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Themanual interpretation of ground-penetrating radar images is characterised by
long interpretation cycles and high staff requirements. The automated
interpretation schemes based on support vector machines, digital images,
convolutional neural networks and other techniques proposed in recent years
mainly detect features from B-scan slices of 3D ground-penetrating radar data,
without taking full advantage of the multi-channel acquisition of data from 3D
ground-penetrating radar and joint discrimination. This paper proposes a void
recognition algorithm based on cluster analysis algorithm, using VRADI algorithm
to process 3D ground-penetrating radar B-Scan, using DBSCAN clustering
algorithm to divide clusters and remove noise; proposes correlation weighting
coefficient Wi,j to quantitatively evaluate the degree of correlation of different
survey channels, proposes prime relative position coefficient Pd indicator to
quantitatively evaluate the position similarity, and proposes weighted
homocentric overlap coefficient Pr indicator to quantify signal similarity. This
paper applies the algorithm to carry out physical engineering experiments and
uses binary logistic regression analysis to develop a correlation model. The
experimental results show that significance of Pd and Pr are less than 0.05,
both of which are important influencing indicators for the determination of the
presence or absence of void. With an optimal critical probability of 0.4, the
recognition accuracy of VRADI algorithm increases from 71.7% to 92.2%. The
VRADI algorithm combined with the cluster analysis algorithm outperforms
manual recognition in terms of accuracy (92.2% > 83.9%) and recall (90.5% >
86.9%), and the algorithm has good engineering application value.
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1 Introduction

Due to backfill or erosion of the roadbed and settlement of the lower structural layer,
voids may form within the structural layer. Voids that are not detected and treated in time
may develop further and expand under the continuous action of forming conditions, causing
pavement subsidence or collapse accidents and threatening traffic safety (LIU et al., 2014;
Klotzsche et al., 2019). For roads or areas where there is a risk of voids, it is necessary to carry
out voids inspection and detection to provide early warning and treat void damage. Ground
Penetrating Radar (GPR) is one of the representative techniques for non-destructive testing
of roads, mainly by analysing the propagation of electromagnetic waves within a probe to
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obtain information about the probe, including information about
internal road defects such as voids (Wang et al., 2020).

Three-dimensional ground-penetrating radar uses multiple
antennas and has the advantage of full coverage, high accuracy of
defect judgement and quantitative analysis of defect compared to
two-dimensional ground penetrating radar, which combines
multiple sections of data to determine defect (Chen et al., 2017).
This paper uses 3D ground penetrating radar images to carry out
research work on the automatic recognition of void images. Due to
the multi-solution of ground penetrating radar image interpretation,
the internal condition of road structure cannot be inferred from the
radar image alone, but also needs to be combined with radar theory
basis, engineering experience and other related knowledge
experience to exclude partial interpretation in order to get the
correct interpretation of the radar image (Yu et al., 2020). The
long cycle time, low efficiency and high professional requirements of
processors in the manual interpretation process currently make
radar image interpretation a difficult area for ground-penetrating
radar defect detection applications and one of the reasons for
limiting the development of ground-penetrating radar
applications (Yu et al., 2017).

To solve the problem of automated ground-penetrating radar
image interpretation, researchers have proposed numerous radar
signal processing algorithms, such as traditional machine learning
algorithms, deep learning methods and convolutional neural
networks. Traditional machine learning methods use machine
vision techniques to detect characteristic hyperbolas in B-SCAN
images, with commonly used algorithms including Hough
transform-based methods and feature expression-based methods.
Hough transform is an effective method for detecting and locating
straight lines and resolving curves, but with a large parameter space
and high computational complexity. methods for feature
representation, such as the Viola-Jones algorithm based on Haar-
like wavelet features (Chen et al., 2021); hyperbolic feature detection
algorithms combining gradient direction histograms with edge
histogram descriptors (Yu et al., 2021). The convolutional neural
network method can be used to perform the task of identifying
similar features in other unlabelled images by learning correctly
labelled images.

