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A wide variety of materials, ranging from metals to concrete, experience, typically
at high-temperatures or over long time scales, permanent deformations when
subjected to sustained loads below their yield stress—a phenomenon known as
creep. While theories grounded on defects such as vacancies, dislocations, or
grain boundaries can explain creep in crystalline materials, our understanding of
creep in disordered solids remains incomplete due to the lack of analogous
structural descriptors. In this study, we use molecular dynamics to simulate the
creep response of a Kob-Andersen glass model system under constant, uniaxial,
compressive stress at finite temperature. We leverage that data to derive, using a
machine-learning classification model, a structural descriptor termed looseness,
L, which is based on simple and interpretable local structural features and can
predict imminent plastic rearrangements within the glass. We show that the
average looseness of the system evolves logarithmically with time, mirroring
the time dependence of the creep strain and demonstrating the ability of our
model to bridge local, short-term particle dynamics with the long-term
macroscopic creep response. A detailed feature importance analysis reveals
the particular significance of short-range structural heterogeneity in the
prediction. We also scrutinize the spatial and temporal correlations of
looseness, which mirror the lack of long-range order in glasses and their
dynamic heterogeneity. Our research underscores the substantial predictive
potential of machine-learning-derived structural indicators in systems
experiencing concurrent stress and thermal excitations, paving the way for
future work to elucidate the interplay between thermal and mechanical
activation of structural defects in disordered solids.
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1 Introduction

Certain materials, when exposed to sustained loads below their yielding point, and
typically over long time scales and/or high temperatures, exhibit permanent
deformations—a phenomenon known as creep. Creep occurs in metals under high-
temperature conditions, such as those found in turbine blades (McLean, 1966), in ice
causing glaciers to flow (Weertman, 1983), or in amorphous materials such as polymers
(Brinson and Gates, 1995), metallic glasses (Castellero et al., 2008), or even concrete (Bazant
and Wittmann, 1982), the most used man-made material worldwide. While several
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mechanisms responsible for creep of crystalline solids have been
proposed, which include the diffusion of vacancies (Nabarro, 1948;
Herring, 2004), dislocation dynamics (Harper and Dorn, 1957), or
grain boundary sliding (Bell and Langdon, 1967; Langdon, 2006), all
these mechanisms are based on structural defects that break the
long-range order of the crystal lattice and therefore can be trivially
identified. Analogous knowledge for disordered solids is
understandably lacking, as what constitutes as a structural defect
in these systems remains an open question. For example, intuitive
structural descriptors, such as free volume or bond orientational
order, have been shown to be poor predictors of the plasticity of
glasses (Richard et al., 2020). Other more successful indicators have
also been proposed such as soft-modes (Widmer-Cooper et al., 2008;
Tanguy et al., 2010), or rattling amplitude (Larini et al., 2008), but
those rely on the dynamics of the system and thus are not strictly
structural.

Motivated by this challenge and the tremendous power of
machine learning (ML) techniques to find patterns within
complex datasets, when human intuition falls short (Bishop and
Nasrabadi, 2006), (Cubuk et al., 2015) pioneered the use of ML
techniques to identify potentially complex structural signatures that
are predictive of the particle dynamics in glassy systems. In this
context and given the challenge of collecting experimental data at
the needed time and length scales, molecular dynamics (MD)
simulations have become indispensable in generating high-
quality, comprehensive data sets essential for the successful
implementation of ML models. Despite the remarkable
advancements made in this field over the past few years
(Schoenholz et al., 2016; Wang and Jain, 2019; Bapst et al., 2020;
Boattini et al., 2020; Fan et al., 2020; Wang et al., 2020; Liu et al.,
2021; Peng et al., 2021; Wang and Zhang, 2021; Xiao et al., 2021; Wu
et al., 2023), prior studies have tackled thermally-driven and stress-
driven relaxation events independently. Studies focused on
understanding structural signatures underlying the glass
transition are based on simulations of stress-free glasses near the
glass transition temperature. In contrast, those focused on
predicting plastic rearrangements in disordered solids under
stress rely, almost exclusively, on simulations of the glass under
athermal, quasistatic shear conditions. Moreover, to the best of our
knowledge, the recent work by Liu et al. (2021) stands alone in its
focus on creep. Interestingly, they demonstrated, for shear strains up
to approximately 1%, a strong correlation between the macroscopic
creep rate and a structural descriptor derived through ML based on
the initial undeformed structure of the disordered colloidal gel (Liu
et al., 2021). Their simulations, however, were conducted in the
quasistatic athermal regime and under oscillatory shear, which is a
condition more closely related to fatigue behavior than to
creep. Deriving ML structural descriptors that can predict the
creep response of disordered solids under sustained loads at
finite temperatures remains a largely unexplored area, and it is
extremely relevant in the context, for example, of bulk metallic
glasses operating at high temperatures (Li et al., 2019).

