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Polyolefin ductile-brittle
transition temperature
predictions by machine learning

Florian Kiehas1*, Martin Reiter1, Juan Pablo Torres2,
Michael Jerabek2 and Zoltán Major1

1Institute of Polymer Product Engineering, Johannes Kepler University, Linz, Austria, 2Borealis
Polyolefine GmbH, Linz, Austria

Polymers show a transition from ductile-to brittle fracture behavior at decreasing
temperatures. Consequently, the material toughness has to be determined
across wide temperature ranges in order to determine the Ductile-Brittle
Transition Temperature This usually necessitates multiple impact experiments.
We present a machine-learning methodology for the prediction of DBTTs
from single Instrumented Puncture Tests Our dataset consists of 7,587 IPTs
that comprise 181 Polyethylene and Polypropylene compounds. Based on a
combination of feature engineering and Principal Component Analysis, relevant
information of instrumentation signals is extracted. The transformed data is
explored by unsupervised machine learning algorithms and is used as input for
Random Forest Regressors to predict DBTTs. The proposed methodology allows
for fast screening of new materials. Additionally, it offers estimations of DBTTs
without thermal specimen conditioning. Considering only IPTs tested at room
temperature, predictions on the test set hold an average error of 5.3°C when
compared to the experimentally determined DBTTs.

KEYWORDS
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1 Introduction

Polyolefins are a popular material choice for the automotive- and packaging industry
due to their affordability, processability and ductility. Polyethylene- (PE) and Polypropylene
(PP) blends are especially relevant because they can be customized to specific application
profiles and contribute to the economic attractiveness of recycling (Freudenthaler, 2022).
Application temperatures usually span over wide temperature ranges from −60°C to well
over 60°C (Grundstein et al., 2009). A transition from ductile-to brittle fracture behavior at
decreasing temperatures can be observed (Wolfgang and Sabine, 2001). This is commonly
characterized by the so-called Ductile-Brittle Transition Temperature (DBTT), which serves
as a reference for component designers. Determination of the DBTT usually involves
multiple impact experiments at different testing temperatures, which leads to extensive
workload.

In this study, we examine material toughness by conventional Instrumented Puncture
Tests (IPTs). Here, a flat specimen is perpendicularly impacted and subsequently punctured
by a striker equipped with a load cell that records the reaction force. In Figure 1, a schematic
depiction of the IPT setup is shown together with characteristic instrumentation signals.
Data extracted from IPTs can not be directly used for material modelling. Results are either
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evaluated in the context of underlying temperature sweeps to
calculate transitions or to rank materials according to their impact
resistance (Major et al., 2022).

Impact behavior of polyolefins has been extensively researched
in literature. Noteworthy aspects influencing the DBTT include
the microstructure morphology, specimen geometry and loading
rate (Perkins, 1999). Additionally, the presence and shape of local
defects has an influence on toughness (Huang et al., 2003). It
has been shown by (Kunz-Douglass et al., 1980; Yee and Pearson,
1986) that plastic shear-yielding of the matrix is the main
process of energy dissipation under impact loading. Furthermore,
a dependence on the molecular weight (Van der Wal et al., 1998)
and a related change in the DBTT caused by aging (Yang et al.,
1996; Jose et al., 2014; Suarez and Mano, 2000) can be observed.
The processing conditions of PE/PP blends was also found to affect
the impact behavior (Strapasson et al., 2005). The toughness of
polyolefins can be improved significantly by the addition of impact
modifiers (Panda et al., 2015; Li et al., 1998; Tam et al., 1996). In
(Tai et al., 2000), the impact behavior of PE/PP blends in various
compositions is compared. The crystallinity influences the impact
strength at low temperatures (Shao et al., 2015) and the strain-
stress behavior under high loading rates up to 1,000 s−1 (Zhu et al.,
2022).