Haifeng Li et al. proposed a two-stage recognition method for
GPR-RCNN in (Li et al., 2021). The method achieves the
recognition of target objects such as voids, pipelines and
subsidence with an accuracy of 62%. Pham et al., Lei et al. and
Wang Hui et al. all studied the problem of hyperbolic detection in
B-SCAN images in different scenes based on faster regional
convolutional neural networks (Pham and Lefèvre, 2018),
respectively; Zhang et al. (Zhang et al., 2020) investigated the
problem of detecting characteristic hyperbolas of water damage
targets in asphalt pavements using ResNet50, YOLOV2 network;
Zhiyong Huang et al. (Huang et al., 2022) proposed a digital image-
based algorithm for radar void signal recognition. The algorithm
has advantages in void recognition accuracy and indicator
detection, and does not require large amounts of data for
training or correction parameters. However, current automatic
recognition algorithms of various types mainly detect features
from B-scan slices of 3D ground penetrating radar data,
without taking full advantage of the multi-channel acquisition
of data by 3D ground-penetrating radar and joint discrimination.

The clustering algorithm aggregates n objects into k clusters (k <
n) and tries to make the similarity of objects within the same cluster
as large as possible. The classical clustering algorithms, depending
on the task and the way they are implemented, are the K-Means
algorithm, the K-medoids algorithm, the K-modes algorithm, the
k-prototypes algorithm, CLARANS, K-Means++, bi-KMeans, etc.
There are also K-modes-CGC, K-means-CP and other algorithms
that improve on the classical algorithms. Void defect 3D ground-
penetrating radar signals are present in multiple B-scans and are
similar. The clustering algorithm can be applied to divide voids
signals in multiple B-scans of 3D ground penetrating radar into
several “clusters”, and then analyse the similarity between the void
signals of B-scans in each cluster, and screen out some of the void
signals that occur individually or with low similarity, so as to reduce
the false alarm rate of 3D ground penetrating radar voids
recognition. To this end, this paper investigates a method for

TABLE 1 Technical parameters of the antenna of 3D ground penetrating radar
system.

Indicators Parameters Indicators Parameters

Width 1.8 m Number of
channels

20

Frequency range 200MHz–3000 MHz Channel spacing 7.5 cm

Effective scan
width

1.5 m Positioning
accuracy

1 cm

FIGURE 1
Ground penetrating radar system and electromagnetic wave
propagation model: (A) 3D ground penetrating radar system
components (B) Ground penetrating radar electromagnetic wave
propagation models in different media.
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detecting void features in 3D ground penetrating radar data that
combines an automated B-scan interpretation method and a
clustering algorithm.

2 3D ground-penetrating radar void
detection and recognition

The 3D ground-penetrating radar used in this paper includes the
GEOSCOPE™ MK IV radar host, DXG series multi-channel
coupled antenna array, real-time kinematic (RTK), photoelectric
encoder, and 3D ground-penetrating radar antenna parameters are
shown in Table 1.

The basic detection principle of 3D ground penetrating radar is to
send high-frequency electromagnetic waves in the form of pulses
underground, which are reflected when they encounter underground
target bodies with electrical differences in the process of propagation in
the underground medium (Huai et al., 2019; Allroggen et al., 2020;
Domenzain et al., 2020; Tang et al., 2022a). The model of
electromagnetic wave propagation and reflection in a medium is
shown in Figure 1. The reflection coefficient and reflected signal
level can generally be calculated by Eqs 1, 2:

Γ1,2 �
��εr1√ − ��εr2√��εr1√ + ��εr2√ (1)

Er1 � EiΓ1,2 (2)
where Γ1,2 is the interfacial reflection coefficient, εr1 is the relative
dielectric constant on the incident side of electromagnetic waves, εr2
is the relative dielectric constant on the outgoing side of
electromagnetic waves, Er1 is the reflected signal level and Ei is
the incident signal level. As can be seen from the equation, the
positive and negative reflection coefficients and their magnitude are
determined by the magnitude of relative dielectric constants of the
substances on either side of the void interface. The greater the
difference in relative dielectric constants between the two sides of the
interface, the greater the reflection coefficient and the stronger the
reflected signal.

