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Engineered cementitious composites (ECC) exhibits impressive tensile strength
but has significant environmental drawbacks due to high cement consumption.
Recently, engineered geopolymer composites (EGC) have gained attention as a
potential ECC alternative. This comprehensive study reviews the latest EGC
advancements, encompassing mix design, design theory, engineering
properties, environmental benefits, and durability. It emphasizes how factors
like activators, precursors, fibers, additives, and aggregates impact EGC
properties, making it a cost-effective material for fire, chemical resistance, and
dynamic loads. To address limitations in traditional literature reviews, innovative
research methods, including scientometric analysis, were employed to provide a
cohesive analysis. This review aims to facilitate knowledge dissemination and
collaboration by summarizing EGC advances and highlighting remaining
challenges in developing practical applications. It is revealed from the review
that various manufacturing methods enhance geopolymers, especially in
geopolymer concrete, where replacing 50% of ordinary Portland cement with
fly ash boosts strength. Geopolymer concrete excels in pre-cast applications,
offering durability and resistance to harsh conditions as an eco-friendly alternative
to Portland cement. It suits highway pavement, walls, marine coatings, and tiles,
reducing carbon emissions and promoting efficient waste management. EGCs
find broad use in construction due to their strong, durable, and eco-friendly
qualities, supporting sustainable infrastructure development.
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1 Introduction

Cementitious concrete composite is an extensively used
construction material that is strong in compression but has
limited tensile properties (Khan et al., 2018; Farooqi and Ali,
2019; Li, 2019). To cater this issue, the interest of researchers has
increased towards materials advancements in the form of fiber-
reinforced concrete (Shakor and Pimplikar, 2011; Khan et al., 2022a;
Farooqi and Ali, 2022). However, ordinary fiber-reinforced concrete
(FRC) only slightly improves tensile strain capacity despite yielding
advanced tensile properties compared to conventional concrete
(Cao and Khan, 2021; Khan et al., 2022b). In the early 1990s, the
development of engineered cementitious composites (ECC) ushered
in a significant improvement in tensile ductility. ECC demonstrated
remarkable attributes such as multiple cracking behavior and strain-
hardening, resulting in significantly enhanced tensile properties
compared to conventional concrete and fiber-reinforced
composites. Moreover, ECC exhibited the ability to resist crack
propagation under external loads, with cracks reaching a certain
point and generating additional tensile distortion due to micro-
crack emergence (Şahmaran and Li, 2009; Qaidi et al., 2022). These
outstanding characteristics made ECC a preferred choice for
extensive projects like bridges and high-rise buildings, ensuring
prolonged service life and improved functionality (Maruta, 2005;
Luković et al., 2019; Li et al., 2020).

Engineered cementitious composites (ECC) typically comprise
cement, silica sand, fly ash, and fibers (Wang and Li, 2007;
Shanmugasundaram and Praveenkumar, 2021). However, ECC’s
heavy reliance on cement and its lack of coarse aggregates
necessitates two to three times more cement usage than
conventional concrete, contributing to approximately 8% of
global CO2 emissions from cement production (Luukkonen et al.,
2018; Riaz Ahmad et al., 2023). This unsustainable production
pattern has driven the exploration of alternative binders for ECC,
including geopolymer concrete. Geopolymers, comprised of alkaline
activators and aluminosilicate materials, have emerged as a more
sustainable alternative in developing engineered geopolymer
composites (EGC) (Shakor et al., 2023). Geopolymer concrete’s

ecological friendliness in construction materials is due to the
abundant availability of raw materials, robust mechanical
properties, and exceptional durability (Davidovits, 1991; Bakharev
et al., 1999; Bakharev et al., 2003; Lemougna et al., 2016; Wang et al.,
2017).

Compared to traditional concrete, EGC exhibits nearly identical
or superior mechanical characteristics and durability while
significantly reducing CO2 emissions (Yang et al., 2013; Provis,
2018; Lao et al., 2023a; Lao et al., 2023b). Furthermore, when
compared to ECC, EGC boasts similar static loading properties
but outperforms it in terms of dynamic loading properties (Shaikh,
2013; Nematollahi et al., 2017; Trindade et al., 2020; Cai et al., 2021;
Zhang et al., 2022). EGC can be tailored to various material
properties by employing diverse mix designs, fiber contents,
mixing techniques, and curing methods (Ohno and Li, 2018;
Zahid et al., 2018; Zhong and Zhang, 2022). Figure 1 illustrates
how the utilization of such waste materials can positively impact
both the economy and the environment, particularly given the
abundance of these materials and the growing demand for cost-
effective construction as the population continues to expand (Jindal,
2019; Ilcan et al., 2022; Lan et al., 2022; Sandanayake et al., 2022;
Ahmad et al., 2023).