Data-based modelling approaches have emerged as effective
alternative to analytical- or numerical investigations. Material
science is challenged with many difficulties regarding the
applicability of machine learning. In most scenarios, the availability
of experimental data is amajor problemdue to expensive acquisition
and a lack of public databases. Review papers summarizing the
state of machine learning in various sectors of material science
are available. For example, in continuum materials mechanics
(Bock et al., 2019), solid state material science (Schmidt et al.,
2019) or composite material design and discovery (Chen and
Gu, 2019). Recent trends in polymer science are summarized
in (Martin and Audus, 2023). To overcome the problem of
insufficient experimental data, many studies generate artificial
datasets by numeric or stochastic simulations (Reimann et al., 2019;
Pitz et al., 2021; Paul et al., 2019; Wang et al., 2021). Exploration

of real-world experimental datasets are uncommon in material
science. In (Alidoust et al., 2021), machine learning models are
established using a set of 153 cyclic triaxial tests to determine
the shear modulus of municipal solid waste. Another example
of machine learning on small experimental datasets is presented
in (Altarazi et al., 2019), using cut samples from high density
PE films produced at various process conditions to predict the
Young’s modulus. In (Ho et al., 2021), the elastic modulus of carbon
nanotube composites is predicted by neural networks trained on
an experimental database of 282 materials. Likewise, a set of 82
dielectric materials has been utilized to build machine learning
models able to predict the intrinsic dielectric breakdown field
(Kim et al., 2016). Using a set of 40 notched uniaxial tensile tests
at certain strain rates and temperatures, viscoelasticity of PE is
described using an artificial neural network constitutive model
(Jordan et al., 2020). In (Mallakpour et al., 2014), a set of 50 optically
active polymers were investigated by thermogravimetric analysis to
model quantitative structure-property relations with support vector
machines. The application of regression trees was showcased in
(Li, 2006), where 1,600 creep experiments were used to model
the creep rupture life and rupture stress of austenitic stainless
steels.

Polyolefin compound development still predominantly involves
trial-and-error-based design of experiments, where large amounts
of data are generated. IPTs are a common method to quantify
the impact resistance, and ever-growing databases make it possible
to utilize data-based modelling techniques. We expect that single
IPTs can indirectly provide information about the time-temperature
dependency of material behavior. For this reason, we apply machine
learning algorithms to a database of 181 PE/PP compounds and
7,587 experiments. With a combination of Principal Component
Analysis (PCA) and K-Means Clustering (KMC), we aim to
demonstrate how unsupervised machine learning algorithms can
identify meaningful structures or clusters within datasets. In a
supervised regression setting, we utilize Random Forest Regressors
(RFR) to predict DBTTs from single recorded instrumentation
signals. This approach holds the potential to reduce costs and time
for material characterization, enables fast screening of materials and

FIGURE 1
Puncture test setup (A) and recorded instrumentation signals (B) for an exemplary PE/PP compound. For polymers, a transition from ductile-to brittle
fracture behavior can be observed at decreasing temperatures. Instrumentation signals are commonly referred to as ”force-deflection curves”.
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TABLE 1 Number of experiments andmaterials for respective categories.

Total PE PP PE/PP

Samples 7,587 567 3,363 3,657

Materials 181 14 72 95

offers the possibility to determine DBTTs without thermal specimen
conditioning.

2 Materials and methods

As machine learning is data-driven, this section starts with
an overview of the experimental database. This is followed
by a description of the transition temperature determination.
A general overview of applied machine learning methods and
the validation process is presented in Section 2.3. Finally, we
give detailled information about feature engineering, Principal
Component Analysis, K-Means Clustering and Random Forest
Regression.

2.1 Data acquisition

Our dataset is composed of 7,587 IPTs with consistent
setup (International Organization for Standardization, 2020) and
consistent specimen conditioning (International Organization for 
Standardization, 2016). Relevant parameters include a striker
velocity of 4,400 mm s−1, a specimen thickness of 2 mm, a striker
diameter of 20 mm and a clamping ring diameter of 40 mm.
Experiments are conducted with clamped specimens and with
lubricated strikers. Data is structured in temperature sweeps, which
refer to systematic variations of up to 56 experiments with test
temperatures ranging from −60°C to 51 C for each material. In
total, 181 recycled Polyethylene (PE) and Polypropylene (PP)
compounds are examined. These base materials are combined with
either impact modifiers, virgin homopolymers or Heterophasic-
Copolymers (HECO) in weight fractions ranging from 5% to 40%.
Materials are classified according to basematerials into either PE, PP
or PE/PP. In Table 1, the number of experiments for each material
category is listed.