There is a significant difference in the relative dielectric
constants of the void fill and the road construction material. The
interior of the void is generally air with a relative dielectric constant
of 1. Road materials generally have a relative dielectric constant
between 3 and 10. Electromagnetic waves emitted by 3D ground
penetrating radar are reflected at the void-road material interface
(FIROOZABADI et al., 2007; Leng and Al-Qadi, 2014; Kumlu, 2021;
Tang et al., 2022b). After the ground-penetrating radar receives the
reflected electromagnetic wave signal, according to the signal
propagation time and amplitude, it is recorded and stored as 3D
ground penetrating radar data, and Examiner software is used to
filter the data, the parameters are set as shown in the Figure 2, and
the radar grey-scale image is drawn, as shown in the Figure 3.

Please refer to the paper (Jacopo and Neil, 2012; Tang, 2020) for
a detailed explanation of parameter settings and numerical settings.
“Interference suppression” is a frequency domain filtering tool used
to eliminate interference from external radio transmitters, such as
mobile phone base stations. The echo intensity of the DXG 1820 is
generally not greater than 10dB, so setting 10 dB removes
electromagnetic wave signals greater than this value. The
function of “ISDFT” filtering processing is to convert frequency
domain data into time domain data. “Attenuation” represents the
absoption in the material and controls the shape of the high
freqeuncy cut-off for deep data. Higher values will remove more
of the higher fregeuncies. The recommended value is 0.01. “Use full
BW” enables to use the full recorded bandwidth, while the frequency
bandwidth of the DXG1820 is 500–3000 MHz.

“BGR (high pass)” is a time-domain filtering tool that utilizes
high pass filtering to remove background, mainly horizontal
echo signals, in a certain proportion. Generally speaking, the loss
of electromagnetic waves is exponentially related to the
propagation time. “Autoscale” calculates the gain coefficient
based on the attenuation law of radar signals, compensates for
the attenuation multiple of deep echo signals, and makes the
overall intensity of the ground penetrating radar image signal
uniform.

FIGURE 2
Examiner software filtering settings: (A) Interference suppression; (B) ISDFT; (C) BGR (high pass); (D) Autoscale.
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Manual recognition of the void signal is mainly done by
intercepting the XZ section in the 3D ground-penetrating radar
data. If the void cavity is filled with air, the radar reflection signature
signal is a higher intensity homophase axial signal with black on
both sides (side flaps) and white in the middle (main flaps)
(CAPINERI et al., 1998; SOLLA et al., 2014; CHA et al., 2017;
Maeda et al., 2018; Liu et al., 2021), as shown in Figure 3C, and the
corresponding borehole verification results for this location are
shown in Figure 3D.

3 Principles of clustering analysis
algorithms for 3D ground-penetrating
radar data

3D ground penetrating radar is an effective means of detecting
void, but at present, whether by manual recognition or automatic
recognition algorithms, 3D ground-penetrating radar detection of
void signals cannot be completely accurate due to the multi-solution
of ground-penetrating radar image interpretation. Taking advantage
of the multi-channel acquisition of data by 3D ground-penetrating
radar, a clustering analysis algorithm is used to improve the accuracy
of recognition.

3D ground-penetrating radar antenna has 20 channels and the
lateral spacing between adjacent channels is 0.075m, due to the fact
that the width of the voiding area is generally greater than 0.075 m
and the reflected electromagnetic wave signal has a scattering effect.

As a result, the voiding signals will appear in several B-scans at the
same time, and since the detection targets are the same and the
electromagnetic wave propagation paths in different channels are
basically the same, the degaussing signals appearing in adjacent
channels will often be in close proximity and have a high degree of
similarity.

Projection of 3D ground penetrating radar void signal onto the
same plane, based on the distance between the projected positions
and the similarity of the areas, can further determine the confidence
of whether the detected signal is a void signal. Projected void radar
signals with distant locations and low regional similarity imply a low
confidence level, as shown in the figure. The projected void radar
signals that are located close together and have a high degree of
regional similarity imply a high confidence level, as shown in
Figure 4.

