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Terahertz (THz) radiation, which has applications in the imaging of objects, non-
destructive testing, satellite communication, medical diagnostics, and biosensing,
has generated a great deal of attention due to its remarkable properties. This paper
proposes a novel broadband filter for THz applications. The main idea is to
overcome the insertion loss and bandwidth issues by modeling a frequency-
domain finite differencemethod and guided-mode resonance (GMR). The optimal
design scheme of the wideband pass filter based on the circular resonant ring is
discussed by comparing the transmission parameters under various parameters.
This scheme overcomes the restriction of the narrow passband bandwidth of the
prior THz filters and achieves approximately 3 dB bandwidth of 0.54 THz. The
proposed THz filter paper also has the advantages of a straightforward structure,
low processing costs, and ease of conformal with other structures, and it can be
used for stealth fighters, new communication technology, and precise
instruments. In addition, when compared to existing models, the suggested
filter offers higher 3 dB BW operation, increased transmittance, low insertion
loss, and stable performance at various oblique angles.
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1 Introduction

Electromagnetic waves with frequencies ranging from 0.1 to 10 THz are referred to as
terahertz waves, which are electromagnetic waves with wavelengths between millimeter
waves and infrared light, also known as submillimeter waves (Zhu et al., 2020; Saraereh,
2021; Luo et al., 2022). Because the frequency of the submillimeter wave band is more than
103 times higher than that of the millimeter wave band (the band used for 5G
communication), the resources are abundant and the system capacity is large, so 6G
technology selects the frequency in this band to achieve faster communication
(Alibakhshike et al., 2021; Alibakhshikenari et al., 2022a; Sun et al., 2023). It can be seen
that terahertz technology will provide crucial technical support for the development of a new
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generation of communication technology (Alibakhshikenari et al.,
2021a; Althuwayb et al., 2021).

Electromagnetic metamaterials, also known as new artificial
electromagnetic media, metamaterials, etc. (Alibakhshikenari
et al., 2019a; Alibakhshikenari et al., 2020a; Alibakhshikneari
et al., 2020; Alibakhshikenari et al., 2020b; Alibakhshikenari
et al., 2020c; Alibakhshikenari et al., 2021b), are characterized by
arranging artificial unit structures (artificial atoms) with sub-
wavelength scales in a periodic or non-periodic manner, and
then obtaining materials beyond the limits of natural materials.
Electromagnetic properties, such as negative refractive index, zero
refractive index, ultra-high refractive index, high-frequency
magnetic response, etc. (Baqir and Choudhury, 2017;
Alibakhshikenari et al., 2019b; Alibakhshikenari et al., 2019c;
Alibakhshikenari et al., 2019d; Alibakhshikenari et al., 2022b).
The research on the basic theory, functional devices and
engineering applications of electromagnetic metamaterials has
aroused extensive research interests in the fields of physics,
information and materials (Baqir, 2019; Baqir, 2020; Pan et al.,
2022a; Baqir and Choudhury, 2022; Liu et al., 2023). Based on the
designable electromagnetic parameters and distribution of
metamaterials, researchers have developed various new devices
such as metamaterial cloaks, lenses, and antennas (Li et al.,
2021a; Wang et al., 2022a; Yang et al., 2022; Zhao and Wang,
2022; Wang et al., 2023a). According to the field localization and
field enhancement characteristics of metamaterials (this effect is
especially significant in surface plasmon metamaterials) and
subwavelength scale characteristics (Li et al., 2020a; Wang et al.,
2022b; Cao, 2022; Liu et al., 2022; Xie et al., 2023), a novel
metamaterial sensing and imaging device has been developed,
which can effectively improve the sensor’s performance.
Sensitivity and imaging resolution (Cheng et al., 2016a; Huang
et al., 2020; Li et al., 2021b; Xu et al., 2021; Feng et al., 2022).
With the proposal and realization of digital coding and
programmable metamaterials, the characterization and design of
metamaterials are carried out in binary digital mode (that is, digital
0 and 1), which promotes the integration of metamaterials and
information technology, making the new system superhuman.
Material imaging system and communication system become
possible (Li et al., 2021c; Zhao et al., 2022; Jiang et al., 2023; Liu
and Xu, 2023; Xu and Liu, 2023).