2.2 Determination of transition
temperatures

Although the transition from ductile-to brittle takes place
over a temperature range, it is commonly characterized by
a discrete Ductile-Brittle Transition Temperature (DBTT). To
determine the DBTT, toughness related quantities are observed
at multiple temperatures and a threshold is defined. In this
study, we calculate the puncture energy Ep as area below the
force-deflection curve. A characteristic progression of Ep over
temperature T is shown in Figure 2. Energies are traditionally
separated into Lower-Shelf (LS), Transition Region (TR) andUpper-
Shelf (US) (Altstadt et al., 2016). We determine the DBTT by linear

FIGURE 2
Determination of the Ductile-Brittle Transition Temperature (DBTT).
Transitions are interpolated where puncture energy drops below 66%
of the maximum upper shelf energy Eusp . Energies are filtered to
mitigate the influence of scatter on the resulting DBTTs.

interpolation where puncture energy drops below 66% of the
maximum upper shelf energy Eusp . Since experimental results may
scatter significantly, it is beneficial to utilize curve fitting- or filtering
methods (Cao et al., 2012). We apply a gaussian filter with intensity
σ = 2.0 to mitigate the effect of observed scatter on the resulting
DBTTs.

2.3 Cross-validation

Machine learning models are trained (optimized), validated
and tested on separate datasets. The splitting of data can lead to
optimistic evaluations of the quality of predictions, which has to
be considered when evaluating models. In this study, the base
material categories from Table 1 are unevenly represented, which
leads to high variance of observations. This increases the risk of
overfitting models, meaning that models might fit perfectly to the
training data but fail at generalization to unseen data (Cawley and
Talbot, 2010). To address the issue of overfitting, we conduct cross-
validation, where we divide the training data into five validation
subsets called ”folds” (Krstajic et al., 2014). Each fold serves as
validation set for a model that was trained on the other remaining
folds. The performance of the resulting five models are quantified
by scoring functions that compare the model outputs to desired
target values. Average and standard deviation of validation scores
correspond to model bias and variance. Low bias and variance
is preferred. Data is randomly split by sweeps rather than single
experiments to avoid information leakage as shown in Figure 3.
We split subsets via stratification to ensure equal distributions
of base materials across subsets. Cross-validation is conducted
as follows, with more detailled descriptions in the upcoming
sections.

• Separate a test set from the data (30%).
• Conduct cross-validation on remaining data (5-folds):
• Extract features from instrumentation signals. First,

features of training data are standardized and then
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FIGURE 3
Machine learning requires the evaluation of trained models on separate sets of data. We randomly split the database by temperature sweeps into a test
set and five cross-validation folds. Individual temperature sweeps and the bounding envelopes are displayed. Vertical boxes indicate the covered range
of DBTTs in each set. Random forest regressors can hardly extrapolate outside of the data used for training. Stratification ensures equal distributions of
base materials across subsets.

features of validation data are transformed to the same
scale.
• Conduct Principal Component Analysis (PCA) on

standardized features of training data and then transform the
standardized features of validation data to the same coordinate
system.
• Train a Random Forest Regressor (RFR), a Linear regression

model (LIN) and aK-Means Cluster (KMC)model on principal
components. RFR hyperparameters are optimized by nested
cross-validation. LIN serves as baseline to assess the quality of
RFR predictions.
• Evaluate predictions of LIN and RFR on the validation fold.
• Get the average validation performance of all models. Average

and standard deviation reflects bias and variance. Low bias and
variance are preferred.
• Combine the five cross-validated RFR-models in an

”ensemble” that outputs the median of submodel predictions.
Evaluate the ensemble predictions on the test set. The
KMC model is used to check for the applicability of
predictions.

2.4 Feature engineering

In machine learning terminology, instrumentation signals are
observations in the form of time-series. Any kind of information
extracted from an observation is a feature as long as it helps a
model to predict a specific target (Liu and Motoda, 1998). Feature
engineering is a process of applied data-mining techniques and
can be considered machine learning as well (Ng, 2018). Domain
knowledge is essential in extracting features from time-series. It is
favorable to generate a large and diverse set of features and then filter
them according to their significance for the task at hand (Fulcher
and Jones, 2014). A balance between meaningful and frail features
(e.g., deflection at crack initiation) and robust but probably non-
significant features (e.g., median of all force values) is preferable
(Christ et al., 2016). Having too many features including irrelevant
ones is better than missing out on important ones. However, models
with unnecessary predictors are more prone to overfitting during

training. In such scenarios, feature selection should be applied
(Kuhn and Johnson, 2019). Our approach follows the same idea: we
generate a set of features as diverse as possible and select a subset of
features for training.