The main purpose of applying clustering algorithm is to
quantitatively describe positional similarity and signal similarity
between the suspected voiding signals detected by the different
survey channels, the higher the degree, the higher the probability
of determining the point as a void defect. The steps of clustering
analysis algorithm for ground-penetrating radar data void signals
method are shown in the following Figure 5 and can be divided into
the following steps:

1) Data preparation: Standardisation of 3D ground penetration
data. Examiner software is used to filter the data and intercept its XZ
cross-sections, the resolution of cross-sections, the colouring
method should be consistent. The resolution of the images in

FIGURE 3
3D ground penetrating radar data slices, void feature signals and drill core verification results: (A) Three types of slicing of 3D ground-penetrating
radar data; (B) Schematic diagram of XY section, YX section and XZ section; (C) YX-section void feature signal (D) Validation of void defects boreholes.
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this study is 350 × 300 and the colouring method is grey-scale
colouring, as shown in Figures 6A–D for the radar images of
channels 8 to 11 of XZ section void radar data with the same
Y-axis range and different channels.

2) Feature extraction: The Void recognition algorithm based on the
digital image (VRADI) algorithm proposed in the paper (Huang
et al., 2022) is applied to process the radar image database and
output the binarised image recognition results to determine the
suspected voiding signal. Suspected voiding pixels are assigned a
value of 1 and non-suspected voiding pixels are assigned a value
of 0. The results of radar image processing for channels 8 to
11 are shown in Figures 6E–H).

3) Clusters dividing: In real space, regions that are connected to
each other belong to the same void. In B-scan slices, regions with
a high density of suspected voiding pixels are connected to each
other, the higher the probability of belonging to the same void.
To describe this relationship quantitatively, the binarised images
of all channels are projected onto the same plane and
accumulated to obtain a superimposed plane P1, where the
pixel values of the superimposed plane are equal to the
accumulated values of the multi-channel XZ section
recognition results, and the processing results are shown in
Figure 6I. Applying DBSCAN (Zou et al., 2021) clustering
algorithm to the superimposed planes, the algorithm steps are:

1. The suspected voiding pixels are classified as core points,
boundary points, and noise points. The principle of division is: the
distance metric uses the Manhattan distance, taking point A as the
centre and calculating the sum of all pixel values less than or equal to
3. If the sum is greater than or equal to 25 (the number of pixel
points), the point is judged to be the core point, and other pixel
points with values greater than 0 are the boundary points. The points
that are neither core nor boundary points are classified as noise
points. And so on, going through all the pixel points.

di,j � xi − xj
∣∣∣∣ ∣∣∣∣ − yi − yj

∣∣∣∣∣ ∣∣∣∣∣ (3)

where, di,j is Manhattan distance between two pixel points, xi, xj are
the X-axis coordinates of pixel points i,j, and yi, yj are the Y-axis
coordinates of pixel points i,j.

As shown in Figure 7, with (6,4) and (7,5) as the centers, the sum
of pixel values with a Manhattan distance less than 3 is 43 and 29,
respectively. Therefore, these two points are both core points. The
sum of pixel values centered on (4,9) (marked in yellow) is less than
25, but within the range (6,4) and (7,5) are all core points, so (4,9) is
the boundary point.

2. Any two Manhattan core points with a distance less than or
equal to 3 are grouped into the same cluster, and any boundary
points within a radius of 3 of the core points are placed in the same
cluster as the core points. The noise points are removed, the core
points and boundary points are retained, the suspected voiding
signal region is updated, and the suspected voiding signals are
clustered into several clusters.

3. Calculate the superimposed plane area of each cluster Area,
the superimposed plane area is equal to the number of pixels greater
than 0; and calculate the equal area circle radius r′ , the equal area
effect circle calculation formula is shown in Eq. 4.

r′ �
�����
Area

π

√
(4)

where, Area is the area of the superimposed plane of the cluster; π is
the circumference; r′ is the radius of the equal area circle.