The terahertz frequency region is between microwave and far-
infrared in the electromagnetic spectrum, and is usually defined as
electromagnetic radiation of 0.1–10 THz (Cao et al., 2021; Li et al.,
2021d; Pan et al., 2022b; Chung et al., 2022; Ding et al., 2023). With
the rapid development of terahertz sources and detectors and the
continuous development of terahertz functional devices, terahertz
science and technology have achieved vigorous development in
recent years. Terahertz technology has good application prospects
inmaterial characterization, security inspection, biomedical imaging
and communication (Yao et al., 2023; Zhang et al., 2022a; Liu, 2023;
Zang et al., 2021; Li et al., 2020b). Among them, in terms of imaging,
compared with microwave and millimeter wave frequencies,
terahertz imagers will have higher spatial resolution, and
compared with optical imaging, terahertz radiation has better
penetration, so it can obtain more depth information (Liu et al.,
2013; Wang et al., 2022c; Wang et al., 2022d; Liao et al., 2022; Wang
et al., 2023b). At the same time, because this is a kind of non-ionizing

radiation, it has better biological safety, so the application of
terahertz imaging has been widely concerned (Jiang and Li, 2022;
Xu et al., 2023; Zhang et al., 2023; Zhou et al., 2023). Terahertz
metamaterials and metasurfaces have broad application prospects in
terahertz imaging systems due to their sub-wavelength unit scale
and flexible manipulation of electromagnetic wave amplitude, phase
and polarization characteristics (Cheng et al., 2016b; Hosseininejad
et al., 2018; Wang et al., 2019; Li et al., 2021e; Shen et al., 2022; Xi
et al., 2022; Li et al., 2023; Miaofen et al., 2023).

In fact, researchers conducted in-depth research on THz waves,
and developed many THz devices, such as THz absorbers (Zhao
et al., 2019a; Ulla et al., 2019; Fajr et al., 2020; Lee and Jeong, 2020),
THz antennas (Geim and Novoselov, 2007; Diaz and Carrier, 2012),
THz reflector (Carrier et al., 2013; Danciu et al., 2019; Zhang et al.,
2021; Leitenstorfer et al., 2023), etc., and various THz systems, such
as THz security detector (Strinati et al., 2019; Zhang et al., 2019;
Akhtar et al., 2020), ultra-wideband THZ transmitter (Yi et al., 2019;
Chen et al., 2020a; Zou and Chen, 2020), terahertz imaging system
(Ullah et al., 2019; Jiao et al., 2020; Huang et al., 2023), etc., they can
be applied is widely used in security inspection, communication
(Jiang et al., 2017; Lu et al., 2020; Manjappa and Singh, 2020; Rizza
and Molle, 2022; Wu and Lin, 2023), biomedicine (Zhang et al.,
2022b) and many other fields. Filter, as one of the most widely used
key devices in THz communication technology (Chen et al., 2020b),
has attracted the close attention of many researchers. The authors in
(Wang et al., 2018) used a waveguide bandpass filter made of a two-
dimensional square metal photonic crystal plate structure to achieve
filtering effects in the sub-terahertz band, and adjusted the
parameters and lattice constants of the multilayer waveguide in
the structure, making its 3 dB bandwidth reach about 0.0052 THz.
However, the structure is too complicated, and there are many
influencing parameters, so it is not easy to process and prepare. The
authors in (Sun et al., 2020) designed a polarization-insensitive
broadband terahertz bandpass filter using metamaterials with
complementary resonant structures.