Geopolymer concrete obtains superior mechanical properties
from the three-dimensional network structures of oxides generated
through specialized inorganic polycondensation. This stable
network structure grants remarkable durability and high strength
to the geopolymer concrete during service. This protective effect on
engineering structures ensures the concrete’s longevity (Davidovits,
1991; Wang et al., 2021; Rajak et al., 2022). Geopolymer concrete’s
cementitious materials can be classified into three categories based
on their calcium content: no calcium, low calcium, and high calcium
(Chindaprasirt et al., 2007; Duxson et al., 2007; Adamiec et al., 2008;
Provis and Van Deventer, 2009; Elchalakani et al., 2018; Luukkonen
et al., 2018). The primary representatives of these categories are
metakaolin, fly ash, and slag, respectively. Geopolymer concrete with
metakaolin exhibits greater strength and durability than OPC-based
materials (Mohmmad et al., 2023). However, the plate-shaped
particles of metakaolin create rheological difficulties that

FIGURE 1
Benefits of EGC.
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complicate the manufacturing process (Adamiec et al., 2008; Li et al.,
2010; Luukkonen et al., 2018). In alkali-activated reaction products
of slag, the C-S-H and C-A-S-H gels with low Ca/Si ratios provide
high strength and acid resistance to slag-based geopolymer materials
(Provis and Van Deventer, 2009). Nonetheless, the high-
temperature endurance of geopolymer materials based on slag
reduces, while their dry shrinkage deformation and creep rise
(Buchwald et al., 2005; Atiş et al., 2009; Khan and Ali, 2020).

Given the diverse mix compositions, intricate high-temperature
mechanical properties, and varied testing methods, it is vital to
comprehensively analyze existing research on the temperature-
dependent material traits of Engineered Geopolymer Composites
(EGC). This review primarily focuses on the influence of material
composition and manufacturing procedures on EGC mechanical
properties and durability. It aims to identify challenges in developing
EGC with practical applicability. While prior reviews have touched
on EGC characteristics and research prospects, this review offers a
more extensive analysis of the interplay among critical material
traits, addressing a research gap. This study systematically
categorizes and consolidates research findings, providing a
reliable reference for experts in this field. The scarcity of
information in EGC research hinders innovation and
collaboration. Therefore, establishing a plan to access crucial
materials from dependable sources is crucial. A scientometric
approach, facilitated by appropriate software tools, can address
these limitations. This study conducts a scientometric analysis of
bibliographic data published in 2023 regarding EGC utilization. The
analysis reveals prolific publication sources, authors, related
citations, co-occurring keywords, contributing countries, and
highly cited articles in the EGC research domain. Data from
relevant documents, including abstracts, bibliographies, keywords,
funding information, and citations, are retrieved using the Scopus
search engine. The VOS viewer tool is then employed for data
analysis. Statistical and graphical representations of countries and
academics can facilitate idea exchange and research collaboration.
This study combines scientometric analysis with a comprehensive
literature review to underscore the significance of EGC and its future
potential.

2 Research significance

This article’s significance lies in addressing a critical issue in
construction, i.e., the environmental impact of conventional cement-
based materials. It aligns with global sustainability goals by highlighting
Engineered Geopolymer Composites (EGCs) as a sustainable
alternative. Given the extensive array of mix compositions available
for EGCs, their intricate mechanical behavior under elevated
temperatures, and the diverse heating methodologies employed in
material testing, it becomes imperative to thoroughly examine the
existing body of research concerning the temperature-dependent
material attributes of EGCs. Additionally, it explores EGC
advancements in mix design, engineering properties, and more,
potentially leading to versatile and robust construction materials for
various applications. While prior reviews have touched upon certain
material traits and research prospects pertaining to EGC, this review
delivers a more exhaustive examination of the interrelationships among
pivotal material attributes to bridge the extant research gap. The article

employs innovative research methods like scientometric analysis,
setting a precedent for interdisciplinary approaches. It emphasizes
cost-effective solutions by understanding factors influencing EGC
properties enhancing accessibility for diverse projects. EGCs’
versatility, especially in geopolymer concrete, offers eco-friendly
options for construction applications, supporting sustainable
infrastructure development. Furthermore, the review facilitates
knowledge dissemination and collaboration in the construction
industry. In summary, this article has the potential to drive
innovation, reduce environmental impact, and promote sustainable
practices through EGC adoption, addressing crucial construction sector
challenges.

3 Methodology

The present study employs a scientometric analysis (Afgan and
Bing, 2021; Amin et al., 2022; Huang et al., 2022) of bibliographic
data to quantify its various properties. The scientometric analysis
utilizes scientific mapping, a method researchers devised to examine
bibliometric data (Markoulli et al., 2017; Amin et al., 2022). In light
of the extensive literature within the less-explored research field,
employing a reliable search engine is crucial. Scholarly consensus
suggests two databases, specifically Scopus and Web of Science, as
dependable sources to fulfill the research objectives (Afgan and Bing,
2021; Huang et al., 2022). Scopus is selected to gather bibliographic
data related to EGC applications research. The search on Scopus
resulted in relevant findings, with several filters applied to scrutinize
irrelevant data. Figure 2 illustrates a comprehensive flowchart that
depicts the methodical steps, including data retrieval, data analysis,
and the application of various filters in the analysis.

Previous studies have utilized the same approach (Oraee et al., 2017;
Jin et al., 2018; Park and Nagy, 2018). The Scopus database is stored in
CSV format for further analysis using appropriate software. The
research team utilized the open-source VOS viewer tool (version
1.6.18) to perform a quantitative analysis and scientific visualization
of the collected data, which is also commonly used in this type of
research (Zuo and Zhao, 2014; Darko et al., 2017; Ahmad et al., 2021).
Therefore, the study’s objectives are achieved by utilizing a VOS viewer.
The VOS viewer software is used to analyze the data collected from
Scopus, and the CSV file is imported into the VOS viewer for further
evaluation. A scientometric analysis is then conducted to examine
widely used keywords, publication sources, authors with the most
citations and articles, the contributions of different countries, and
highly cited papers. The analysis generates maps that illustrate the
features, their co-occurrences, and interconnectivity; relevant statistics
are presented in tables. Different colors are assigned to specific elements
in themap to differentiate between groups. Densitymapping is achieved
using colors such as rainbow, plasma, rainbow, and Viridis.