We split normalized force-deflection (F-s) curves into
characteristic segments by determining points with the largest
orthogonal distance to the direct connection lines between origin,
peak load and breaking point as shown in Figure 4. This way, we
define six distinct sections throughout puncture, which will be
referenced by index i from 0 to 5. We extract statistical quantities
within these partitions (Deng et al., 2013), for example, linear trends
Ki determined by least squares regression. Also, the energy of
individual sections Ei and their ratio to the total energy Ri =

Ei
E

inspired by the ductility index (Yim et al., 2017) are considered.
Other features derived from curve segments include mean (Favgi ,
savgi ), median (Fmed

i , smed
i ), standard deviation (Fstdi ), variance (F

var
i ),

skew and kurtosis (Wang et al., 2006) (Esi , F
s
i , E

k
i , F

k
i ). Referenced

without index, these features are also calculated for the whole time
series. The peak load and the corresponding deflection (Fmax, smax)
is determined as well. Finally, the number of local force maxima
np is considered. This amounts to a total of 94 input variables.
We considered extracting features from the frequency domain of
the instrumentation signal (Mörchen, 2003), but disregard them
in this study because the periodicity of the signals is limited.
While normalization is conducted to divide force-deflection curves
into subsections, features are calculated using the original non-
normalized data. In the Supplementary Materials, we attach an
exemplary. csv file of extracted features.

2.5 Target definition

Instead of using the DBTT directly, proposed models predict
the temperature difference ΔT = T−DBTT between the test
temperature T and the DBTT. This allows predictions to be a
measure of the relative distance anddirection rather than an absolute
location on the temperature scale. The increased variability of
the target can have a beneficial effect on training by amplifying
prediction errors on outliers. Furthermore, it is not necessary to add
temperature to the inputs of the model.
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FIGURE 4
Feature engineering approach for an exemplary material at different temperatures. The force-deflection curves are segmented into characteristic
regions. 94 statistical quantities are extracted from the force-, deflection- and energy distributions in the respective regions. These serve as inputs for
machine learning models.

2.6 Principal Component Analysis

We expect high collinearity of features because deflection,
force and energy are closely related. Real-world data shows
a certain degree of collinearity and predictive capabilities of
models are not necessarily affected by it (Shmueli, 2010). It is
mainly a cause of concern regarding model explainability, because
collinear variables share substantial amounts of information
and small changes in features can strongly affect the outputs
of the model (Dormann et al., 2013). There are different ways
to check for collinearity. We calculate the determinant of the
Pearson correlation matrix across all cross-validation folds. It is
a symmetric matrix whose components are Pearson correlation
coefficients that are a measure of linear correlation between
two features (Freedman et al., 2007). In this case, a determinant
below 1E-4 indicates strong multicollinearity. Contrary, a value
of 1 would correspond to non-collinearity in the dataset (Field,
2013). Because of this excessive collinearity, tree-based or
permutation feature importance metrics may give misleading
results and will not be assessed in this study (Hooker and Mentch,
2019).

We apply Principal Component Analysis (PCA) with prior
standardization of features to the training data in an effort to
overcome multicollinearity (Upton and Cook, 2008). This is done
by transforming features into a new coordinate system of linearly
uncorrelated variables, called principal components (PC). These
are ordered according to the amount of variance they explain
in the original data, with the first component explaining the
highest variance and the last principal component the lowest. The
dimensionality of the dataset can then be reduced by dropping
principal components with the lowest variance while retaining a
certain amount of explained total variance. In this study, we keep a
subset of principal components that hold 99.99% of variance in each
training set in the cross-validation cycle. One downside of PCA is
that information is lost upon transformation if not all components
are considered. Furthermore, principle components are difficult to
interpret.

PCs and their explained variance are represented by the
eigenvectors and eigenvalues of the covariance matrix of original
features in the training set. Observations in the validation- and
test sets are then transformed to the same coordinate system. First,
the same standardization of features as for the training data is
conducted. Then, the PCs are calculated by multiplication with the
matrix of eigenvectors of the training covariancematrix.We show an
examplary PCA fitted on the training data of one cross-validation
iteration in Figure 5. Here, the first three principal components
shown in the diagrams explain 72% of variance in the training
data.