Here, we employ MD simulations to investigate the creep
response of a Kob-Andersen (KA) glass (Kob and Andersen, 1995)
under sustained uniaxial compressive stress at finite temperature. We
provide a detailed analysis of how the macroscopic creep response of
the glass is affected by the level of applied stress and temperature, as
well as characterize the statistical evolution during creep of the

microscopic deformations, which we characterize by the non-affine
squared displacements of individual particles in the glass,D 2

min . Using
ML classification methods based on interpretable structural features
describing the particles interstices, we are able to identify a local
structural descriptor, dubbed looseness, L, that can predict whether a
particle in the glass will undergo an imminent plastic rearrangement
based on its local interstitial environment alone. We quantify the
prediction accuracy of the ML models, and explain it based on the
interstitial structural features. We also study the time evolution of
looseness averaged over all the particles in the glass, 〈L〉, as well as its
spatial and temporal correlations.

2 Materials and methods

2.1 Molecular dynamics simulations

We performed MD simulations using the program LAMMPS
(Thompson et al., 2022) to study the creep response of a KA glass
under a sustained compressive stress at finite temperature. The KA
model is a two-component Lennard-Jones (LJ) system, which has
been extensively used to study the dynamics of supercooled liquids
and the glass transition, due to being relatively simple and
computationally efficient while still being able to capture many of
the key behaviors of real glasses (Kob and Andersen, 1995). All the
simulated systems here contained 10,000 particles, where 80% and
20% of them were type A and type B, respectively. The parameters of
the LJ interactions are: σAA � 1.0, σAB � 0.8, σBB � 0.88, ϵAA � 1.0,
ϵAB � 1.5, ϵBB � 0.5, mA � mB � 1, and the cutoff for the
interactions was set to 2.5σAA. All the quantities reported in this
study are given in reduced Lennard-Jones units, unless specified
otherwise. All the simulations were performed with periodic
boundary conditions (PBCs) in all dimensions (effectively
simulating bulk glasses), and a time step τ � 0.01.

We generated initial glass configurations as follows. First, we
generated a random configuration of particles in a simulation box at
density ρ � N/V � 1.2, which is the equilibrium density of the KA
glass. We simulated this system in the NVT ensemble for 5 × 104

steps, using a Langevin thermostat at T � 3, which is well above the
mode-coupling temperature of the KA model, TMCT � 0.435
(Ashwin and Sastry, 2003). Once having randomized the
positions of the particles, we induced glass formation by cooling
down the system to T � 0.1 over 104 steps in the NVT ensemble
using a Nose-Hoover thermostat. As a final step, we minimized the
energy of the system.We generated a total of ten unique, minimized,
initial glass configurations following this process.

Starting from each of those ten glass configurations, we
performed simulations in the NPT ensemble where the KA
glasses were instantaneously placed under a constant uniaxial
compressive stress at T below TMCT and sustained for 107 steps.
During the simulations, we outputted optimized configurations,
where the energy of the system was minimized under the
constraint of the applied stress, every 104 steps for analysis. From
each MD simulation, we therefore collect 103 optimized
configurations for analysis. We carried out simulations at
T � 0.01, 0.1, 0.2, 0.3, and 0.4 at a stress of σ0 � 0.5, and
simulations at stress levels ranging from σ0 � 0.1 to 0.9 in
increments of 0.1, at a temperature of T � 0.1. We also
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performed ten simulations at σ0 � 0.5 and T � 0.1. The data from
these simulations (σ0 � 0.5 and T � 0.1), which demonstrably
reproduce the primary creep response of the KA glass, were
utilized for the ML tasks.

2.2 Analysis of non-affine displacements

We calculated the non-affine squared displacement of particle i
over a time interval Δt measured from to, D 2

min (i, to,Δt), using the
equations originally proposed by Langer and Falk (Falk and Langer,
1998), which can be written as:

D 2
min i, to,Δt( ) � min

εi

1
ni

∑
j

Rij to + Δt( ) − εiRij to( )[ ]2⎧⎨⎩ ⎫⎬⎭ (1)

where εi is the local strain tensor around particle i which minimizes
the quantity between the curly brackets, ni is the number of particles
within a cutoff distance (Rcut) of particle i, and Rij is the distance
between particle i and particle j in its neighborhood. We select
Rcut � 2.5, beyond which the results for D 2

min showed no sensitivity
to variations in this parameter. The quantity εiRij(to) corresponds
to the inter-particle distances predicted at to + Δt after the affine
deformation. We used our own MATLAB script to compute D 2

min .

2.3 Machine learning

2.3.1 Problem statement
Our ultimate goal is to train a ML model that can predict

whether or not a particle will undergo a plastic rearrangement
(D 2

min >D2
min ,0) over some time interval Δt, using as features only

simple structural descriptors of the local neighborhood of that
particle. Accordingly, we cast this problem as a supervised binary
classification task. We call particles that undergo plastic
rearrangements class 1 or loose, and those that do not class
0 or tight.