4 Findings and evaluation

4.1 Subject areas and annual publication
trends

In order to identify the principal research areas, an analysis
using Scopus is performed. As illustrated in Figure 3, nearly 38% of
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documents are found within the “Engineering” discipline, and
“Materials Science” also accounts for almost 38% of the
documents. These two disciplines contribute to a total of 76% of
the papers. Furthermore, a Scopus database analysis identifies the
publication type within the researched field, as presented in Figure 4.
Based on the analysis, journal articles comprise around 75% of
publications, conference articles account for almost 10%, and
conference review papers represent approximately 6%. Figure 5
illustrates the annual trend of publications related to EGC
implications from 2014 to the start of 2023. It is important to
note that the number of articles in this research area increased from
2014 to 2018. However, a minor decline in publication quantity was
observed in 2018–2019. From 2019 onwards, a significant
enhancement can be observed in the publications trend in this

research area. It represents an encouraging trend of researchers’
growing attention towards using EGC.

4.2 Origins of publication

VOS Viewer analyses bibliographic data in this study to
identify publication sources pertaining to Engineered
geopolymer composites (EGC). Only sources with at least five
relevant articles are taken into consideration. The findings are
shown in Figure 6, which presents the number of publications from
each source as of early 2023. Among the identified sources, the
journal “Construction and Building Materials” is at the top to have
the maximum number of publications, followed by “Cement and

FIGURE 2
Research methodology flowchart.

FIGURE 3
Articles disciplines.
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Concrete Composites,” which is subsequently followed by
“Ceramics International.” The sources “Journal of Building
Engineering” and “Composites Part B: Engineering” ranked
fourth and fifth, respectively. These findings provide a
fundamental basis for future scientometric analyses on research
related to the practical implications of EGC.

4.3 Co-occurrence of keywords

Keywords play a crucial role in research by helping to
distinguish and highlight the primary focus of a particular study

(Song et al., 2021). In order to ensure adequate variation, a
minimum keyword repetition threshold of 110 is employed.
Table 1 provides an overview of the 20 keywords analyzed, with
“Geopolymers,” “Geopolymer Composites,” “Compressive
Strength,” “Strain Hardening,” and “Fly Ash” emerging as the
top five most commonly used keywords in the field of EGC.
Keyword analysis highlights that research in EGC primarily
focuses on developing its mechanical properties like compressive
strength and strain hardening. Figure 7 visually represents the
frequency and connections of the analyzed keywords, facilitating
a better understanding of their distribution and density within the
research field. The circle size in Figure 7A indicates the frequency of

FIGURE 4
Documents types published in the relevant research area.

FIGURE 5
Yearly trend of research paper publication.
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each keyword, while their placement denotes co-occurrence in
articles. The larger circles correspond to the most prominent
keywords, emphasizing their importance in exploring the

literature on EGC. Group formations represent co-occurrences of
keywords in different publications, with distinct colors assigned to
each group. Different colors allow easy differentiation of the four
discrete groups shown in Figure 7A. Figure 7B illustrates the dense
concentrations of keywords using various colors. The colors are
arranged based on density, with red representing the highest density
and green, blue, yellow, and purple indicating lower densities. From
the particular note, the “Geopolymers,” “Fly Ash,” and “Strain
Hardening” keywords are highlighted in red, indicating their high
frequency of occurrence. This information can be helpful for new
researchers in selecting appropriate keywords for their studies and
facilitating their search for relevant publications in this research
field.

4.4 Authors

One’s influence within a specific research field can be
determined by examining citation records (Yu and Hayes,
2018). The study applied a minimum threshold of at least
three articles from a specific author. VOS viewer is utilized to
analyze bibliographic data and gain insights into the number of
publications and citations of the authors within the research area.
However, it is worth noting that evaluating an author’s impact
based solely on the number of publications and citations may not
always be the most accurate or comprehensive method. Other
factors, such as the quality and significance of the work, the
influence on the field, and the potential for future impact, may
also be important considerations. Therefore, assessing the
ranking of each parameter independently may be more
effective. The interconnectivity between authors who have
published at least three articles in this area is visualized in
Figure 8. The analysis identified Nematollahi B. as the leading
author, followed by Sanjayan J., Dai J.-G., Li V.C., and Shaikh
F.U.A. Nematollahi B. and Sanjayan J. also had the highest

FIGURE 6
Number of documents per year in the top five journals.

TABLE 1 Top twenty frequently used keywords.

S/N Keyword Occurrences

1 Geopolymers 722

2 Geopolymer Composites 577

3 Compressive Strength 487

4 Strain Hardening 482

5 Fly Ash 390

6 Tensile Strength 387

7 Engineered Geopolymer Composite 377

8 Tensile Strain 368

9 Geopolymer 297

10 Polyvinyl Alcohol Fiber 288

11 Engineered Cementitious Composites 283

12 Fibers 206

13 Slags 205

14 Engineered Geopolymer Composite (EGC) 181

15 Strain-Hardening Cementitious Composite 172

16 Strain Hardening Behavior 152

17 Ductility 148

18 Cracks 121

19 Tensile Testing 120

20 Strain-Hardening Cementitious Composites (SHCC) 111
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number of citations, with 335 citations, followed by Dai J.-G. with
186 citations in the field of EGC research. In conclusion, the
analysis suggests significant interconnectivity between authors,
as far as their citations are concerned, who participated actively
in research on EGC.