2.7 K-Means Clustering

K-Means Clustering (KMC) is an unsupervised machine
learning algorithm used for separating data into k distinct
clusters based on similarity or dissimilarity in the form distance
metrics. The algorithm assigns each observation to the cluster
Ci with the nearest center μi. Centers or ”centroids” are located
at the mean of all cluster observations and are calculated
as

μi =
1
‖Ci‖
∑
xj∈Ci

xj, (1)

with ‖Ci‖ as number of observations, xj as observations andCi as the
respective clusters. The dataset D = {xi} ⊂ X, i = 1…N contains
all observations. Initially, cluster centers are chosen randomly
μi ∈ X. During training, they are iteratively optimized. KMC
aims to minimize the within-cluster variances by minimization
of the squared Euclidian distances. This process continues until
convergence, when centroids stabilize and cluster assignments
remain unchanged. This results in a partitioning of the data space
into Voronoi cells. KMC is an efficient algorithm and due to
its simplicity one of the most widely used clustering methods.
It does not make assumptions about the distribution of features
and works well on non-gaussian distributed data. However, KMC
is not guaranteed to find optimal solutions and performance
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FIGURE 5
Investigation of the dataset by Principal Component Analysis. In (A), temperature sweep regions LS (lower shelf, brittle), TL (transition region, below
DBTT), TU (transition region, above DBTT) and US (upper shelf, ductile) can be related to material toughness. With (B) and (C), we show that
experiments, base materials and DBTTs are balanced among dataset splits and that the test set is representative of the train data. In (D), numbers
indicate cluster centroids from K-Means Clustering.

can be sensitive to the initial placement of centroids. There are
various ways for the initialization of cluster centers (Hamerly and
Elkan, 2002). We use the K-Means++ method, which improves the
probability of obtaining optimal solutions in comparison to random
initialization and shows faster convergence (Arthur andVassilvitskii,
2007).

During cross-validation, we conduct KMC++ for the training
data of each iteration with k = 5 clusters. We use the PCA
transformed features as input. In Figure 5D, resulting cluster
centers are visualized in the PCA coordinate system and indicated
by enumeration. In the discussion section, we will examine
the characteristics of these individual clusters. The displayed
clusters are representative of all fitted KMC-models throughout
cross-validation since they share substantial amounts of training
data.

2.8 Random Forest Regression

Adecision tree is a predictivemodel that connects input features
to output targets by partitioning of the dataset. Random Forest
Regressors (RFRs) are a combination of multiple decision trees and
are based on the concepts of bootstrapping and bagging (Jacoby
and Armstrong, 2014). Bootstrapping implies that each individual
tree is fitted on random subsets of training data by sampling
with replacement. Bagging transforms all trees into a meta-model
”forest” that outputs the average of submodel predictions. This
is commonly referred to as bootstrap aggregation, which reduces
training time and adds a regularization effect (Krogh and Vedelsby,
1994). The concept of bootstrap aggregation is depicted in Figure 6.
We implement RFRs via the Scikit-Learn (Pedregosa et al., 2011)
library in Python 3.8 (Van Rossum and Drake, 2009).
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FIGURE 6
Bootstrap aggregation of Random Forest Regressor (RFR) as combination of decision trees. During bootstrapping, each tree is trained (optimized) on
random subsets of training data by sampling with replacement. The predictions of all trained trees are averaged, which is referred to as bagging.

TABLE 2 Selected hyperparameters for the five RFRs trained troughout
cross-validation.

Parameter Bounds Results for each fold

N t [256, 512] 512, 298, 512, 439, 422

Dmax [20, 50] 28, 22, 44, 25, 45

Nmax
f [0.5, 0.85] 0.54, 0.50, 0.58, 0.50, 0.57

Nmax
b [0.9, 0.99] 0.98, 0.99, 0.96, 0.99, 0.99

Nmin
s [2, 8] 3, 2, 2, 2, 2

Nmin
l [1, 3] 2, 1, 2, 1, 1

We paraphrase a brief explanation of classification- and
regression trees from (Loh, 2011). Let x⃗i ∈ Rn and ⃗y ∈ Rl be the
feature and target vector for observation i = 1,…l. The number of
features is denoted with n. Decision trees recursively partition their
training data in order to group observations with similar target
values. These splits are conducted at nodes m that represent subsets
of data Qm with Nm observations. Possible candidates for splits
θ = (j, tm) with feature index j and threshold tm are defined as

Qleft
m (θ) = {(x,y) |xj ≤ tm} , (2)

Qright
m (θ) = Qm\Q

left
m (θ) , (3)

with Qleft
m and Qright

m as resulting subdivisions of the feature space.
During model training, an error function H(Qm) determines the
quality of each split at node m. For regression tasks, the mean
squared error (MSE) function is deployed as

H(Qm) =
1
Nm
∑
y∈Qm

(y− ym)
2, (4)

ym =
1
Nm
∑
y∈Qm

y, (5)

TABLE 3 Five Random Forest Regressors (RFR) and five Linear regressors
(LIN) are trained throughout cross-validation and evaluated on the
validation- and test sets. The resulting Root Mean Squared Error (RMSE) in
°C of predictions compared to actual DBTTs are compiled.