4) Evaluation of the proximity of the suspected voiding signal
positions within the cluster.

1. The centroid of the suspected voiding signal is used to
represent the position of the signal, and the coordinates of the
centroid are calculated as shown in Eq. 5; at the same time, the
distance between the two centroids of the suspected voiding signal

FIGURE 4
Two cases of overlapping areas of adjacent channel B scanning: (A) Projected positions spaced far apart and with low regional similarity; (B)
Projected positions relatively close to each other and with a high degree of regional similarity.
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within the cluster is calculated, and the Euclidean distance is used for
the two-point distance metric, calculated as shown in Eq. 6.

xc, yc �
∑n

j�1xj
n

,
∑n

j�1yj
n

( ) (5)

where xi, yi are the x- and y-axis coordinates of the centroid, n is the
number of pixels in the suspected voiding region, xj, yj are the x- and
y-axis coordinates of the j pixel in the suspected voiding region.

di,j
′ �

�����������������
xi − xj( )2 + yi − yj( )2√

(6)

where, di,j′ is the Euclidean distance between centroids i,j, xi, xj are the
x-axis coordinates of centroids i,j, and yi, yj are the y-axis
coordinates of centroids i,j.

Wi,j � 1

j − i( ) ∑m−1

j�1
∑m
j�i+1

1
j−i( )

i, j ∈ 1,m − 1[ ], i< j (7)

where, Wi,j is the correlation weighting factor between channels i,j;
m is the total number of channels in the cluster where there is a

suspected voiding region, and channels where there is no suspected
deglomeration region in the cluster are not involved in the
calculation. A larger Wi,j represents a stronger correlation
between the suspected voiding areas of the two channels.

3. Combining the weighting factors and the centroid distance,
the overall weighted centroid distance dw between the suspected
voiding signals within the cluster is calculated according to Eq. (8).

dw � ∑m−1
j�1 ∑m

j�i+1Wi,j*di,j
′ i, j ∈ 1,m − 1[ ], i< j (8)

where, dw is the overall weighted centroid distance between
suspected voiding signals within a cluster; Wi,j is the correlation
weighting factor between channels i,j; and di,j′ is the Euclidean
distance between i,j centroid points.

4. Based on the ratio of the weighted centroid distance to the
cluster equivalent radius, the relative position coefficient of the
centroid is calculated according to Eq. 9.

Pd � dw
r′ (9)

where, dw is the weighted centroid distance between the
suspected voiding signals within the cluster; r′ is the radius of

FIGURE 5
Data processing flowchart of 3D ground penetrating radar data clustering analysis algorithm.
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the equal area circle. A larger Pd represents a higher degree of
similarity in position between the suspected voiding regions
within the cluster as a whole.

5) Evaluation of the similarity of voiding regions within clusters.

1. The suspected voiding regions of the same cluster are
translated to the same location and projected onto the same
plane two by two to calculate the homocentric overlap
coefficient, which is calculated according to Eq. 10, and the
homocentric overlap coefficient represents the signal similarity
between the two;

ratioi,j �
∪ Ai,Aj( )
∩ Ai,Aj( ) i, j ∈ 1,m − 1[ ], i< j (10)

where, ratioi,j is the coefficient of homocentric overlap of the two
suspected voiding regions Ai, Aj in the cluster; ∩ (Ai,Aj) is the area
of the overlap of the two suspected voiding regions Ai, Aj after
projection; ∪ (Ai,Aj) is the total area of the two suspected voiding
projections Ai, Aj; m is the total number of channels in the cluster
with suspected voiding areas; larger ratioi,j means that the suspected
voiding areas of the two channels are more similar.

2. It is also necessary to consider the correlation weighting
factor Wi,j between two suspected voiding signals, calculated
according to Eq. 11. Combining the weighting and overlap
coefficients, the overall weighted homocentric overlap
coefficient Pr between suspected voiding regions within the
cluster is calculated.