4.5 Documents

Citations received by a research paper are an important
indicator of their significance in a particular research field.
Typically, pioneering articles in a specific research domain have

FIGURE 7
Keyword analysis using (A) scientific visualization and (B) density visualization.
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the highest citations. Figure 9 presents the density concentration and
scientific visualization of citations for interrelated articles in the
EGC research. The figure is divided into two parts: Figure 9A
displays the connected articles based on citations extracted from
VOS viewer, where the circle size for each article corresponds to its
impact within the considered research domain. The visualization
summarizes the interconnectivity between articles and the most
influential articles in the field. Figure 9B, on the other hand, depicts
the increasing trend of research articles by authors with an increase
in years. The figure suggests that research on Engineered
geopolymer composites (EGC) is a growing area of interest for
researchers.

4.6 Countries

Systematic bibliographic mapping is conducted to identify the
countries with the most significant contributions to research on
EGC to predict the characteristics of this research area. The
United States, Australia, and Hong Kong are the leading
countries. The United States of America received the maximum
citations (i.e., 551), followed by Australia (i.e., 476) and Hong Kong
(i.e., 244). Moreover, a visual representation of the interconnectivity
between different countries in terms of citations and density

concentration is also presented in Figure 10. Figure 10A shows
the impact of each country in the research field, with the size of the
circle representing the magnitude of the impact. Additionally,
Figure 10B indicates that countries with more publications have
a higher density. These statistical and graphical outputs benefit
young researchers interested in collaborating and exchanging
innovative concepts/techniques with professionals in related
fields. This information also facilitates the formation of teams
with diverse expertise from various countries interested in
working on EGC.

5 EGC manufacturing

Unlike conventional concrete that uses cement, geopolymer
employs mineral admixture (alkali-activated) as a binder to
create a compact mass with an inert aggregate. Geopolymer
offers various advantages over regular concrete, such as high
early strength, resistance to high temperatures, and good
chemical resistance in harsh environments. Engineered
geopolymer composites (EGC) is chosen for several reasons, such
as using sustainable construction materials to preserve the
environment. This is due to the global concern over the use of
Portland cement-based composites. Over the last two decades,

FIGURE 8
Visualization of authors within the researched domain.
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extensive research has been conducted on various EGC properties,
resulting in significant experimental test data. Comprehending the
mechanical properties of EGC is a crucial step toward
manufacturing significant EGC amounts having predictable

characteristics. According to reviewed literature, researchers have
conducted extensive studies on the properties of geopolymers over
the past 20 years and found several techniques available for
producing geopolymers with varying properties. Various

FIGURE 9
Scientific mapping of documents: (A) density of connected articles based on citation density, (B) increasing trend of research articles by authors.
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properties of geopolymer paste (Phoo-ngernkham et al., 2013; Adak
et al., 2014), mortar (Adak et al., 2014), and concrete (Hardjito et al.,
2005) have been studied experimentally. Based on concrete density,
EGC has two types: light and normal weight. The lightweight
geopolymer concrete can be in foamed concrete (Al Bakri

Abdullah et al., 2012) or other variations utilizing lightweight
aggregate (Posi et al., 2013). Various curing methods were
explored by researchers for EGC, such as oven heating,
membrane curing, steam curing, water curing, hydrothermal
curing, and room temperature. Of these methods, the most

FIGURE 10
The scientific visualization of countries within the research domain (A) as a network visualization and (B) as a density visualization.
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effective one is oven curing (Sofi et al., 2007a). The schematic
diagram for the manufacturing of EGC is shown in Figure 11, as
illustrated by Wang et al. (2023).

6 Microstructural analysis of EGC

The difference in the micro-structure of conventional concrete
and EGC has been depicted by Alanazi (2022), as shown in
Figure 12. The geopolymer mixture SEM image (Figure 12B)
displays a complex matrix microstructure of multiple phases.
Consequently, these phases’ unique properties and interactions
are expected to influence geopolymer concrete’s overall physical
and mechanical characteristics significantly. Further discussion on

this matter will be provided later. Regarding the geometric
characteristics of the interfacial transition zone (ITZ), the
microstructures adjacent to the larger limestone aggregate
demonstrate no discernible variations compared to the matrix
phase microstructure, suggesting the absence of visible voids
surrounding the limestone particles. In contrast, the SEM image
for the microstructure of the OPC mixture reveals the presence of
significant voids or pores surrounding the ITZ, as depicted in
Figure 12A. Other researchers have also reported similar findings
(Mondal et al., 2009; Zhang et al., 2009; Khedmati et al., 2018). The
magnified images in Figure 13 provide evidence of the bonding
phenomenon occurring at the ITZ between aggregates and the
geopolymer matrix. Notably, the presence of microcracks visible
in the images, though their confirmation is still pending, might be

FIGURE 11
The manufacturing process of geopolymer concrete (Wang et al., 2023).

FIGURE 12
SEM images (A) conventional concrete (B) EGC (Alanazi, 2022).
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ascribed to additional stress encountered during the polishing
(surface smoothing) operation or the cementitious shrinkage
transpiring during the curing process. Incorporating a low-
density interfacial transition zone would harm the overall
properties of ordinary Portland cement mixtures, decreasing their
strength. The weakness observed in the ITZ of OPCmixtures is often
linked to calcium hydroxide crystals and the accumulation of pores
at the ITZ, which occur due to excess water at the aggregate surface
(Zhang et al., 2009). These factors contribute to a compromised ITZ
structure, reducing the overall performance of the OPC mixture.
However, in the case of geopolymer paste and its associated ITZ, the
absence of such calcium hydroxide crystals indicates a more
favorable microstructural condition, potentially resulting in
improved properties compared to OPC mixtures.