2.3.2 Dataset
Each particle in each of the configurations outputted during the

MD simulations at to � 1 × 104, 2 × 104, . . . , 103× 104 steps,
corresponds to an example in the dataset. The features for each
particle are calculated at each to and the particles are labeled as loose
(class 1) or tight (class 0) depending on Δt (the time interval over
which the particle displacements are quantified) and D2

min ,0 (the
threshold defining whether a particle undergoes substantial
rearrangement). In this study, we focus only on the 80% of
particles identified as type A, but our approach could be readily
expanded to type B particles by choosing a different, suitable value
for D2

min ,0. For Δt � 104 the dataset contains: 10 independent MD
simulations × 103 configurations × 8, 000 particles of type A
� 8 × 107 examples. As shown in Supplementary Table S1, our
datasets are extremely imbalanced, with class 1, the loose
particles, being the minority class as most particles in the glass
do not undergo plastic rearrangements during creep.

2.3.3 Feature engineering
Inspired by the work by Wang and Jain (2019), we created

features that encompass easily interpretable and straightforward

structural quantities that capture the interstitial environments of
each particle short- and medium-range length scales. The short-
range features (SRFs) are derived from the free distances, areas,
and volumes between a given particle and its neighbors. The
distances, areas, and volumes, determined by pairs, triplets, and
groups of four particles, respectively, are corrected for the
spherical particle sizes (proportional to σAA and σAB),
therefore representing the interstitial non-occupied space. The
nearest neighbors to any particle are found by identifying the
particles associated with Voronoi cells that share a boundary with
the cell of the particle in question. The tetrahedral volume is
calculated using Quickhull algorithm (Barber et al., 1996). For
each metric—distance, area, volume—we compute four features
that correspond to the mean, maximum, minimum, and standard
deviation of the calculated values for the given particle. Hence,
there is a total of 12 SRFs (e.g., max(A, . . .). The summary
statistics aim to capture the average as well as potential
anisotropy of the local interstitial environment. The medium-
range features (MRFs) are computed by calculating the same
summary statistics, but now of the SRFs corresponding to the
neighbors of the given particle. Consequently, the MRFs consists
of 48 features (e.g., std[mean(V)], . . .). As illustrated in Figure 1,
each particle is described by a total of 60 features.

2.3.4 Workflow design
All the ML tasks in this paper were executed using Python

scripts with the Scikit-Learn (Pedregosa et al., 2011) and
Imbalanced-learn (Lemaître et al., 2017) packages. To
evaluate and assess the ML models, we utilized balanced
accuracy as our evaluation metric, which is the arithmetic
mean of sensitivity, TP/(TP + FN), and specificity,
TN/(TN + FP), where T and F stand for true and false,
respectively, and P and N for positive and negative,
respectively. This metric gives an equal weight to both
classes, ensuring that neither the majority nor the minority
class dominates the accuracy score. In this paper, we
performed 3 ML tasks: 1) an investigation to select the
optimal values for Δt and D2

min ,0, 2) implementation of
recursive feature elimination (RFE) to remove highly
correlated features, reduce the model complexity, and gain
insight into the most important features, and 3) training a
ML classification model using the optimal values of Δt and
D2

min ,0, as well as the top ranked features.
To investigate the influence of Δt and D2

min ,0 on the accuracy of
the models, we first created, for each combination of Δt � 104, 105,
or 106 steps and D2

min ,0 � 0.05, 0.1, 0.15, 0.20, 0.25, or 0.30, five
balanced bootstrap samples from the overall dataset using random
undersampling. In random undersampling, instances of the majority
class are randomly eliminated to equalize the number of instances in
both the classes. Each of the five balanced samples contained
1,285 examples from each class. We maintained a consistent
dataset size across all combinations of Δt and D2

min ,0 to isolate
the effect of these two parameters. For each of the balanced samples,
we performed feature standardization to prevent domination by
larger-scale features, thereby enabling all features to contribute
evenly to model predictions. Next, we used cross-validation CV
to identify the optimal regularization hyperparameter, C, for a
logistic regression model. After determining the optimal C, we
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used 5-fold CV to compute the validation balanced accuracy of the
models.

We used RFE, once established Δt � 104 and D2
min ,0 � 0.25, to

remove highly correlated features, reduce the model complexity, and
improve interpretability (McLean, 1966). Data from 8 of the 10 MD
simulations were used for this task, with the remainder reserved for
testing thefinalmodel. Using randomundersampling, we generated five
independent balanced bootstrap samples containing 2,115 instances
from each class. After standardizing the features, RFE was then
performed using a gradient boost classifier (GBC) as the estimator.

Using Δt � 104 and D2
min ,0 � 0.25 along with the top 10 ranked

features identified through RFE, we trained an ML classification
model to predict the particle labels. We applied the same training
and testing split as in the RFE study and standardized the training
and testing dataset features independently to avoid leakage. We used
EasyEnsemble as our ML algorithm (Liu et al., 2009), where an
ensemble of learners is trained on different balanced bootstrap
samples. Random under-sampling was utilized to balance the
samples. Our ensemble comprised 10 learners using logistic
regression as the base estimator with an optimal regularization
parameter C � 1 (see Supplementary Table S2 for details). The
model output, termed as looseness, L ∈ [0, 1], represents the
probability of a particle being classified as loose or class 1. We
decided to use logistic regression due to its simplicity and because it
provides a probability for the predictions.