Pr � ∑m−1
j�1 ∑m

j�i+1Wi,j*ratioi,j i, j ∈ 1,m − 1[ ], i< j (11)

FIGURE 6
Example data preparation, feature extraction and clusters dividing: (A) Channel 8 B-Scan; (B)Channel 9 B-Scan; (C)Channel 10 B-Scan; (D)Channel
11 B-Scan; (E) Channel 8 VRADI; (F)Channel 9 VRADI processing results; (G)Channel 10 VRADI processing results; (H)Channel 11 VRADI processing
results; (I) Superimposed plane P1 for all channel VRADI processing results; (J) DBSCAN clustering algorithm divides the processing results into three
clusters (indicated by different colours).

FIGURE 7
Calculation principle for dividing center points, boundary points,
and noise points.
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where, Pr is the overall weighted homocentric overlap coefficient
between the suspected voiding signals within the cluster; Wi,j is the
correlation weighting coefficient between channels i,j; ratioi,j is the
homocentric overlap coefficient of two suspected voiding regions Ai,
Aj in the cluster. A larger Pr means a higher overall similarity
between the suspected voiding regions within the cluster.

The example data shown in Figure 6 is divided into three clusters
of suspected voiding signals, with relative position coefficients of
0.7348, 2.5792 and 0.5408 for centroids and weighted homocentric
overlap coefficients of 0.012, 0.086 and 0.464.

4 Experiments and analysis of results

4.1 Experimental results

This study relies on road voiding detection in a city in southern
China and uses 3D ground penetrating radar scanning to detect
urban roads. 3D ground-penetrating radar acquisition parameters
are set: sampling spacing (3 cm), time window (100 ns) and standing
wave time (1 ms). The road structure combination is 10 cm asphalt
concrete pavement +28 cm cement concrete structure +36 cm
cement stabilized graded crushed stone + soil foundation, and
the inspection is carried out in a full-coverage manner, with a
total inspection length of 124 km by measuring line, as shown in
Figures 8A–D. The analysis of 3D ground-penetrating radar image

by manual recognition and interpretation yielded 87 void defects
and the analysis of 3D ground-penetrating radar image by VRADI
algorithm yielded 106 void defects, of which 78 void defects obtained
bymanual recognition and interpretation by VRADI algorithm were
void defects in the same location, giving a total of 115 void defects.

Borehole verification work was carried out on the 115 void
detection results, recording parameters such as the presence of void,
height and area of void, and collecting images of the interior of
defects. As shown in Figures 8D, E, the validation results show that
there are a total of 84 void defects and the remaining 31 are false
positives. The recall and accuracy rates of the two methods, manual
recognition and VRADI algorithm, are calculated based on void
validation results, and the formulae are shown in Eqs 12–14.

Pr � TP

TP + FP
(12)

Re � TP

TP + FN
(13)

F1 −measure � 2 ×
Precison × Recall

Precison + Recall
(14)

where, TP (True Positive) is the result of deciphering void defect and
borehole results are also the result of void defect; FP (False Positive)
is the result of deciphering void defect and borehole results are the
result of non-void defect; FN (False Negative) is the result of
deciphering a non-void defect and borehole for a void defect; Pr
(Precision) is the accuracy of the deciphering result; Re (Recall) is

FIGURE 8
Detection plan, pavement structure composition, and void verification. (A) 3D ground-penetrating radar survey line layout diagram. (B)Composition
and thickness of pavement structure. (C) Field test inspection chart. (D) Borehole verification test results. (E) Image in void verification hole.
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the recall of the deciphering result. F1-measure is a comprehensive
indicator that reflects the recall and precision.

Combining the validation results, the statistics of the manual
recognition interpretation and the VRADI algorithm interpretation
analysis are shown in Figure 9A. Of the 84 void defects, the manual
recognition of void defect recall was 86.9% and accuracy 83.9%,
while the VRADI recall of void defect was 90.5% and
accuracy 71.7%.