7 Mechanical properties of EGC

7.1 Compressive strength of EGC

The bond strength, compressive strength, flexural strength,
and splitting tensile strength were reported to be uppermost
using fly ash as a 50% replacement of OPC (Shehab et al., 2016).
According to Lloyd and Rangan (2009), adding 24 h before
curing can enhance the compressive strength of EGC.
Concrete cured under ambient conditions may exhibit weak
early strength; however, a considerable increase in strength can
be achieved through high-temperature curing. One important
factor that affects the geo-polymerization mechanism and
strength of concrete is curing time. Studies have shown that
longer curing times can improve strength, but excessively long
durations at high temperatures can cause failure (Nurruddin
et al., 2018). Researchers have also found that higher initial
curing temperatures and longer durations generally lead to
higher compressive strength (Hardjito et al., 2005; Jindal
et al., 2017; Hassan et al., 2019). Joseph and Mathew (2012)
identified 100°C as an appropriate temperature, and
Chindaprasirt et al. (2007) observed an optimum curing time
of 3 h at 60°C, with the ideal curing temperature being 75°C.
These researchers concluded that the initial heat-curing process
is crucial for strength development. Other researchers also
reported similar observations (Abdullah et al., 2011; Vijai

et al., 2011; Almuhsin et al., 2018). It should be emphasized
that in each of these studies, maximum strength was attained,
and no additional strength was observed beyond 7 days,
indicating completion of the reaction. According to a study
conducted by Dave et al. (2020), the strength of geopolymer
concrete increases over time, a trend also observed in Portland
cement, as shown in Figure 14. The authors attribute this
compressive strength to the precursors’ persistent
polymerization and condensation.

7.2 Elastic modulus of EGC

EGC elastic modulus generally exhibits a similar trend to its
compressive strength. Hardjito et al. (2005) reported a correlation
between the compressive strength of EGC and its modulus of
elasticity; increasing the former can increase the latter.
Mohammed et al. (2021) developed the relationship to show the
variation between the compressive strength of EGC and its
modulus of elasticity, as shown in Figure 15. In contrast, Nath
and Sarker (2017) observed that the curing regime does not
significantly impact the elastic modulus of EGC. In contrast,
Saravanan and Elavenil (2018) reported a significant increase in
the elastic modulus upon replacing fly ash with GGBS up to 50%,
even though the compressive strength may not be correspondingly
affected. Poisson’s EGC ratio has received relatively little attention
compared to other properties, and limited test data is available.
However, the limited data suggest that Poisson’s ratio of GPC
typically falls within the range of 0.23–0.26 (Sofi et al., 2007b). In
contrast, some researchers have reported lower values of Poisson’s
ratio for different types of EGCs (Abdullah et al., 2012; Olivia and
Nikraz, 2012; Albitar et al., 2015). The behavior of Poisson’s ratio
in EGC appears to depend on the material’s compressive strength.
For instance, some researchers have observed a reduction in
Poisson’s ratio as the compressive strength decreases (Abdullah
et al., 2012). Additionally, some examinations have shown that
increasing fly ash replacement with GGBS can decrease Poisson’s
ratio, in contrast to other properties of EGC (Sivakumar and
Kishore, 2017). In summary, the correlation between the
compressive strength and the modulus of elasticity of EGC has
been reported by different researchers. The impact of the curing
regime on the elastic modulus of EGC is debatable.

FIGURE 13
SEM magnified images of EGC mixture (Alanazi, 2022).
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FIGURE 14
Compressive strength of EGC (Dave et al., 2020).

FIGURE 15
Elastic modulus variation in relation to compressive strength (Mohammed et al., 2021).
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7.3 Flexural and tensile strength of EGC

The flexural strength of concrete refers to its capacity to
withstand loads that cause bending or flexure. According to
Wilkinson et al. (2016), concrete’s 28-day flexural strength results
were generally around 4% of its corresponding 28-day compressive
strengths. Studies indicate that the compressive strength of EGC has
a similar impact on the indirect tensile strength and flexural strength
(Raijiwala and Patil, 2010; Rashad, 2013). Typically, an increase in
compressive strength leads to improvements in both splitting tensile
and flexural strengths of the EGC. Wang et al. (2023) reported
comparing mechanical properties (i.e., compressive, splitting-
tensile, and flexural strengths) of conventional concrete and
EGC, as shown in Figure 16. The splitting tensile strength of
EGC is significantly lower than its compressive strength
(Hardjito et al., 2005). However, researchers have reported
certain deviations from this trend. Ryu et al. (2013) found that
the rate of increase in tensile strength decreases as compressive
strength increases. Moreover, the substitution of GGBS for fly ash
has a comparatively lesser impact on splitting tensile and flexural
strengths when compared to compressive strength (Abhilash et al.,
2016). Furthermore, Yousefi Oderji et al. (2019) discovered that
replacing fly ash with slag at 15%–20% reduced flexural strength
despite increased compressive strength due to the modification.
Partha et al. (2013) reported that utilizing a specialized heat curing
technique increased the flexure/compression ratio and a minor rise
in the tensile/compression ratio compared to curing at ambient

temperature. Consequently, the studies that have been reported did
not reveal any discernible relationship between the 28-day
compressive strength and the 28-day flexural strength. However,
like with compressive strength, research conducted by Dave et al.
(2020) demonstrated that combining GGBS and SF with FA as
precursors improved the flexural strength of geopolymer mixes
(Figure 17). The geopolymer mix comprised 70% GGBS, 20%
FA, and 10% SF as precursors demonstrated the highest level of
flexural strength.