5x RFR 5x LIN

AVG STD AVG STD

Validation Sets 10.13 0.73 10.87 0.56

Test Set 9.64 0.07 10.28 0.08

with the predicted value being the mean value of all datapoints in
the node ym. The optimal split is determined by minimizing the
combined error

G(Qm,θ) =
Nleft
m

Nm
H(Qleft

m (θ)) +
Nright
m

Nm
H(Qright

m (θ)) , (6)

θ* = argminθG(Qm,θ) , (7)

of the left and right split sides of the dataset. This procedure is
recursively applied until either a stopping criteria is met or Nm = 1.
The final node in each branch of the tree is referred to as leaf
node. Decision tree regressors offer a variety of stopping criteria,
for example, a maximum tree depth Dmax or a minimum amount
of observations for each split Nmin

s . Alternatively, tree growth can
be stopped by prescribing a minimum amount of leaf observations
Nmin
l . Candidate splits θ are usually restricted to a subset of Nmax

f
features to further minimize the risk of overfitting models. A
random forest encompasses a total number ofNt decision trees, each
trained on a subset ofNmax

b observations (bootstrap size). Individual
predictions of input x⃗ are averaged to a combined output y*.

Non-trainable parameters of machine learning models are
referred to as hyperparameters. In this study, we optimize
RFR hyperparameters via nested cross-validation (Hastie et al.,
2009; Varma and Simon, 2006; Krstajic et al., 2014). Here, the
training data of each ”outer” cross-validation iteration is further

Frontiers in Materials 07 frontiersin.org

https://doi.org/10.3389/fmats.2023.1275640
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Kiehas et al. 10.3389/fmats.2023.1275640

TABLE 4 Ensemble performance on test set. Separate evaluations for the basematerial categories PE, PP and PE/PP are conducted. Additionally, all Room
Temperature (RT) andTransition Region (TR) observations of the test set are isolated.

Set Observations RMSE (°C) MAE (°C) R2 (−)

Entire test set 2,375 9.58 7.25 0.93

Only PE 152 9.48 7.52 0.93

Only PP 1,088 9.32 7.19 0.93

Only PE/PP 1,135 9.84 7.26 0.93

Only RT 54 6.74 5.33 0.86

Only TR 1,075 7.54 5.86 0.80

FIGURE 7
Force-deflection signals of all clusters obtained by KMC. Clusters are reminiscent of ISO6603-2 fracture types Yielding with Deep drawing (YD),
Yielding with Stable cracking (YS), Yielding with Unstable cracking (YU) and No Yielding (NY). The average ΔT of cluster representatives is displayed.

divided into three ”inner” subfolds where we apply a stepwise
Bayesian optimization algorithm (Shahriari et al., 2015). In each
of 100 steps, RFRs are trained with specific combinations of
hyperparameters and validated via inner cross validation. The
final optimized hyperparameters are selected according to the
lowest average validation MSE. We compile all five cross-validation
results in Table 2. Descriptions of hyperparameters are listed in
Section 2.8 and can be looked up in the Scikit-Learn documentation
(Pedregosa et al., 2011).

3 Results

During cross-validation, five Random Forest Regressors (RFRs)
with optimized hyperparameters are trained. Additionally, ordinary
least-squares linear regression models (LIN) are fitted, which use
the same input features and serve as baseline to assess the quality
of predictions. In Table 3, we quantify the quality of predictions by
the Root Mean Squared Error (RMSE). The average and standard
deviation of RMSEs across validation- and test sets can be related
to the bias and variance of RFR/LIN. Results on the test set
are within the expected standard deviation range. High variance
is caused by the unequal representation of the base material
classes PE, PP and PE/PP across sets. Therefore, we combine all
five RFR-models into one ”ensemble” that outputs the median
of submodel predictions. In Table 4, we assess the quality of
ensemble predictions on the test set by RMSE, Mean Absolute

Error (MAE) and coefficient of determination (R2-score). For
practical use cases, predictions of experiments conducted at Room
Temperature (RT) are especially interesting because these do not
require thermal specimen conditioning. Another subset that only
considers observations in the Transition Region (TR) (Section 2.2)
is selected.