The filter can achieve the same filtering effect on terahertz waves
under different incident polarization states, the maximum 3 dB
bandwidth in the working frequency band can reach 0.405 THz,
and the structure of the filter is simple and easy to prepare. However,
its transmission coefficient in the working frequency band is low,
resulting in high electromagnetic wave loss. Reference (Kumar et al.,
2019) also developed a THz filter using a coupled complementary
metamaterial structure, with a 3 dB bandwidth of 0.39 THz. The
authors in (Fahad et al., 2019) used the Koch curve fractal structure
filter model for simulation analysis, and obtained a THz filter with a
center frequency of 0.715 THz and a 3 dB bandwidth of 0.021 THz,
but the filter fractal structure of the Koch curve is too complex, and
the 3 dB bandwidth is narrow (Zhao et al., 2019b; Jiang et al., 2020).

Although the research work on THz broadband filters has been
widely reported so far, according to the above literature analysis, it
can be found that the current THz broadband filters still have
complex structures, narrow bandwidth, low transmittance, high loss,
etc. In view of this, this paper proposes a novel filter design with
significant features. The main contributions are as follows.

• Design a new bimetallic ring electromagnetic metamaterial
terahertz broadband bandpass filter based on guided-mode
resonance (GMR);
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• Optimize the electromagnetic response of the filter structure
parameters to THz waves through simulation, so that it has
both broadband and high transmittance characteristics;

• The structure of the filter is simple and easy to process, which
provides a novel design scheme for THz filtering technology.

2 Filter design

The resonant unit of the THz filter designed in this paper is
composed of a two-layer structure, as shown in Figure 1. The
substrate material is a flexible polyimide film, and its dielectric
constant ε and magnetic permeability μ are 3.5 and 1, respectively.
The substrate shape is a cuboid with period length a and thickness b.
The upper surface of the substrate is inlaid with two rings of different
sizes, wherein: the inner diameter of the small ring is r, the width of
the ring is d, and the thickness of the ring is h. The inner diameter of
the large ring is R, the width of the ring isD, and the thickness isH.
The material of the ring material is copper whose conductivity of the
is set to be 5.96 × 107 S/m, which is close to the measured value for
copper with the surface height.

(a) 3D structure b) Front view

The design structure of the single-layer THz filter involved in
this paper is a theoretical model of artificially synthesized
metamaterials. The mechanism of this model structure to achieve
filtering characteristics in a certain frequency band of the THz
frequency is the surface of the model that constitutes the frequency
selective surface (FSS), and it has a frequency-selective effect on the
incident electromagnetic wave. In this paper, the frequency domain
finite difference (FDFD) software is used to carry out simulation
experiments. The THz wave is vertically incident on the filter surface
and the metamaterial structure has different electromagnetic
response characteristics at different frequency points. The
transmission coefficient decreases rapidly at the resonant
frequency point, and will maintain a large value at other non-
resonant frequency points, resulting in a very obvious trough in the
transmission coefficient near the resonant frequency point. At the
resonant frequency point, terahertz waves can hardly pass through,
but at the non-resonant frequency point, a large number of THz
waves can be perfectly transmitted. The above is the principle that

the metamaterial structure can form a bandpass filter. Generally
speaking, once the parameters of a terahertz filter made of
metamaterials are determined, the filter can only work within a
certain fixed frequency. By simulating the parameters of the filter
and combining them with each other, the wideband pass filter with
the best performance can be obtained.

3 Performance evaluation

3.1 Influence of inner ring radius r

Firstly, the effect of the radius r of the inner ring of the filter
structure on its filtering performance is studied. The radius r of the
inner ring is chosen to be 10, 20, 30, 40, 50 μm, respectively. The
remaining structural parameters are set as follows: period length a =
180 μm, substrate height b = 50 μm, outer ring radius R = 80 μm,
outer ring widthD = 5 μm, outer ring thicknessH = 4 μm, inner ring
width d = 5 μm, inner ring thickness h = 4 μm. On the lateral sides of
the unit, periodic boundary conditions are specified in order to
produce an infinite metasurface. The open boundary is defined in
the meantime to get rid of the reflection from the front and back
faces. A periodic structure in the unbounded x-y plane is illuminated
by an unlimited plane wave in the simulation, which is based on
Floquet’s principle. If the dimension of the device does not match
the spot size of the incident wave, as it does in our simulations,
scattering must be taken into account for a filter with a finite number
of periodic units.