2.4 Fluctuations, space, and time
autocorrelation functions

We calculated the space autocorrelation function of looseness,
SACFL, using:

SACFL Δr( ) � 〈 Li t0( ) − 〈L t0( )〉N( ) · Lj Δr, t0( ) − 〈L t0( )〉N( )〉ij,t0
(2)

where Li(t0) is the looseness of particle i at time t0, Lj(Δr, t0) is the
looseness of particle j at a distance Δr of particle i at time t0, and
〈L(t0)〉N is the average looseness of the system at time t0. The outer
angle brackets indicate the average over times t0 and pairs of particles ij.

To characterize the temporal autocorrelation, we require a
fixed reference space frame. To that end, we map each
configuration of the glass to a cube of side 1, discretize that
space into 15 × 15 × 15 voxels, and map the looseness of individual
particles to each voxel in the normalized cube. That
transformation allows us to track the time correlations of a
looseness field, L*(r, t), in a reference frame that does not
depend on the ever changing position of individual particles.
The expression of the time autocorrelation function of the
looseness field, TACFL*(Δt), is:

TACFL* Δt( ) � 〈 L* r0, t0( ) − 〈L* r, t0( )〉r( ) · L* r0, t0 + Δt( )(
−〈L* r, t0( )〉r)〉r0 ,t0 (3)

Where L*(r0, t0) is the value of the looseness field at time t0 and
position r0, L*(r0, t0 + Δt) is the value of the looseness field at the
same position r0 at time t0 + Δt, and 〈L*(r, t0)〉r is the average
looseness of the system at time t0 (〈L*(r, t0)〉r ≡ 〈L(t0)〉N). The
outer angle brackets indicate the average over time origins, t0, and
spatial locations, r0.

We quantify the fluctuations of the looseness field as a function
of system size, ΔL*(N), as follows. At each time t0, we divide the
system into voxels of the same size, each at position r0, as described
above. Then, we calculate the fluctuations in each voxel, ΔL*(r0, t0),
as the standard deviation of the looseness of the particles j pertaining
to that voxel, Lj(r0, t0), with respect to the average looseness of the

FIGURE 1
Short-Range Features (SRFs) andMedium-Range Features (MRFs). (A) ParticleO, surrounded by particles a, b, c, . . . , fwhich are neighbors according
to a Voronoi construction depicted by black, dashed lines. A distance (green), an area (red), and a volume (yellow) element are illustrated in the sketch. (B)
SRFs are calculated based on the summary statistics (mean, maximum,minimum, and standard deviation) of the distances, areas, and volumes defined by
the particleO and its neighbors The numbers shown in the arrays correspond to the indexes of the corresponding features (1–12 are SRF, and 13 to
60 MRF). (C) The MRFs assigned to particle O comprise the summary statistics of the SRFs corresponding to the neighboring particles.

Frontiers in Materials frontiersin.org04

Wu and Ruiz Pestana 10.3389/fmats.2023.1272355

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1272355


system, 〈L*(t0)〉. Finally, we average the fluctuations across all
voxels and all times:

ΔL* N( ) � 〈
∑j Lj r0, t0( ) − 〈L* t0( )〉( )2

Nj

√√ 〉
r0 ,t0

(4)

3 Results and discussion

3.1 Macroscopic and microscopic creep
response of the KA glass from MD
simulations

We use the term macroscopic response, to denote the response
at the system level, as our simulations are conducted on bulk
glasses. Conversely, microscopic response pertains to the dynamics
of individual particles. Figure 2A shows the uniaxial strain
evolution of the KA glass under a uniaxial compressive stress of
σ0 � 0.5, and at different temperatures below TMCT. The responses
shown correspond each to the average over ten independent runs
starting from different initial configurations of the glass. At the
lowest temperature, the creep response is suppressed, at least over
the duration of our simulations and the foreseeable future. In
contrast, as the temperature nears the glass transition point, the
system deforms significantly under the instantaneously applied
uniaxial stress, and the strain increases dramatically fast (only
a reduced range of strain is shown in Figure 2A). For
the intermediate temperatures, the strain clearly shows a
logarithmic dependence on time, ε(t)∝ (σ0/C)log t + εe, where
C is the creep modulus, and εe is the initial elastic deformation
of the glass under σ0. This response is characteristic of primary
creep where the rate of deformation decays inversely proportional
to time, _ε∝ t−1. Figure 2B shows the effect of the stress σ0 on the
creep modulus of the KA glass at T � 0.1. The creep modulus
remains approximately constant for stress levels below
approximately 0.5, suggesting that inertial effects on the
macroscopic mechanical response of the glasses resulting from

the instantaneous application of the compressive stress are
unimportant for σ0 ≤ 0.5. In Figure 2C, we show the evolution
of uniaxial strain for σ0 � 0.5 and T � 0.1, for each of the
ten independent runs starting from different initial glass
configurations (shades of blue), as well as the average response
(black). The primary creep response of the glass is not only obvious
for the average, but also evident in the individual responses, despite
the presence of significant fluctuations, which can be attributed to
the relatively modest size of the systems simulated.