4 Discussion

4.1 Clustering

To visualize the difference between clusters of Figure 5D,
we display all corresponding force-deflection curves in Figure 7.
We order cluster indices according to their average target
values ΔT, starting with (i) brittle- and ending with (v) ductile
experiments. These clusters are reminiscent of ISO 6603-2
(International Organization for Standardization, 2020) fracture
categories. Representatives of cluster (ii) are predominantly PE-
compounds as shown in Figure 5C, which emphasizes that their
fracture behavior is distinct fromcompoundswith PP contents. Both
ISO categories and KMC clusters can be related to the characteristic
temperature sweep regions in Figure 5A. This way, clustering
affirms that ISO fracture types provide a meaningful and relevant
framework for the impact behavior of polyolefins. It also shows that
the applied feature engineeringwith PCA is effective in transforming
the dataset of instrumentation signals to a coordinate system where
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FIGURE 8
Ensemble predictions of ΔT = T-DBTT on the test set. For very brittle (Lower Shelf LS) and very ductile (Upper Shelf US) experiments, models are under-
or overestimating DBTTs. In these domains, force-deflection curves become indistinguishable. Predictions in the Transition Region (TR) are more
accurate. Selected results for PP- (A), PE- (B) and PE/PP (C) compounds are displayed.

fracture types are clearly separable. This linear separability of KMC
clusters- (Figure 5A), ISO fracture types- and temperature sweep
regions (Figure 5A) might explain why the performance of linear
regressors compared to non-linear RFRs is only marginally reduced.

4.2 Predictions on the test set

The proposed models allow each individual force-deflection
curve to make its own estimate of the transition temperature
without further information of the underlying temperature sweep. In
Figure 8, we compare the predictions of the ensemble to the actual
DBTTs for all base material categories. Except for observations in
direct proximity of the transition, models are able to consistently
point into the direction of the DBTT. Predictions are systematically
overestimating the DBTT in the lower shelf, where force-deflection
curves are indistinguishable by humans. In general, predictions
in the transition region are more accurate. We assume that
observations holdmore variance in this domain of the dataset, which

facilitates increased capabilities to predict the variability of DBTTs.
R2-scores of approximately 0.93 (Table 4) indicate that most of the
variability of DBTTs is explained by the ensemble.

4.3 Scaleability

In the introduction, we argue that proposed models could
reduce time- and costs of material characterization by enabling
predictions of DBTTs from single IPTs. We investigate this scenario
by only considering experiments tested at Room Temperature (RT).
In this case, the ensemble achieves a MAE of 5.3°C (Table 4) and
predictions are consistently within 10°C of the actual DBTTs. We
point out that 40 out of 54 IPTs are located in the Transition Region
(TR) of their respective temperature sweeps. Here, predictions are
generally more accurate because testing temperatures are closer to
the actual DBTTs.

Despite the underrepresentation of PE in the training data,
the ensemble’s quality of predictions is only marginally reduced
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FIGURE 9
Ensemble predictions of ΔT = T-DBTT for selected materials. Bounding boxes indicate which predictions are within 10°C of the actual transition
temperatures. (A) shows a temperature sweep from the test set. (B) and (C) show predictions for materials outside the scope of the training data. In
such cases, the application of proposed models can yield decreased quality of results. The main difference between these materials is the soluble
weight fraction (SOL), which is connected to amourphous rubber content.

for this subset of the database. This suggests that streamlined
measurement studies of narrow material categories could allow
for reasonable model performance while requiring only moderate
amounts of training data. However, we emphasize that the
examined polyolefin categories might share substantial amounts of
information. Therefore, we cannot conclude a minimum number of
experiments necessary for model training.

Presented models should only be applied to compounds with
material constituents similar to those the model was trained on.
Different base materials, ingredients or fillers may result in a
decreased quality of predictions. We exemplify this in Figure 9,
where we compare a PP basematerial from the test set to a 100%
HECO and another HECO filled with 20% talcum. In the training
data, filled compounds are not included andHECOs are only present
in weight fractions up to 40%. Although the proposed model allows
predictions for any IPT measurement, we do not recommend its
application in cases like Figures 9B,C. We specifically advise against
the usage in following cases: (i) If the puncture energy is smaller

than 2.5 J (ii) If the puncture energy at themeasurement temperature
is outside the envelopes of train sets (Figure 3). (iii) If the squared
Euclidian distance of examined observations in the PCA-coordinate
system to their corresponding assigned KMC centroids is too large,
which implies that force-deflection curves may be dissimilar to the
train data. The threshold is set to the 90% quantile of cluster-center-
distances in the train data. This check is conducted for each KMC
fitted throughout cross-validation.

