AUTHOR=Wu Mingyue , Ruiz Pestana Luis TITLE=Identifying a machine-learning structural descriptor linked to the creep behavior of Kob-Andersen glasses JOURNAL=Frontiers in Materials VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2023.1272355 DOI=10.3389/fmats.2023.1272355 ISSN=2296-8016 ABSTRACT=
A wide variety of materials, ranging from metals to concrete, experience, typically at high-temperatures or over long time scales, permanent deformations when subjected to sustained loads below their yield stress—a phenomenon known as creep. While theories grounded on defects such as vacancies, dislocations, or grain boundaries can explain creep in crystalline materials, our understanding of creep in disordered solids remains incomplete due to the lack of analogous structural descriptors. In this study, we use molecular dynamics to simulate the creep response of a Kob-Andersen glass model system under constant, uniaxial, compressive stress at finite temperature. We leverage that data to derive, using a machine-learning classification model, a structural descriptor termed