In the frequency range of 0~1.2 THz, the performance of the
filter is simulated and calculated when the radius r of the inner
ring of the resonant ring of the structure is changed, and the
simulation results (S21 parameters) of the filter are obtained, as
shown in Figure 2. Figure 2A reflects the transmission coefficient,
and Figure 2B reflects the insertion loss. It can be seen that within
the frequency range of 0–1.2 THz, the working center frequency
of the filter moves to the low frequency direction with the
increase of the inner ring radius r. When the inner ring radius
r is in the range of 10–30 μm, the 3 dB bandwidth is larger, and
the THz wave filter also has a higher transmission coefficient in
its working frequency band. When the inner ring radius r =
20 μm, the 3 dB bandwidth reaches the maximum value, and the
filter can obtain a larger working bandwidth. After comparing the
simulation results, this paper selects the inner ring radius r as
20 μm.

3.2 Effect of outer ring radius R

Through the simulation of the above structural parameters, it
is found that adjusting the parameters of the ring-shaped
resonant structure on the surface of the filter can effectively
change its filtering performance. Therefore, when the radius r of
the inner ring is set to 20 μm and other structural parameters
remain unchanged, the value of the radius R of the outer ring (40,
50, 60, 70, 80 μm, respectively) is changed for simulation. The
simulation result is shown in Figure 3.

It can be seen from Figure 3 that as the outer ring radius R
gradually increases, the filter center frequency f0 moves from the

FIGURE 1
Proposed THz filter design. (A) 3D structure, (B) Front view.

Frontiers in Materials frontiersin.org03

Althuwayb et al. 10.3389/fmats.2023.1245685

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1245685


high frequency direction to the low frequency direction, and its 3 dB
bandwidth (B3dBW) increases greatly, from 0.12 THz to 0.53 THz.
This shows that, while keeping other structural parameters
unchanged, increasing the outer ring radius R can significantly
improve the passband performance of the terahertz filter.
However, the size of the outer ring radius R needs to match the
structural parameters of the overall filter, and continuously
increasing the outer ring radius will lead to the destruction of the
overall performance of the filter. After comparative analysis, this
paper chooses R = 80 μm as the optimal structural parameter.

3.3 Effect of outer ring width D

In order to analyze the role of the surface ring resonant
structure in the overall structure of the terahertz filter in detail,
this paper further discusses the influence of the width of the

outermost ring structure on the overall performance of the filter.
Under the condition that the radius of the outer ring is R = 80 μm
and other structural parameters remain unchanged, the width D
of the outer ring is selected to be 0, 10, 20, 30, and 40 μm for
simulation, and the results shown in Figure 4 are obtained. The
results show the transmission parameters of the metamaterial
unit for different outer ring widthD. It can be seen that the center
frequency f0 of the terahertz filter shifts from 0.715 THz to
1.1 THz with the increase of the outer ring width D, the
center frequency increases gradually, and the 3 dB bandwidth
increases with the increase of the outer ring width D decrease.
When D is 0 μm, the transmission coefficient of the terahertz
filter is the largest, and the 3 dB bandwidth also reaches the
maximum. When D is 0 μm, the best filtering effect under ideal
conditions can be achieved, but considering the technological
conditions of post-processing, this paper takes D as a small value
as much as possible, here D is 5 μm.

FIGURE 2
Impact of r on (A) transmission coefficient and (B) insertion loss.

FIGURE 3
Impact of R on (A) transmission coefficient and (B) insertion loss.
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3.4 Effect of inner ring width d

The small ring also plays an important role in the overall
filtering effect of the filter for the resonant structure, so this paper
simulates and optimizes the width of the inner ring. Set the rest of
the structural parameters unchanged, the width d of the inner
ring is 0, 2.5, 5, 7.5, and 10 μm, respectively, and the
corresponding transmission coefficient of the terahertz filter is
shown in Figure 5.