4.4 Limitations

The proposed methodology is constrained by limitations
of the IPT methodology: (i) According to the specimen
conditioning norm, the actual specimen temperature may
show variations of ±2°C in relation to the testing temperature
(International Organization for Standardization, 2016). (ii)
Injection molded specimens exhibit slight imperfections that
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influence the fracture process. Resulting scatter of puncture
energy Ep can influence the determination of DBTTs.
(iii) Deviations in the specimen thickness up to ±0.1 mm
(International Organization for Standardization, 2020) should be
expected. (iv) The instrumentation does not exclusively record the
instrinsic material mechanical response but also includes inertia
effects and high frequency noise of amplification systems (Menna,
2022).

While we apply RFRs in this study, other machine learning
algorithms (Baştanlar and Özuysal, 2014) can also be successfully
applied. Deep learning algorithms like convolutional-neural
networks are just as capable of extracting relevant information
from time-series, but pose many challenges when trained on
small datasets. RFRs partition the training data space in a way
that connects inputs-to the target output values. Decision-making
purely depends on the similarity- or dissimilarity of force-
deflection signals. Due to the regularization effect of bagging and
bootstrapping, robust interpolation in regions with sufficient data
in the feature space is possible. At the same time, extrapolation
capabilities are very limited. We acknowledge that there is a
need to understand and include underlying polymer physics.
For example, information about molecular mass distributions
or microstructure morphologies could be a suitable additional
model input. Various other ways to incorporate domain knowledge
into machine learning systems exist (Martin and Audus, 2023).
To showcase the importance of microstructure information, we
determine the soluble weight fraction (SOL) of the three materials
displayed in Figure 9 by soluble fraction analysis (Monrabal and
Ortín, 2013). For PE/PP compounds, the soluble- or amorphous
fraction is usually related to elastomer content in the form of
ethylene-propylene rubber (Wei et al., 2000). High SOL generally
translates to tougher compounds. We find that the training database
is missing observations in the domain of high SOL and low DBTTs
respectively. While considerations of SOL and other morphology
related quantities could significantly increase the extrapolation
capabilities of models, soluble fraction analysis is not feasible
for all 181 materials in the scope of this research due to sample
availability. In future research, we aim to investigate fracture surface
images of notched Charpy impact experiments in combination with
instrumentation signals bymachine learning algorithms.We suggest
that plastic deformationmechanisms visible on the crack surface can
be indirectly related to the morphology of materials.

4.5 Conclusions

We show that instrumented puncture impact tests can be related
to the temperature dependency of polyolefin impact behavior.
Utilization of supervised- and unsupervised machine learning
algorithms on a database of 7,587 experiments proved valuable
from a predictive and exploratory standpoint. We present a
novel feature engineering method to extract 94 features from
characteristic regions of recorded instrumentation signals. By
applying Principal Component Analysis (PCA), this dataset was
transformed to a new coordinate system where 72% of the
variance is explained by the first three components. Application
of K-Means Clustering (KMC) results in clusters that reflect
ISO 6603-2 (International Organization for Standardization, 2020)

fracture types, which validates the relevance of this categorization.
Furthermore, the principal components proved suitable for reducing
the dimensionality of the dataset while keeping relevant information
for training machine learning models to predict the Ductile-Brittle
Transition Temperature (DBTT). Based on this combination of
feature engineering and PCA, the trained machine learning model
achieves an R2-score of 0.93 on the test set. When considering
only room temperature experiments in the test set, a mean absolute
error of 5.3°C compared to the experimentally determinedDBTTs is
realized.These results suggest that predictions of DBTTs from single
impact tests at room temperature allow for fast screening ofmaterials
and a drastic reduction of time and cost for compound development.
Furthermore, estimations of theDBTT are possible without the need
for thermal specimen conditioning.

This study exemplifies both the effectiveness and limitations
of a purely data-driven approach and confirms that there is a
need to understand the underlying structure-property relationship
of polyolefin compounds. While we were able to show a strong
correlation between the soluble weight fraction and the DBTT
for selected materials, we could not measure this quantity for
all materials due to sample availability. In future studies, we
aim to investigate fracture surface images obtained from Charpy
impact experiments by machine learning algorithms to incorporate
information about plastic deformation- and fracture mechanisms
during impact.
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