For the 106 void defects identified by VRADI algorithm, the
radar image data sets were further analysed using 3D ground-
penetrating radar data clustering analysis algorithm to calculate
the relative position coefficient of each void core and the weighted
homocentric overlap coefficient. The results of the borehole
verification were combined with the relative position coefficients
of the cores and the weighted homocentric overlap coefficients as X
and Y-axes, and different colours were used to distinguish the
verification results from both voiding and non-voiding defects,
and a scatter plot was drawn as shown in Figure 9B.

4.2 Cluster analysis metrics and voiding
correlation analysis

Before analysis, the results of the voiding determination are
standardised and the presence or absence of voiding is recorded as
“0"(no) or “1"(yes), and the relative position coefficients of the
centroids and the weighted homocentric overlap coefficients are
expressed numerically. SPSS 26 statistical software was used to
analyse the data, and binary logistic regression analysis was used
to establish the correlation model between the relative position
coefficient of the centroids (independent variable), the weighted
homocentric overlap coefficient (independent variable) and the
outcome of void determination (dependent variable), and the PV
critical line of the prediction probability was divided by 0.5, greater
than or equal to 0.5, the outcome of the determination was “1"(yes)
and less than 0.5, the predicted outcome is “0"(no). The Exp
confidence interval was 95% and the model was terminated after
eight rounds of fitting with essentially constant parameters. The

FIGURE 9
Statistical analysis of void recognition results. (A) Statistics of manual recognition and VRADI recognition results. (B) VRADI recognition results and
cluster analysis indicator distribution.

TABLE 2 Parameters of binary logistic regression analysis results.

Variables Standard
error

Wals
value

Degrees of
freedom

Significance
(P)

Exp(B) 95% confidence
interval for EXP(B)

Lower
limit

Upper
limit

Coefficient of relative position of
centroids Pd

0.727 16.595 1 0.000 0.052 0.012 0.215

Weighted homocentric overlap
coefficient Pr

8.009 9.544 1 0.002 5.567×1010 8475.37 3.657×1017

Constant 2.319 0.649 12.786 0.000 10.170
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fitted formula is shown in Eq 15 and the regression result parameters
are shown in Table 2.

P V( ) � e−2.961Pd+24.743Pr+2.319

1 + e−2.961Pd+24.743Pr+2.319 (15)

The results of the analysis showed that the model was able to
correctly classify 89.6% of the study subjects, with a prediction
accuracy of 80% for “No” and 93.4% for “Yes”. Of the 2 independent
variables included in the model, the relative position coefficient Pd

(OR = 0.052, OR 95% confidence interval 0.012 to 0.215, p = 0.000)
and the weighted homocentric overlap coefficient Pr (OR =
5.567×1010, OR, 95% confidence interval 8475.37 to 3.657×1017,
p = 0.002). The p-values were all less than 0.05, which was
statistically significant and a significant influence in determining
the presence or absence of void.

By using Eq. 15 to predict the void determination results, the
number of void false positives was reduced from 30 to 6, but the number
of accurately predicted void by VRADI was reduced from 76 to 71, the
recognition accuracy was increased from 71.7% to 92.2%, and the
recognition recall rate was reduced from 90.5% to 84.5%. As missing
voids are not expected in practical engineering, the number of missed
voids and the number of voids misclassified were fitted to obtain the
predicted results at an interval of 0.05 in order to avoid a drop in recall,
by adjusting the critical probability as shown in Figure 10.

As can be seen from Figure 10, at a critical probability of 0.4, TP
is not reduced and FP decreases from 30 to 6, a reduction of 80%.

Further increasing the decomposition probability leads to a decrease
in TP and decreasing this critical probability leads to an increase in
FP, so a critical probability of 0.4 is the optimal value. With this
critical probability, the recognition precision of VRADI algorithm
improved from 71.7% to 92.2%, the recognition recall remained at
90.5% and the F1-measure increased from 80.0% to 91.3%. The
VRADI algorithm combined with the cluster analysis algorithm
outperformed the manual recognition in terms of both void
recognition precision (92.2% > 83.9%) and recall rate
(90.5% > 86.9%).

4.3 Model comparison

We compare our algorithm with three existing methods,
including.

