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Inserting a prestressed high-intensity concrete pipe pile into a cement–soil
mixing pile can form a new composite pile named the composite foundation
with stiffened deep cement mixing (SDCM) pile. The Huanghuai alluvial stratum
in China is selected to carry out the in situ test for the SDCM pile, and the bearing
capacity of the SDCMpile is tested by the slow-speedmaintenance loadmethod.
The results show that for an SDCM pile with dense silt and fine sand as the
bearing layer, the characteristic value of bearing capacity can reach 2,300 kN,
which means an SDCM pile with a length of 8.0 m meets the load requirement
of a general high-rise building. Further analysis shows that the SDCM pile saves
more than 40% of the cost compared with the traditional CFG pile and has better
quality control advantages at the same time. This research can provide basic data
and design references for similar site foundation projects.

KEYWORDS

prestressed high-intensity concrete pipe pile, composite foundation with stiffened deep
cement mixing pile, characteristic value of bearing capacity, construction cost, in situ
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1 Introduction

Thecomposite foundationwith stiffened deep cementmixing (SDCM)pile, as a new type
of pile composed of a prestressed high-intensity concrete pipe (PHC) pile and a cement–soil
mixing pile, bears most of the vertical load through the PHC pile with higher strength
and rigidity and avoids cement–soil mixing pile loss of bearing capacity due to insufficient
strength of the pile body, leading to premature bearing capacity loss. At the same time, the
shear strength of the surrounding soil of the PHC pile can be increased by solidification of
the cement–soil mixing pile so that the strength of the PHC pile can be fully exerted. The
combination of the two pile types can maximize strengths and avoid weaknesses. Using the
SDCM pile can obtain a higher bearing capacity with a cheaper construction cost (Bai et al.,
2021; Zhu, 2021; Bai et al., 2023). Under the condition of vertical load, the axial force of the
inner core at the same cross-section is much greater than that of the cement–soil mixing
pile, and the PHC pile is the main undertaker of the vertical load. The SDCM pile was
first proposed in Japan (Lu, 2016) and introduced in China in 1988 (Ding et al., 2005).
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Jamsawang et al. (2010), Wonglert et al. (2018), and
Phutthananon et al. (2018) performed field tests for the SDCM pile,
finding that the bearing capacity of the SDCMpile will increase with
the increment of the pile diameter and pile length under the same
working condition. Among the influencing factors of pile bearing
capacity, pile length is the most significant one. Voottipruex et al.
(2010) studied the bearing mechanism of SDCM piles in the
form of numerical simulation based on a field full-scale test. The
research results also showed that increasing the “core length ratio” of
SDCM piles can effectively improve their ultimate bearing capacity.
Wonglert and Jongpradist (2015) and Voottipruex et al. (2011) also
used numerical simulation to study the effect of stiffness of the PHC
pile on the bearing capacity of the SDCM pile, pointing out that the
stiffness will have a more significant impact on the vertical bearing
capacity only when the PHC pile length is large enough.

In China, Gao et al. (2012), Yang (2019), Wang (2020) studied
the load transfer characteristics of the SDCM pile through an in situ
pile test and non-destructive inspection, finding that the influence
range of the SDCM pile on the soil around the pile is larger,
which is more conducive to the exertion of the bearing capacity
of the soil around the pile, providing the technical applicability
and economic feasibility of the SDCM pile in the southern region
in China. Wang et al. (2013) and Wang et al. (2014) conducted a
comprehensive study on the bearing property of the SDCM pile
using numerical simulation on the basis of an in situ test. The
research results show that the ring-layer structure of the SDCM
pile can prevent the soft soil around the pile from being crushed
under a large load and, at the same time, ensure that the upper
load can be transmitted to the deeper soil. Compared with the
cement–soil mixing pile, the “effective pile length” of the SDCM
increases. Wang et al. (2018) and Cheng (2021) used laboratory
tests and the theoretical analysis method to study the mechanical
characteristics of the SDCM pile and obtain the influence law
of pile body parameter on the bearing characteristics of the
composite pile. Several scholars only carried out laboratory tests
or numerical simulations. Ye et al. (2014) and Peng et al. (2007)
used the finite-element analysis software to obtain the vertical
bearing characteristics of the SDCM pile, including the axial force
distribution characteristics of the SDCM pile, the load sharing ratio
of the pile skin and the pile end, and the influence of stiffness on the
load transfer of the SDCM pile.