8 Durability of EGC

The durability of EGCs plays a vital in ensuring their long-term
performance and reliability. However, specific standards for
evaluating their durability are scarce due to the relatively recent
emergence of geopolymer composites in cementitious materials.
When assessing the durability of EGCs, similar to the standards used
for conventional concrete evaluation (such as ASTM, AASHTO, and
ACI), emphasis is placed on evaluating their transport properties,
resistance to physical degradation, and chemical resistance (Li et al.,
2021). Transport properties characterize the resistance of
composites against the ingress of water, gas, and ions through
cracks, pores, and air voids. These properties can be improved by
incorporating appropriately dispersed nanomaterials in optimal
quantities. Among these transport properties, water absorption
holds particular significance as it directly influences the

FIGURE 16
Comparison of (A) compressive strength, (B) splitting-tensile, and (C) flexural strength of conventional concrete and EGC (Wang et al., 2023).
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vulnerability of EGCs to various durability concerns. EGCs with
lower water absorption demonstrate reduced susceptibility to
multiple forms of degradation, given that water substantially
contributes to deterioration mechanisms such as freeze/thaw
damage, sulfate attack, alkali-aggregate reactions, carbonation,
and rebar corrosion (Adak et al., 2015; Assaedi et al., 2016; Li
and Shi, 2020). Water absorption in a material is affected by the
transmission pathways and the characteristics of the contact surface.
Hydrophilic materials generally demonstrate higher water
absorption when evaluating materials with similar pore structures
than hydrophobic materials (Li and Shi, 2020).

As far as the physical degradation is concerned, it typically
includes abrasion (or erosion), weathering due to wet/dry cycling,
and damage caused by freeze/thaw cycles. Understanding the
fundamental mechanisms underlying physical damage in
cementitious composites is an active area of ongoing research.
However, it is widely agreed that the resistance to such cyclic
degradations depends not only on the mechanical strength of the
composite matrix but also on the characteristics of its pore
structure. In the case of EGC, it is plausible to propose that
the fluctuating temperatures may trigger the crystallization of
temperature-sensitive phases found in fly ash, activators, and
other additives. This crystallization process could generate
pressure, potentially leading to the physical degradation of the
EGC matrix. Additionally, it is conceivable that the alternating
temperature conditions may cause the leaching of chemical ions,

resulting in localized chemical attacks within the EGC (Xu and
Shi, 2018; Xu and Shi, 2020). Moreover, EGCs in service
conditions can encounter simultaneous deterioration from
various sources, making them prone to physical and chemical
assaults. Chemical degradation commonly observed in
cementitious composites encompasses carbonation, sulfate
attack, acid attack, and alkali-aggregate reactions. Conversely,
failure mechanisms such as salt scaling and chloride-induced
rebar corrosion entail combined chemical and physical
deterioration processes (Ren et al., 2019; Xu and Shi, 2020).
The formation process of geopolymers containing impurities,
such as silico-aluminophosphate and alkali-aluminosilicate
geopolymer, can be represented by considering the acidity and
alkalinity activation conditions. These conditions are illustrated
in Figure 18, as reported by Wang et al. (2019), showcasing the
geopolymers’ step-by-step formation process. The presence of
specific constituents in the precursor materials, referred to as
“impurities,” which differ from aluminosilicates, can initiate
reactions that deviate from the typical geo-polymeric processes.
Consequently, when acidic or alkaline activators are utilized,
distinct chemical compositions, levels of crystallinity, and
phases are generated. Furthermore, beyond variations in
pH conditions, significant disparities arise in the molecular
structures of geopolymers, particularly in the chemical
environment surrounding aluminum within the formed gels
(Pacheco-Torgal et al., 2008; Yao et al., 2015; Wang et al., 2019).

FIGURE 17
Flexural strength of EGC (Dave et al., 2020).
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9 Applications of EGC

Geopolymer concrete, which contains 70%–80% aggregate by
mass and plasticizers, is manufactured using standard concrete
production methods (Almutairi et al., 2021). Since then,
researchers have conducted comprehensive studies on
geopolymer concrete’s strength and durability characteristics. The
pre-cast application of geopolymer technology is considered highly
advanced, primarily due to its ability to handle delicate materials
(Aleem and Arumairaj, 2012; Almutairi et al., 2021). Historically,
EGC has been mainly used for sewer pipes and railway sleepers
(Sharma et al., 2017; Gourley and Johnson, 2019). Nevertheless, it is
now feasible to produce structural components such as beams,
columns, and tunnel segments using geopolymer concrete
(Farhan et al., 2018; Hassan et al., 2020). According to Almutairi
et al. (2021), geopolymer concrete represents an excellent alternative
to conventional concrete, even for the scenarios in which steel rebars
are embedded as reinforcement. Geopolymer concrete has been
shown to meet specifications in extreme environments, such as
sulfate soils. Therefore, it can serve as a sustainable substitute for
producing durable structures. EGC exhibits significant chloride

