7
The overall temperature detection of each layer.
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2.2.2 Recording instruments and sensors
In this paper, the temperature data of each layer are recorded by

sensors and temperature recorders. The model OHR-H700 of the
recorder can record the temperature in real time after connecting the
sensors, and store and export the temperature data, as shown in
Figure 5.

2.3 Horizon design and test method

2.3.1 Phase change pavement layer combination
design scheme

In this paper, the phase change material (A) is added to the
upper layer, the phase change material (B) is added to the middle
layer, and the phase change material (C) is added to the upper layer
and the middle layer. The three combined design schemes are tested
separately, and the blank control (D) of the ordinary pavement is set,
as shown in Figure 6.

2.3.2 Design of test points for each layer of phase
change pavement

In order to realize the detection of the temperature between
the various layers of the composite pavement, the sensors are
buried according to the characteristics of different layers in this
paper. The design of test points in different layers is shown in
Figure 7.

2.3.3 Test method of phase change pavement
temperature

In this paper, the road surface temperature is collected by sensors
attached to the road surface andmonitored in real time. The temperature
inside each layer is monitored by drilling the rut plate inside and
embedding the sensor into the layer, as shown in Figure 8.
According to the layer combination design scheme, the rut board is
put into the pavement environment simulation box, and each layer of the
pavement is connected by the sensor, and each layer of the composite
pavement is monitored in real time by the temperature recorder, as

FIGURE 8
Sensors are embedded inside the layer.

FIGURE 9
Temperature monitoring experiment of each layer of phase
change pavement. FIGURE 10

Temperature in groups A and D for 4 h.
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shown in Figure 9. The experimental test time is 4 h, 6 h, 8 h and 10 h
respectively, and then the cooling performance of different layer
combination design schemes under different illumination time is
obtained.

3 Results and analysis

3.1 Illumination 4h different phase change
layer cooling effect and analysis

It can be seen from Figure 10 that after 4 h, the temperature
difference between group A and group D is not large, which indicates
that the phase change material of the upper layer has failed after 4 h. The

temperature difference of test point 8 is the largest, which indicates that
the phase change material has an effect in the early stage, and the heating
rate of the lower layer has also slowed down. Figure 11 shows that there is
a temperature difference between group B and groupD after 4 h, and the
overall temperature difference is above 5°C. It shows that the addition of
phase change materials in the middle layer has a great effect. Figure 12
shows the temperature difference between groupC and groupDafter 4 h.
The temperature difference of the test point 2 is 2.2°C, the temperature
difference of the test point 4 and 5 is above 4°C, and the temperature
difference of the test point 7 and 8 is above 5°C. The comparison of the
cooling effect of different phase change layers after 4 h of illumination
shows that the temperature of phase change materials added to different
pavement structures after 4 h of illumination is lower than that of
ordinary pavement structures, and the comprehensive cooling effect

FIGURE 11
Temperature in groups B and D for 4 h.

FIGURE 12
Temperature in groups C and D for 4 h.

FIGURE 13
Temperature in groups A and D for 6 h.

FIGURE 14
Temperature in groups B and D for 6 h.
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of group B is the best. The cooling effect of group B on the upper layer is
greater than that of group C, which may be due to the fact that the PCM
of group C is close to the failure temperature. The comprehensive
comparison of cooling effect: group B > group C > group A > group D.

3.2 Illumination 6h different phase change
layer cooling effect and analysis

It can be seen from Figure 13, at 6 h, there was no difference in the
temperature of the middle layer between group A and group D, and the
temperature difference between test points 7 and 8 becomes smaller.
Figure 14 shows that there is a temperature difference between group B
and group D after 6 h, and the overall temperature difference is above
4°C. It can be seen in Figure 15 that although the temperature difference
between group C and group D became smaller after 6 h, the change was

not significant. It shows that the addition of phase changematerials in the
middle layer also has a great effect in 6 h. And the comprehensive cooling
effect of group B is still the best. The cooling rate of group A was further
reduced, and the temperature between the test points 4,5,7 and 8 was
almost the same as that of the ordinary structure. The comprehensive
comparison of cooling effect: group B > group C > group A > group D.

3.3 Illumination 8h different phase change
layer cooling effect and analysis

It can be seen from Figure 16, at 8 h, there was almost no difference
in the temperature of the test points 1 to 5 between group A and group
D, but there was a temperature difference in the test points 6 to 8. It can
be seen from Figure 17 that after 8 h, there was a temperature difference

FIGURE 15
Temperature in groups C and D for 6 h.

FIGURE 16
Temperature in groups A and D for 8 h.

FIGURE 17
Temperature in groups B and D for 8 h.

FIGURE 18
Temperature in groups C and D for 8 h.
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of more than 3°C between group B and group D. It can be seen from
Figure 18 that the temperature difference between groupC and groupD
became smaller after 8 h, but the change range was not large.

The comparison of the cooling effect of different phase change
layers after 8 h of illumination shows that the cooling effect of group C
is still significantly better than that of group B, but the cooling effect of
group B was still obvious. Combined with the cooling effect of the
bottom surface layer, the structure of Group C still performs best.

3.4 Illumination 10h different phase change
layer cooling effect and analysis

It can be seen from Figure 19 that the temperature difference
between group A and group D and the 8-h comparison are

basically unchanged. Figure 20 shows that there is a
temperature difference between group B and group D after
10 h, and the overall temperature difference is above 3°C. It can
be seen from Figure 21 that the temperature difference between
group C and group D became larger after 10 h, but the change
range was not large. Comprehensive analysis shows that after 10 h
of long-term illumination, the temperature of the final layers of the
phase change material pavement structure is lower than that of the
ordinary pavement structure. After 10 h of illumination, the
cooling effect of group A remained basically unchanged. The
cooling effect of group B and group C was obviously effective,
but the cooling performance of group C was slightly stronger than
that of group B.

4 Conclusion

In this paper, the self-made environmental simulation box is
used to study the cooling effect of asphalt pavement combinations
with phase change materials added to different layers. The cooling
effect of each layer of different phase change material asphalt
pavement combinations under different light durations is
analyzed. Compared with the traditional ordinary pavement, the
main research conclusions are as follows:

(1) By comparing the pavement structure of adding phase change
materials in different layers with the ordinary pavement
structure, it can be seen that the phase change materials used
can effectively reduce the pavement temperature.

(2) The combination of adding phase change materials to the upper
andmiddle layers has the best cooling effect on the bottom layer.
The pavement structure of adding phase change materials to the
upper layer is not ideal for the cooling effect of the upper layer
after 6 h of illumination.

(3) Under different illumination times, comparing the
temperature of each layer of the phase change material

FIGURE 19
Temperature in groups A and D for 10 h.

FIGURE 20
Temperature in groups B and D for 10 h.

FIGURE 21
Temperature in groups C and D for 10 h.
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pavement structure with the temperature of the ordinary
pavement structure, it can be seen that the comprehensive
cooling effect of adding phase change material to the middle
layer is the best.

(4) The cooling effect of the pavement with phase change materials
reaches saturation after 10 h, and the cooling rate is almost
unchanged.
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