Most of the abovementioned studies are aimed at a single layer of
soil andmainly based on laboratory tests and numerical simulations.
In actual engineering, the SDCM pile will pass through various soil
layers, and the same soil layer is also of certain inhomogeneity. In
addition, most of the research is conducted in the southern region
of China, so it is necessary to carry out experimental research on the
bearing characteristics of the SDCMpile on the hard soil layer in the
northern region of China.

2 Characteristics of the test site

The research site is located in Zhoukou city, shown in Figure 1.
The topography and geomorphology unit of the site is relatively
simple, and the geomorphology unit is the alluvial plain of the
Huanghuai River. The original terrain of the site is basically flat.
The main strata in the field are covered by Quaternary soil layers.

According to the drilling description, in situ test, and geotechnical
test result, the foundation soil within the exploration depth of 50 m
is divided into nine layers. The lithological characteristics of each
layer are described from top to bottom as follows:

① Layer ofmixed backfill:Mainly composed of constructionwaste,
mixed with bricks, concrete blocks, and building foundations.
This layer is not uniform, so it is not suitable for direct use.
② Layer of silt: Brownish yellow, wet, and slightly dense and

contains snail shell fragments, with rapid shake response,
matte response, low dry strength, low toughness, and moderate
compressibility.
③ Layer of silty clay: Brownish yellow to brownish gray and soft

plastic, with no shaking reaction, slightly glossy reaction, dry
strength, medium toughness, and high compressibility.
④ Layer of silt: Grayish brown to brownish gray, mainly composed

of quartz, feldspar, mica flakes, etc., saturated, and medium
to dense, with average particle gradation, containing a small
amount of snail shavings, etc., and partiallymixedwith fine sand
and silt.
⑤ Layer of fine sand: Brownish yellow, saturated, and dense, with

low compressibility, containing mineral components such as
quartz, feldspar, and mica, with general particle gradation, iron
oxides, a small amount of ginger stone, snail debris, etc., and a
partially silty thin layer and medium and coarse sand.
⑥ Layer of silty clay: Taupe, yellowish brown, and plastic, with

no shaking response, medium dry strength, and medium
toughness, and yellowish gray, wet, and dense, with sandy silt
and a large number of yellow–brown stripes, rust spots, and
blue–gray stripes, occasionally containing snail shells, ginger
stones, and calcareous nodules.
⑦ Layer of silty clay with silty soil: Yellowish brown and plastic

to hard plastic, with medium dry strength, medium toughness,
and bluish-gray stripes,more locally available, containing a large
number of yellow–brown rust spots and occasionally calcareous
nodules with a particle size of about 2 cm, with partially silty
soil.
⑧ Layer of silty clay: Yellowish brown, plastic to hard plastic, with

mediumdry strength andmedium toughness, containing a large
number of yellow–brown rust spots and occasionally calcareous
noduleswith a particle size of about 2 cm, partially silty, wet, and
dense.
⑨ Layer of silty clay with silty soil: Yellow to yellowish brown

and plastic to hard plastic, with high dry strength and medium
toughness, containing a lot of yellow–brown rust spots and
occasional calcareous concretions with a particle size of about
2 cm.

The detailed distribution of each soil layer can be seen in Table 1,
and the typical engineering geological profile of the site is shown in
Figure 2.

3 Test method

3.1 Pile foundation parameters

The SDCM pile based on the PHC pile selected in this test is
shown in Figure 3. The inner core PHC pile is PHC-400AB95, the
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FIGURE 1
Location of the test.

TABLE 1 List of soil layer properties of the project site.