resistance, which translates to minimal mutilation during winter
especially upon application of salt for dissolving ice. The
outstanding capability of EGC to resist chloride corrosion makes
it a viable option for utilization in concrete structures exposed to
saltwater environments, such as coastal bridges, underwater
concrete supports, and piers (Zhao et al., 2020; Churata et al.,
2022; Tanu and Unnikrishnan, 2023). According to Yang et al.
(2008), geopolymer concrete manufactured using slag can attain
strength if cured at room temperature. Numerous types of research
have demonstrated that EGC may serve as highway infrastructure
repair material (Yun and Choi, 2014). Due to the exceptional
performance observed in its initial applications, efforts have been
made to integrate EGC into respective authority specifications (Dave
et al., 2020). According to Tayeh et al. (2020), highway pavement
applications represent a specialized area where geopolymer concrete
could bring about a significant transformation. Geopolymer
concrete has emerged as a sustainable alternative to Portland
cement concrete for various applications due to its remarkable
durability and resistance to harsh environments, such as sulfate
soils and chloride corrosion. Originally used for sewer pipes and
railway sleepers, geopolymer concrete has now been extended to

FIGURE 18
Process of activating aluminosilicate sources under acidic and alkaline conditions (Wang et al., 2019).
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include structural elements such as beams and columns and can also
serve as a repair material for highway infrastructure. Thus,
geopolymer concrete has the potential to transform highway
pavement applications. Figure 19 illustrates the summary of EGC
applications, as mentioned in the above discussion.

10 Sustainability aspect of EGC

The concrete industry is looking for sustainable alternatives to
Portland cement, and one promising option is fly ash-based
geopolymer concrete. Unlike traditional concrete, geopolymer
concrete uses fly ash from coal-burning power stations as the
binder, eliminating the need for Portland cement. Using fly ash-
based geopolymer concrete has the potential to reduce global
warming, as research has shown that the global warming
potential of geopolymer concrete is between 26% and 45% lower
compared to ordinary Portland cement concrete. Studies have
shown that replacing traditional Portland cement concrete with
geopolymer concrete, depending on the specific precursor and
activator used, can lead to a reduction in embodied carbon of up
to 80% (Tayeh et al., 2021). However, other ecological impact factors
need to be considered as well. Life cycle assessment of geopolymers
reveals that, compared to OPC concrete, geopolymer concrete has a
reduced impact on global warming (Garces et al., 2021). Additional
LCAs of geopolymers have also suggested that these materials can
serve as sustainable substitutes. Further gains in sustainability could
be realized by adopting alternative activators and precursors that are
readily available locally (Salas et al., 2018; Dal Pozzo et al., 2019;
Bumanis et al., 2020). Therefore, the concrete industry must explore
alternative methods to make geopolymer concrete more
environmentally friendly while maintaining its benefits as a
sustainable alternative to traditional concrete. Geopolymer
concrete is often produced using waste materials from industrial
and agricultural processes as precursors. This makes it an eco-

friendly option for managing bulk waste generated by several
industries (Juenger et al., 2011; Palomo et al., 2015; Mehta and
Siddique, 2016). Furthermore, the geopolymers’ sustainability can
be enhanced using laterite soil as precursors. Therefore, using
geopolymers as a replacement for Portland cement composites
can substantially decrease greenhouse gas emissions, utilization of
raw materials, and efficient waste management (Davidovits, 2008;
Yang et al., 2013). Therefore, it can be concluded that geopolymer
binders without using cement are a highly promising eco-friendly
construction material. Figure 20 (Mishra et al., 2022) shows that
these geopolymer composites can be produced using industrial
wastes, promoting sustainable development and benefiting the
environment.

11 Conclusion

This comprehensive bibliographic investigation thoroughly
explores the dynamic and evolving domain of Engineered
Geopolymer Composites (EGCs). By conducting an in-depth
analysis of pertinent literature, numerous significant themes and
trends have emerged, illuminating the present understanding of this
specialized field. The review has yielded valuable insights into the
manifold applications, properties, and challenges linked to EGCs,
underscoring their capacity to bring about revolutionary changes
across diverse industries. The scientific community has proposed
bibliometric metrics that use statistical analysis techniques, such as
scientometric analysis, to evaluate publications based on scientific
conclusions. Such a review-based study can identify trends in the
literature on EGC that benefit young scholars and researchers. The
conclusions drawn are as follows:

• Many manufacturing methodologies have been devised to
attain specific properties in geopolymers, with
investigations encompassing geopolymer paste, mortar, and
concrete. EGC can be classified into either lightweight or
normal weight categories, including variants such as
foamed concrete and the incorporation of lightweight
aggregates. Extensive research has been dedicated to
exploring various curing techniques, among which oven
curing has emerged as the most efficient approach.

• The findings demonstrate that substituting 50% of OPC with
fly ash results in improved bond strength, compressive
strength, flexural strength, and splitting tensile strength in
geopolymer concrete. The elastic modulus of EGC typically
aligns with the pattern observed in compressive strength, with
the latter influencing tensile and flexural strengths, thereby
yielding enhancements in both aspects. Moreover, geopolymer
concrete exhibits a continuous enhancement in strength over
time, attributed to the precursors’ ongoing polymerization and
condensation processes.

• Water absorption is pivotal in assessing the durability of EGCs, as
it significantly influences their susceptibility to various
deterioration mechanisms, including freeze/thaw damage,
sulfate attack, alkali-aggregate reactions, carbonation, and rebar
corrosion. Geopolymers that incorporate impurities undergo
distinctive formation processes, resulting in variances in
chemical compositions, crystallinity, phases, molecular

FIGURE 19
Applications of engineered geopolymer composites (EGC).
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structures, and the chemical milieu encompassing aluminum
within the generated gel matrices.