To characterize the microscopic response of the glasses during
creep at σ0 � 0.5 and T � 0.1, we calculated the non-affine squared
displacements for each particle i, over a time interval from to to
to + Δt: D 2

min (i, to,Δt). Non-affine displacements are particularly
useful as they are associated to local plastic rearrangements. As
discussed in the Section 2, this analysis is done using only optimized
configurations of the glasses, which are outputted every 104 steps
during the simulations. In Figure 3A, we show, in the log-log scale,
the distributions of non-affine displacements for Δt � 104 steps, and
taken at different times throughout the simulation, to � 104, 105,
106, and 9.99 × 106 steps. The distributions incorporate data from
all ten simulated systems. First, it is evident that, regardless of to, all
the distributions display long, power-law tails to the right. These
long-tails are strong evidence of the existence of a small number of
particles that undergo plastic rearrangements during Δt. The
power-law structure of the tails likely emerges from the
convolution of the myriad of distinct particle environments in
the glass which lead to as many characteristic relaxation
timescales. With the progression of time (blue to yellow in
Figure 3A), the average non-affine squared displacement
〈D 2

min 〉 trends towards lower values (Figure 3B), and decay of
the power-law tail becomes steeper, as shown by the evolution of
the scaling exponent, PDF∝D 2 −α

min , shown in Figure 3C.
Therefore, both the average and extreme non-affine
displacements appear to shift towards lower values as creep
progresses. Interestingly, the scaling exponent of the power-
law tail decreases logarithmically in time, analogous to the
creep strain. This suggests that the tail of the distributions of
non-affine displacements contain information about the creep
response of the glass.

FIGURE 2
Macroscopic creep response of the KA glass from MD simulations. (A) Time evolution of the average strain over ten independent runs, 〈ε〉, for a
compressive stress of σ0 � 0.5, and at different temperatures T � 0.01, 0.1, 0.2, 0.3, and 0.4. (B)Creepmodulus of the KA glass at T � 0.1 as a function of σ0.
(C) Strain evolution of each of the ten simulated systems at σ0 � 0.5 and T � 0.1 (shades of blue) as well as the average response (black).
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3.2 Understanding the effect of D2
min ,0 and Δt

on accuracy of the ML predictions

Two key parameters, D2
min ,0 and Δt, determine whether a

particle is classified as loose or tight. The choice of these
parameters will, therefore, directly impact the quality of the
dataset, and subsequently the accuracy of the ML predictions.
While the long-tails in the probability distributions of D 2

min are
strong evidence of the existence some particles that undergo
plastic rearrangements, it is worth noting that there is no well-
defined threshold, D2

min ,0, that can be used to unequivocally
identify them, given the continuous nature of the distribution.
The time interval over which the non-affine displacement in
measured, Δt, is also critical, but its effect has not been
investigated or discussed in previous studies. In this section,
we investigate the effect of D2

min ,0 and Δt on the accuracy of a
classification model aimed at predicting whether or not a particle
will undergo a plastic rearrangement (D 2

min >D2
min ,0) over some

time interval Δt.
Figure 4 shows the validation accuracy for each class of

classification models trained as described in the Section 2.
Both Figures 4A, B show that the model performs slightly
better on the majority class, which is expected given a series
of factors including information richness and sampling quality. It
is worth noting that the datasets used for training and validation,
but not testing, were balanced using random undersampling. In
Figure 4A, we see that the accuracy of the models increases
monotonically with the threshold D2

min ,0, but appears to plateau
beyond D2

min ,0 � 0.25. This can be explained by considering that
particles with larger D 2

min possess structural environments that
are highly correlated to plastic rearrangements, while those with
lower D 2

min exhibit environments that may lead to such
rearrangements, but with lower probability. Therefore, more
selective thresholds lead to datasets with more reliable labels
for the minority class, which helps to enhance the accuracy of the
model. The plateauing of the accuracy is likely due to a
concurrent significant decrease in the instances of the
minority class within the dataset (as shown in Supplementary

Table S1), which constrains the ability of the model to effectively
learn from this class.

Figure 4B shows a logarithmic decay of the model accuracy
with increasing Δt. We attribute this drop in accuracy to the

FIGURE 3
Microscopic creep response of the KA glass from MD simulations. (A) The probability distribution of non-affine squared displacements, D 2

min ,
calculated over a time interval Δt � 104 steps at different times, to, during the simulations. (B) Average non-affine squared displacement 〈D 2

min 〉 over time.
(C) Scaling exponent of the power-law tail, α, as a function of time.