No. of layers Thickness (m) Cone tip resistance SPT N PHC pile

qc (MPa) qs
(kPa)

Skin resistance
adjustment
coefficient ξsi

qp (kPa) End resistance
adjustment
coefficient ξp

① 0.4∼2.4 — — — — — —

② 1.7∼5.1 1.45 3.7 — — — —

③ 3.2∼6.3 0.60 4.2 21 1.6 — —

④ 1.4∼3.6 9.7 35.0 35 1.8 2,000 1.6

⑤ 8.1∼11.2 16.5 45.1 40 2.0 2,500 1.8

⑥ 3.9∼8.1 — 14.6 — — — —

⑦ 0.8∼12.5 — 18.3 — — — —

⑧ 2.8∼8.2 — 19.2 — — — —

⑨ - — 22.2 — — — —

outer core is the Φ700 mixing pile, the effective pile length is 8.0 m,
the bearing layer at the pile end is layer ⑤, the pile enters into the
bearing layer at about 4.0 m, and the constructional requirement of
the characteristic value of bearing capacity for one single pile ismore
than 1,300 kN.

3.2 Experimental design

Three groups of test piles are designed for this test in total,
and the absolute elevation of the top of the test piles is 39.45 m.
Since the characteristic value of the bearing capacity of a single
pile is not less than 1,300 kN, the maximum loading capacity of

the test pile is 2,600 kN. The test started on 25 June 2020 and
ended on 10 August 2020, using static pressure equipment. The
equipment parameters and main control indicators used in the site
are shown in Table 2. Because the construction quality cannot be
guaranteed due to the small construction torque of the mixing piles
in the sand layer, the three-axis mixing is changed into single-
axis mixing for the construction technology of the cement–soil
mixing pile. The background grouting pump is between the high-
pressure rotary grouting pile and the low-pressure ordinary mixing
pile. The pile part is stirred evenly, and the amount of cement
is in an appropriate amount in accordance with the research
requirement.

Partial construction photos of the site are shown in Figure 4.
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FIGURE 2
Typical engineering geological profile.

4 Test results

4.1 Basis for determining the characteristic
value of bearing capacity

According to the “Technical Specifications for Building
Foundation Pile Testing” (JGJ 106-2014), the vertical ultimate
bearing capacityQu of a single pile can be comprehensively analyzed
and determined according to the following methods.

(1) According to the characteristics of the changing of settlement
with load, for the steep drop-type Qs curve, the load value
corresponding to the starting point of the obvious steep drop
should be taken.

(2) According to the characteristics of the settlement over time,
the load value of the previous level at which the tail
of the s-lgt curve appears to bend downward should be
taken.

(3) When under the action of a certain level of load, the settlement
of the pile is greater than twice that under the action of the
previous level of load and the relative stability standard has not
been reached after 24 h, the value of the previous level of load is
taken.

(4) For the slowly changing Qs curve, it is better to take the load
value corresponding to the total settlement of 40 mm from the

pile top. When the pile diameter is more than 800 mm, the
total settlement should be 0.05D (pile diameter). When the pile
length is greater than 40 m, the elastic compression of the pile
body should be considered.

(5) When the vertical compressive bearing capacity of the pile
is determined not to reach the limit according to the
abovementioned four items, the maximum test load value
should be taken as the vertical compressive ultimate bearing
capacity of the pile.

Finally, the characteristic value Rd of the vertical bearing
capacity of a single pile under the same conditions of the research
should be weighted by 50% of the statistical value of the ultimate
compressive capacity of the single pile.

4.2 Vertical static load test result of a single
pile

The test results of the three groups of test piles are shown in
Tables 3–5. The test adopts equal loading step by step, the step-by-
step load is 1/10 of the design’s ultimate bearing capacity, the first
step takes twice the step-by-step load, and the maximum load is
2600 kN, classified as 0, 520, 780, 1,040, 1,300, 1,560, 1,820, 2,080,
2,340, and 2,600 kPa. Unloading is carried out in stages, the amount
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FIGURE 3
Schematic diagram of the SDCM pile.

of unloading at each stage is twice the load of the stage during
loading, and the amount is equal step by step. They are 2,080, 1,560,
1,040, 520, and 0 kN, respectively.