• In pre-cast applications, such as structural components like
beams and columns, geopolymer concrete demonstrates
exceptional performance. It complies with requirements
even in challenging environments, offers resistance to
chloride exposure in saltwater conditions, and shows
promise as a material for repairing highway infrastructure.
Its durability and resilience in harsh conditions position it as
an environmentally sustainable substitute for Portland cement
concrete, with the potential to revolutionize various
applications, including highway pavement, multi-layer wall
construction, marine concrete coatings, and the production of
geopolymer tiles.

• Geopolymer concrete presents a sustainable substitute for
Portland cement, contributing to mitigating global warming
potential and reducing embodied carbon. The production of
waste materials in its manufacturing process facilitates
effective waste management practices, and exploring
alternative activators and precursors can further enhance its
eco-friendliness. Geopolymer binders, devoid of traditional
cement, hold significant promise as environmentally
conscious construction materials, fostering sustainable
development and yielding environmental benefits.

• EGCs have garnered widespread adoption in construction and
infrastructure due to their impressive mechanical characteristics,
exceptional durability, and heightened resilience in demanding
environmental settings. Notably, their ability to reduce carbon
emissions compared to traditional cement-basedmaterials makes
EGCs an attractive and sustainable choice for advancing
infrastructure projects.

• A systematic examination of the existing literature reveals a
limitation in the number of studies addressing the properties
of EGC, highlighting the need for additional research efforts.
To facilitate the broader adoption of EGC, several areas
warrant further exploration, encompassing the assessment
of how different alkali-activated mineral admixtures affect

EGC, the utilization of diverse industrial byproducts,
refinement of mix designs and curing techniques, the
investigation of long-term performance and durability,
exploration of EGC’s applicability in substantial
infrastructure projects, and the evaluation of its
environmental and economic ramifications.

12 Future research prospects

Engineered Geopolymer Composites (EGCs) represent a rapidly
advancing and burgeoning area of research with substantial intellectual
significance and far-reaching implications. However, there is a distinct
need for additional foundational investigations to comprehensively
explore and exploit the full potential of this environmentally
sustainable cementitious composite. Furthermore, the current study
highlights a lack of precise connections between different aspects of
literature in conventional research studies on EGC. To address this
issue, the authors conducted a systematic review that maps
bibliographic data and provides statistical analysis. The review
identifies frequently used keywords, the countries and sources
contributing the most relevant articles, and the most credible
authors in the EGC research domain. In the current study, an
assessment of keywords shows that EGC has been studied as a
sustainable and durable material. The analysis of highly contributing
countries in the research domain is based on citation-based linkages in
the literature. This analysis could help researchers to collaborate and
advance research in this field. The study also employs scientometric
analysis to evaluate keywords and interlinked literature, highlighting
future perspectives in EGC research. Based on the current literature, it
has been established that geopolymer concrete holds significant
potential for a range of construction applications. However,
additional research is required to address the following areas and
facilitate greater utilization of geopolymers:

• A detailed investigation should be made to explore the impact
of incorporating different alkali-activated mineral admixtures

FIGURE 20
EGC—A way to sustainable development (Mishra et al., 2022).
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on geopolymer concrete properties, like compressive,
splitting-tensile, and flexural strengths.

• The possibility of using different industrial byproducts, like
rice husk ash, blast furnace slag, and red mud, as raw materials
in the manufacturing of geopolymer concrete should also be
explored.

• Developing novel mix designs and curing methods should also
optimize EGC properties, like durability, strength
development, and shrinkage behavior.

• Despite its longstanding use, further comprehensive and
extensive studies are required to investigate the long-term
performance, durability, and utilization of unconventional
precursors in EGC. The emphasis must be placed on
examining EGC’s long-term performance. Various
accelerated tests could also be implemented to assess EGC’s
long-term performance.

• Further exploration of using EGC in large-scale infrastructure
projects, such as bridges, high-rise buildings, and tunnels, and
comparing its cost-effectiveness with conventional concrete is
also recommended.

• It is recommended to investigate the capacity of nanomaterials,
like nanoparticles and nanofibers, to improve the characteristics
of geopolymer concrete, encompassing attributes such as
strength, longevity, and resilience to environmental influences.

• The studies should also be conducted to explore substitute
activators for sodium or potassium hydroxide, such as alkali
carbonates or silicates, to diminish the environmental
footprint and cost associated with geopolymer manufacturing.

• Studies should also be conducted on integrating diverse waste
materials like fly ash, slag, industrial by-products, and recycled
aggregates into geopolymer concrete to enhance sustainability
and reduce carbon footprint.

• To unlock future research potential, it is crucial to establish a
robust link between MK-based geopolymer concretes and
their impact on key properties like compressive, tensile, and
flexural strength. A proposed connection between tensile and
flexural strength with compressive strength would be valuable
to the engineering community. This requires detailed
investigation and experimentation to derive a dependable
relationship. Such progress will promote wider adoption of
MK-based geopolymer concrete, enhancing sustainability and
concrete structure performance in construction projects.

• Assessing the environmental and economic implications of
using EGC would enhance its awareness and promote its
application. Such a comprehensive evaluation would
provide valuable insights into numerous advanced
approaches that may be employed to decrease adverse
impacts on the environment and costs of EGC.
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