FIGURE 4
Validation accuracy for each class as a function of: (A) D2

min ,0 for
Δt � 104, and (B) Δt for D2

min ,0 � 0.25. Both the average and standard
deviation are shown, over the predictions of five models each trained
on an independent balanced bootstrap sample.
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changes in the local environment of the particles over time, which,
over extended periods, can lead to memory loss of the initial
structural conditions. In other words, the structural evolution of
the system weakens the correlation between the environment used
for feature computation, and the future behavior that the ML
model is striving to predict. The logarithmic dependence of the
accuracy on Δt can be explained by the fact that the structural
evolution becomes increasingly slow during creep
(i.e., increasingly longer periods of time are required to achieve
a similar magnitude of structural reorganization). We hypothesize
that for short enough Δt, the accuracy of the model would also
decrease based on the following argument. Given a local structural
environment, the time it takes for a particle to undergo a plastic
rearrangement will follow a statistical distribution. For example, if
the process is activated, the time it takes a particle to undergo a
plastic rearrangement would follow a Poisson distribution with a
rate given by r � ω0e−Ea/kbT, where ω0 is an attempt frequency, Ea is

an activation barrier (presumably conditioned by the particle’s
structural environment), and kbT is the thermal energy. If Δt is so
short that it doesn’t encompass reasonable extremes of that
distribution, then particles will be labeled as tight or class 0,
even if the structural environment is correlated to plastic
rearrangements over longer, more appropriate time scales.
Further investigations will be required to validate this
hypothesis. Based on our results, we use Δt � 104 steps and
D2

min ,0 � 0.25 to label the particles in the dataset moving
forward. As shown in Supplementary Figure S1, other
evaluation metrics, including the AUC (Area Under the Curve),
which measures the ability of the model to discriminate between
classes at various thresholds, and the F1 score, which captures the
balance between precision and recall, are consistent with the class-
specific accuracy. The consistency across these metrics provides a
more robust confirmation of the predictive capability of the model
and suggests its generalizability and robustness.

FIGURE 5
(A) Average testing balanced accuracy versus the number of top n ranked features selected via RFE. Each point corresponds to the average of five
model predictions trained each on independent balanced samples generated through random undersampling. (B) Top 10 ranked features by RFE. (C)
Confusion matrix corresponding to the model trained using the top 10 ranked features by RFE, evaluated on the test set.

FIGURE 6
Probability distributions of looseness, L. The statistics shown correspond to predictions and labels of the entire dataset (training plus testing). (A)
Probability density of particles as a function of the squared non-affine displacements,D 2

min , and their predicted looseness, L. The thresholdD2
min ,0 � 0.25

used to label particles as loose or tight is shown in the plot as a horizontal red line. The results shown in this panel were smoothed out using a very light
Gaussian filter. (B) Probability density of looseness for all particles, p(L), (blue line), as well as the conditional probability of looseness for just the
loose particles (class 1), p(L | 1) (bars). (C) Conditional probability of looseness given particles labeled as loose, p(1 |L).
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3.3 Feature selection and physical
interpretation of the most important
features

Before training the final classification ML model used to
predict plastic rearrangements, we carry out RFE to identify
and select the most important of the 60 features in the
dataset. To this end, we use the data from the ten simulations
at σ0 � 0.5 and T � 0.1, where the examples were labeled using
Δt � 104 and D2

min ,0 � 0.25. We perform RFE following the steps
outlined in the Section 2. The testing balanced accuracy as a
function of the number of top ranked features is shown in
Figure 5A, which shows that the model accuracy peaks around
the inclusion of 10 features, after which it experiences a slight
gradual decrease in accuracy with the addition of more features.
This decrease in accuracy can be attributed to various factors,
including linear correlations between the features and the
possibility of overfitting that arises from the increased
complexity of the model.

In Figure 5B, we show the top 10 ranked features by RFE, which
will be used later to train the final model. The distribution between
SRFs and MRFs is 4 to 6, suggesting that the medium-range order,
which in the context of our work captures the interstitial
environments of a particle’s neighbors (as determined by a
Voronoi construction), plays a substantial role in determining
plastic rearrangements. Interestingly, none of the selected

SRFs—Std(A), Std(V), Std(D), and Min(D)—correspond to
average quantities. The features related to the standard deviation
encapsulate the variability in the particle’s local structural
environment, whereas the minimum-related feature denotes an
extreme of this environment. For example, a high standard
deviation could suggest a high degree of heterogeneity in the
structural environment, while a minimum could signify a limiting
factor that precludes a plastic rearrangement. Overall, the selection of
these SRFs suggests that the short-range structural heterogeneity and
the distance to the closest neighbor play a significant role in the
prediction of plastic events in KA glasses. Regarding the MRFs, 4 out
of the 6 selected MRFs correspond to averages of SRFs related to non-
mean summary statistics. This suggests that across mid-range length
scales, beyond the nearest neighbors, the average heterogeneity
significantly influences the occurrence of plastic rearrangements.
Notably, half of the selected MRFs are associated to the selected
SRFs, specifically Std(A), Std(V), and Min(D), further underlining
the importance of these structural variables in the predictive process.
Overall, the majority of the selected features relate to distances and
volumes, with only 2 out of 10 related to areas. The prominence of
distances may reflect the influence of local spatial configurations or
the connectivity of the glass, when conceptualized as a graph. The
significance of volume-based features could be indicative of the
importance of local density fluctuations.