• Faster R-CNN (Wang et al., 2019). Faster R-CNN is a state-of-
the-art two-stage object detection networks depending on
region proposal algorithms to hypothesize object locations.

• YOLO v7 (Ren et al., 2017). You only look once (YOLO) is a
state-of the-art, real-time one-stage object detection method.

• PIXOR (Wang et al., 2022). PIXOR (ORiented 3D object
detection from PIXel-wise neural network predictions) is a
state-of-theart, real-time 3D Object detection from point
clouds in the fifield of autonomous driving.

YOLO and Faster R-CNN represents state-of-the-art one stage
and two-stage object detection networks, respectively, but they all
belong to 2D object detection networks. PIXOR utilizes the 3D data
more effificiently by representing the scene from the Bird’s Eye
View. We used the same dataset for training and recognition, and
the results are shown in the Table 3.

It can be seen from the Table 3 that the precision and F1-measure of
themethod used in this paper are higher than othermodels, and recall is
slightly lower than Yolo v7 model and Faster R-CNN model, which is
significantly higher than other models. In practical engineering, high
accuracymeans that the error rate of engineering verification and repair
is low, which can reduce unnecessary work. The recognition recall rate
of VRADI algorithm is slightly lower than that of Yolo V7, but the
difference is small, reaching more than 90%, at the same level, meeting
the needs of practical engineering. In terms of F1-measure index which
comprehensively reflects the performance of the model, VRADI
algorithm is obviously superior to other models, indicating that the
comprehensive performance of VRADI algorithm is superior to other
models, especially in recognition precision.

FIGURE 10
Folding graph of TP and FP with probability of partition.

TABLE 3 Parameters of binary logistic regression analysis results.

Model Precision (%) Recall (%) F1-measure (%)

VRADI with clustering analysis algorithms 92.2 90.5 91.3

YOLO v7 57.6 94.3 71.5

Faster R-CNN 47.5 91.2 62.5

PIXOR 83.1 51.5 63.6

The bold values mean the maximum value in models.
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5 Conclusion

In this paper, a 3D ground-penetrating radar void defect
recognition model based on cluster analysis algorithm is
proposed, and the experimental conclusions of the model are as
follows.

1. The clustering analysis algorithm of 3D ground-penetrating
radar data is based on the feature that the voiding signals
appearing in adjacent channels tend to be similar in position
and have a high degree of similarity. The relative position
coefficient Pd indicator is proposed to quantitatively evaluate
the position proximity, the weighted homocentric overlap
coefficient Pr indicator is proposed to quantitatively evaluate
the signal similarity, and the correlation weighted coefficient Wi,j

is proposed to quantitatively evaluate the degree of correlation of
different channels;

2. Binary logistic regression analysis was used to develop a
correlation model between the relative position coefficient
of the centroid (independent variable), the weighted
homocentric overlap coefficient (independent variable) and
the outcome of the void determination (dependent variable).
The results of the model experiments show that the relative
position coefficient of the centroid Pd (P = 0.000) and the
weighted homocentric overlap coefficient Pr (P = 0.002) are
both significant (P) less than 0.05, indicating that both Pd, Pr

are important influencing indicators for the determination of
the existence of voiding, and the regression fitting formula is
shown in Eq. 15.

3. To address the problem of decreasing recall rate of recognition
using a critical probability of 0.5 for predicting the results of
voiding, the critical probability in the binary logistic
regression analysis model was adjusted at an interval of
0.05 to obtain the optimal critical probability of 0.4. With
this critical probability, the recognition accuracy of the
VRADI algorithm improved from 71.7% to 92.2%, and the
recognition recall remained at 90.5%. The VRADI algorithm
combined with the cluster analysis algorithm outperformed
manual recognition in terms of recognition accuracy (92.2% >
83.9%) and recall (90.5% > 86.9%), and has good engineering
application value.

4. Compared with three existing methods including YOLO, Faster
R-CNN and PIXOR, the precision and F1-measure of the VRADI
algorithm used in this paper are higher than other models,
indicating that the comprehensive performance of VRADI
algorithm is superior to other models, especially in
recognition precision.
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