It can be seen from Figure 5 that as the inner ring width
increases from 0 μm to 10 μm, the transmission effect of
terahertz waves is almost the same. It can be seen that the
change of the inner ring width in the range of 0–10 μm has little
effect on the performance of the whole filter. In order to reduce
the processing difficulty of the THz filter, the same structural
parameters as the outer ring width D can be selected, that is,
d � D � 5 μm.

3.5 Effect of period length a

This subsection will analyze the effect of the period length a of
the structural unit of the THz filter on the overall performance of the
filter. In the case of keeping the above ring resonance structure and
other structural parameters unchanged, change the period length of
the THz filter structural unit (choose a to be 180, 200, 220, 240,
260 μm respectively), and the obtained results are shown in Figure 6.

It can be seen from Figure 6 that the increase of the period length
of the structural unit has no obvious effect on the low-order
resonance of the filter at low frequencies, but it will change its
high-order resonance at high frequencies, and the high-order
resonance frequency increases with the period length increase in
λ moves from 1.18 THz to 0.82 THz, resulting in a decrease in the
3 dB bandwidth width. To ensure that the filter has a high 3 dB
bandwidth, this paper selects the period length a of the structural
unit as 180 μm, so that it has better filtering performance.

FIGURE 4
Impact of D on (A) transmission coefficient and (B) insertion loss.

FIGURE 5
Impact of d on (A) transmission coefficient and (B) insertion loss.
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3.6 Influence of substrate thickness b

The substrate of the THz filter is polyimide flexible material, and
its thickness will directly affect whether the device can easily
conform to other structures when it is used later. Therefore,
under the condition that the above structural parameters remain
unchanged, this paper conducts simulations while changing the
substrate thickness b (i.e., b is 20, 40, 60, 80, 100 μm, respectively).
Figure 7 shows the transmission parameters of metamaterial
elements with varying substrate thickness b. It can be seen from
Figure 7 that when the substrate thickness is 20–40 μm, the filter has
better filtering performance. As the substrate thickness continues to
increase, the ripple fluctuation in the filter band becomes more
obvious, and the 3 dB bandwidth width also increases. For
continuously increasing the filter substrate thickness does not
improve its filtering performance. Therefore, the thickness of the
substrate selected in this paper is 40 μm, which can obtain a more
flexible overall structure while ensuring that the filter has better
filtering performance and stable mechanical structure. It can be

perfectly attached to satellites, spacecraft, wireless surface of
complex structures such as human and machine, thus broadening
its practical application value. The insertion loss also has better
performance when b � 40 μm and its performance gets degraded for

FIGURE 6
Impact of a on (A) transmission coefficient and (B) insertion loss.

FIGURE 7
Impact of b on (A) transmission coefficient and (B) insertion loss.

TABLE 1 Specific parameters of the THz filter.

Parameter Value (μm)
R 80

D 5

r 20

d 5

h/H 4

Length of substrate a 180

Thickness of substrate b 40
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higher thickness values. Therefore, we conclude that to get optimal
filtering performance from this structure, the thickness should be
40 μm.

3.7 Analysis of the overall structure
parameters

In summary, the specific parameters of the terahertz filter are
obtained, as shown in Table 1. The frequency domain finite
difference simulation software is used for simulation, and the
transmission coefficient and insertion loss of the terahertz filter
are obtained, as shown in Figure 8.

It can be seen from Figure 8 that the center frequency of the filter
is 0.79 THz, the passband is 0.52~1.06 THz, the 3 dB bandwidth is
0.54 THz, and the relative bandwidth reaches 68.3%. The insertion
loss is less than 2.1 dB. Figure 9, Figure 10 are the simulated electric
field distribution diagrams of the THz filter at the center frequency
of 0.79 THz and the surface current distribution diagrams at 0.37,
0.79, and 1.06 THz, respectively. By analyzing the electric field
distribution diagram of the filter near the center frequency, it can be
found that when the THz wave reaches port 2 (negative direction of
x-axis) from port 1 (positive direction of x-axis), the electric field
distribution on the front and rear sides of the filter is roughly the
same. Compared with the front side, the electric field intensity at the
rear side of the filter has no obvious attenuation, which indicates that
the filter has good passband characteristics at this time, and the THz
wave realizes low-loss transmission in the passband.