FIGURE 7
Time evolution of (A) the average looseness, and (B) the
macroscopic strain response of the KA glass. Each point and its
corresponding error bars represent the average and standard
deviation, respectively, at each time, over the ten independent
MD runs.

FIGURE 8
(A) Fluctuations of looseness field, ΔL*, as a function of system
size given by the number of particles, N. (B) Space autocorrelation
function of L, SACFL(Δr).
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3.4 Predicting creep using the ML derived
structural indicator looseness

As detailed in the Section 2, we apply the EasyEnsemble
algorithm with logistic regression as the estimator, using
random under-sampling to balance the dataset, to train a ML
model that predicts the probability of a particle to be classified
as loose or class 1 within the system. We refer to this prediction
metric as looseness, L, which, unlike previous machine learning-
derived descriptors, such as softness (Cubuk et al., 2015; Cubuk
et al., 2017; Liu et al., 2021), is bounded: L ∈ [0, 1]. The balanced
accuracy of the model stands at 71.6% for the (balanced)
training set and 70.7% for the (unbalanced) testing set, which
is comparable to the accuracy reported in previous studies (Liu
et al., 2021). The close values between training and testing
accuracies indicate that our model is generalizing well, being
able to classify correctly over 70% of previously unseen particles
(Figure 5C). Specifically, the model achieved an accuracy of
67.9% for the minority class of loose particles and 73.5% for the
majority class of tight particles. Additionally, the AUC for the
test set balanced using random undersampling is 0.772. The
F1 score, calculated for each label and averaged with weighting
based on the number of true instances for each label in the test
set, is 0.848.

Figure 6A shows the probability density of particles as a
function of the squared non-affine displacements, D 2

min , and
the predicted looseness, L. This diagram was created as follows:

for each interval in D 2
min , we calculated the probability density

of the looseness of all the particles in the dataset with squared
non-affine displacements within that range. It is clear that the
loose or tight populations of particles are well discriminated in
the plane defined by D 2

min and L, with the loose and tight
particles being characterized by high and low L values,
respectively. Our results demonstrate that the thresholds
used to label particles, namely, D2

min ,0 � 0.25 and L � 0.5,
effectively serve to separate and classify the particles as loose
or tight (Figure 6A). Figure 6B shows the probability density of
looseness for all particles, p(L), (blue line), as well as the conditional
probability of looseness for just the loose or class 1 particles, p(L | 1)
(bars). The overall distribution, which captures the underlying
unbalanced character of the data set, shows that most of the particles
as classified as tight, with the bulk of the looseness predictions being from
about L � 0.1 to 0.4. For L> 0.5, p(L) decays close to linearly. The
conditional probability p(L | 1) reveals that about 71% of particles
labeled as loose are assigned L> 0.5 by the model, which is, as it
should, consistent with the accuracy of the model. The conditional
probability of L given that a particle has been labeled as loose, p(1 |L),
follows an approximately exponential relation withL (Figure 6C), which
means that it is increasingly unlikely for a particle labeled as loose to be
assigned a low L by the model. For example, there is a one in a million
chance for a particle labeled as loose to receive a looseness assignment of
0.2 from the model. It is worth noting that because L ∈ [0, 1] is
bounded, we expect the exponential relationship to break down for
values of L near the boundaries.

FIGURE 9
(A) Time autocorrelation function of the looseness field, TACFL*(Δt). (B) Example of the evolution of looseness for a select voxel. (C) Time
autocorrelation function of the looseness field, TACFiL*(Δt), for some individual voxels. (D) Probability distribution of the relaxation timescales of
looseness for individual voxels, tC � Δt(TACFL � 0).
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The time evolution of the average looseness in the glass, 〈L〉,
where the angular brackets indicate ensemble average over all
the particles in the glass, is shown in Figure 7A. The overall
looseness of the system decreases as the glass creeps, which is
consistent with the fact that the glass structure becomes less
conducive to plastic rearrangements over time. Interestingly,
this decrease in looseness approximately follows a logarithmic
time dependence, 〈L(t)〉∝ − log t, which is reminiscent of the
evolution of the average macroscopic strain (Figure 7B):
〈ε(t)〉∝ − log t. Our results suggest that L, a machine-
learned local descriptor based on simple, interpretable
structural quantities, not only serves as an effective tool to
predict microscopic plastic rearrangements in the KA glass
during creep, but its ensemble-average, 〈L〉, correlates with
the macroscopic creep response of the glass.