In order to better understand the working mechanism of the
terahertz filter, this paper selects the low-order resonance frequency
(f = 0.37 THz), the center frequency (f = 0.79 THz) and the high-
order resonance frequency of the THz filter respectively (see
Figure 9). The surface current distribution at the frequency (f =
1.06 THz) was analyzed. By observing the surface current
distribution at f = 0.37 THz, it can be found that: at the outer
ring, the current starts from the left side of the central axis of the
outer ring and divides into upper and lower parts, and flows through
the upper half ring and the lower half ring at the same time to the
outer ring. The right side of the central axis of the ring, and when the
current passes near the vertices of the upper and lower half rings, the
current intensity continues to increase. At the inner ring, the current
starts from the right side of the central axis of the inner ring, flows
through the upper and lower parts of the inner ring at the same time,
and reaches the left side of the central axis of the inner ring, and its
current distribution law is just opposite to that of the outer ring. It is
precisely because the inner ring and the outer ring have opposite
current flow directions, two sets of strong LC (inductance-
capacitance) resonances are generated above and below the
central axis of the filter surface, resulting in a low frequency of
the filter at 0.37 THz order resonance. Similarly, atf = 1.06 THz, the
surface of the filter has the same current distribution as that at the
low-order resonance (f = 0.37 THz), but its current intensity is
significantly weaker than that at the low-order resonance, less
attenuation of the transmission spectrum leading to higher order
resonances. Continuing to analyze the surface current distribution of
the filter at the center frequency (f = 0.79 THz), it can be found that
although the overall distribution of the surface current is not
significantly different from the low-order resonance and the
current distribution at the high-order resonance at this time, the
current intensity is obviously weaker than the f current intensity at
the first two frequencies, so that the filter has a lower resonance
intensity in the working frequency band and can obtain higher
passband characteristics.

FIGURE 8
Impact of center frequency on (A) transmission coefficient and
(B) insertion loss.

FIGURE 9
Illustration of E-field distribution.
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Further analysis shows that the double-ring resonance structure
can generate a low-order resonance and a high-order resonance in
the range of 0–1.2 THz, the two resonance frequencies are far apart,
and a transmission spectrum with a high degree of attenuation can
be obtained at the resonance frequency. Therefore, the filter can
obtain a wider operating bandwidth and better out-of-band
rejection. At the same time, in the working frequency band of
the filter, the resonance response of the structure is small, which
ensures that the filter has a high transmission spectrum in the
passband.

Figure 11 compared the transmission characteristics of the
proposed filter structure under different incident angles. As can
be seen from Figure 11, the transmission performance has stable
performance for different incident angles which indicates its
effectiveness.

Table 2 shows the comparison between the results of terahertz
filters in recent years and the results of this paper.

4 Conclusion

In this paper, a metamaterial THz filter with a double ring structure
is designed, and then the parameters of the filter are simulated and
tested using electromagnetic simulation software. The transmission
parameters are analyzed, and the parameters of the resonant ring
and the substrate effect of each parameter on the performance of
the terahertz filter are evaluated. By comparing the transmission
parameters under various parameters, the optimal design scheme of
the wideband pass filter based on the circular resonant ring is discussed,
which breaks through the limitation of the narrow passband bandwidth
of the previous THz filters, and obtains about 3 dB bandwidth of
0.54 THz. In addition, the proposed THz filter paper has the
characteristics of simple structure, low processing cost, easy
conformal with other structures, and can be applied to stealth
fighters, new communication equipment and precision instruments.
Furthermore, the proposed filter has the advantages of higher 3 dB BW

FIGURE 10
Comparison of surface current distribution. (A) 0.37 THz; (B) 0.79 THz; (C) 1.06 THz.

FIGURE 11
Transmission performance evaluation under different values incident angles.
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operation, improved transmittance, low insertion loss and stable
performance under different oblique angles as compared with
existing models. In the follow-up research, we will consider other
parameters to evaluate the performance of the filter.
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