3.5 Fluctuations, and spatial and temporal
autocorrelations of looseness

We characterize the scaling of the fluctuations of the looseness
field as a function of system size, ΔL*(N), as described in the
Section 2. Figure 8A shows that, overall, as the system size
increases, the fluctuations become smaller. It is worth noting
that for a size equal to the entire simulated system
(i.e., N � 8, 000), the fluctuations will become (artifactually)
zero, which implies that our analysis is only valid for
N≤ 8, 000. It is well established from equilibrium statistical
mechanics that the fluctuations on thermodynamics properties
scale with system size as ∝N−1/2. We observe that forN≥ 102, ΔL
scales in a manner similar to equilibrium fluctuations in relation
to system size, which is somewhat unexpected considering the
non-equilibrium nature and heterogeneity of the glasses. The
space autocorrelation of L, SACFL(Δr), shown in Figure 8B
reveals short-range spatial correlations only, with a decay
length scale of ~ 0.63σ. Beyond that, spatial correlations are
lost, which is consistent with the lack of long-range order in
the KA glass.

As described in the Section 2, in order to characterize the
temporal autocorrelations, TACFL*(Δt), we discretize space into
voxels and map the looseness of individual particles to each voxel.
That transformation allows us to track the time correlations of
the looseness field, L*(r, t), in a reference frame that does not
depend on the ever evolving position of individual particles. The
TACFL*(Δt), shown in Figure 9A characterized by a very sharp
drop over the first time interval due to the relatively large random
fluctuations of looseness between consecutive configurations
outputted for analysis. If one subtracts this effect, the TACFL*
decays over Δt ≈ 2 × 106 steps, after which it becomes slightly
negatively correlated, and finally it slowly decorrelates over the
timescale of the simulation (i.e., 107 steps). The reason for the
negative correlation observed in Figure 9A, can be explained
based on the evolution of looseness at the single voxel level (an
example is shown in Figure 9B), which does not gradually change
over time, but rather undergoes sudden changes in values. A
careful look at the time autocorrelation of individual voxels in
space, TACFiL*, reveals that the response is highly heterogeneous
(Figure 9C), and therefore the average correlation shown in

Figure 9A does not reveal the full picture. We observe that
some voxels, the decay time scale is almost instantaneous,
while for other it lasts over 2 to 4 × 106 steps (Figure 9B). We
quantify the heterogeneity in the relaxation time scales in
Figure 9D, where we plot the probability distribution of times
at which the TACFL* for individual voxels crosses zero,
tC � Δt(TACFL � 0). We observe a clear power-law
distribution of correlation time scales, with an exponent close
to −1. We also observe a limit to the power-law behavior at
t*C ≈ 3 × 106 steps, beyond which the probability of observing the
looseness of a given voxel decorrelating slower than that quickly
becomes null. It is likely that t*C depends on the particular glass
model and loading conditions, σ0 and T.

4 Conclusion

In this study, we used a machine-learning (ML) classification
model based on logistic regression trained with data from
molecular dynamics (MD) simulations of Kob-Andersen (KA)
glasses to derive a local structural descriptor, termed looseness, L,
which highly correlates with the propensity of particles to
undergo plastic rearrangements during creep. Unlike other
ML-derived structural descriptors such as softeness (Cubuk
et al., 2015; Liu et al., 2021), looseness is based on
straightforward, interpretable features and yields a real
probability bound between 0 and 1. Our model can predict
with an accuracy exceeding 70% whether an unseen particle
within a KA glass will undergo a plastic rearrangement within
a certain time interval. We showed that the evolution of the
average looseness of the glass system, 〈L〉, mirrors the
logarithmic time dependence observed in creep strain. This
correlation highlights the link our model is able to establish
between the microscopic dynamics at the single particle level over
short time scales and the long-term macroscopic creep response
of the KA glass. Our feature importance analysis revealed that
none of the selected Short Range Features (SRFs) correspond to
average quantities. Rather, features related to the extremal
summary statistics of the interstitial structural environment
dominate, emphasizing the critical role of short-range
structural heterogeneity in predicting plastic rearrangements
in KA glasses. Moreover, over half of the most important
features were associated to the medium-range structural order
of the glass, which highlights the importance of this length scale
in predicting plastic rearrangements. Furthermore, our analysis
of the spatial correlations of looseness revealed correlations only
up to the medium-range length scale, beyond which the
correlations die off–a finding that aligns with the lack of long-
range order typical of the KA glass. Our examination of the
temporal correlations of looseness unveiled a power-law
distribution of relaxation timescales, which is reminiscent of
the dynamic heterogeneity often postulated for glassy systems
(Flenner and Szamel, 2010).

In conclusion, our research underscores the substantial
predictive power of ML-derived structural indicators in
systems experiencing concurrent stress and thermal
excitations. Nonetheless, future research will be required to
untangle the intricate interplay between thermal fluctuations
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and mechanical activation of structural defects in disordered
solids, and how each contributes to the overall mechanical
behavior of the system.
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