According to the “Technical Specifications for Building
Foundation Pile Monitoring,” the test load has reached the
maximum load required by the design, and the settlement of
the pile top has reached the relatively stable level, so the test
is terminated. The load-settlement (Qs) curve of the test pile is
shown in Figure 5. It can be seen that the vertical load of the
pile, 2,600 kPa, has not reached the ultimate bearing capacity.
Therefore, the vertical compressive ultimate bearing capacity of
the pile should be the maximum test load value. It is concluded
in Table 6.

5 Discussion

5.1 Comparison of the test result and the
code method result

When the pile skin failure surface of the SDCM pile is
located at the interface between the inner and outer cores,
the characteristic value of the ultimate bearing capacity of
the foundation pile is calculated according to the “Technical
Regulations for Stiffened Composite Pile” (JGJT327-2014) as
follows:

Ra = ucqcsal
c + qcpaApc = 0.5× 3.14× 0.07× 2000× 9.0+ 2500× 0.196,

= 2460kN

uc—Perimeter of the PHC pile of the SDCM pile (mm)

lc—Thethicknessofsoil layerof the lengthof thecompositesection

of theSDCMpile (m)

Ac
P—Thecross− sectionalareaof thePHCpile intheSDCMpile(m2 )

qcsa—Skinresistanceof thePHCpile intheSDCMpile (kPa)

qcpa—Endresistanceof thePHCpile intheSDCMpile (kPa)

When the pile skin failure surface of the SDCM pile
is located at the interface between the outer core and
the soil around the pile, the ultimate bearing capacity of
the foundation pile is calculated according to “Technical
Regulations for Stiffened Composite Pile” for the SDCM pile as
follows:

Ra = u∑ξ
si
qsiali + αξpqpaAp = 0.7× 3.14× (35× 9.0× 1.8) + 0.8

× 1.8× 2500× 3.14× 0.7× 0.7/4 = 2628kN

ξsi—Adjustment coefficient of lateral resistance of the i− th soil
layer of the outer core of the composite section of the SDCMpile

ξp—Adjustmentcoefficientofendresistanceof the i− thsoil layer

of theoutercoreof thecompositesectionof theSDCMpile

qsia—Thelateral resistancecharacteristicvalueof the i− thsoil layer

of theoutercoreof thecompositesectionof theSDCMpile (kPa)

li—Thickness of the i− th soil layer in the composite section of

th eSDCM pile (m)

TABLE 2 Construction equipment parameter list.

Pile type Device parameters Construction main control indicators

Static pile driver, ZYG680-type Static pile driver, ZYG680 The pressure pile pressure should not be less than 3,000 kN, the
pressure pile is repressed three times under the maximum pile
pressure force, the cumulative settlement of the three repressed piles
should not be greater than 30 mm, and the effective pile length is not
less than 8.0 m

Φ700 cement–soil mixing pile Single-shaft double-tube mixing pile driver,
DZSJ28-type

The cement uses class P.O32.5 cement, the amount of cement added is
not less than 200 kg per meter, the water–cement ratio of the cement
slurry is 1:1, and the cement mixing time is not less than 2–3 min
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TABLE 3 Test results of the No. 1 pile.

No. Load (kN) Duration (min) Settlement (mm)

Current Total Current Total

0 0 0 0 0 0

1 520 120 120 0.45 0.45

2 780 120 240 0.68 1.13

3 1,040 120 360 0.62 1.75

4 1,300 120 480 0.86 2.61

5 1,560 120 600 0.9 3.51

6 1,820 120 720 1.1 4.61

7 2,080 120 840 1.09 5.7

8 2,340 120 960 1.46 7.16

9 2,600 120 1,080 1.8 8.96

10 2,080 60 1,140 −0.31 8.65

11 1,560 60 1,200 −0.46 8.19

12 1,040 60 1,260 −0.87 7.32

13 520 60 1,320 −1.19 6.13

14 0 180 1,500 −2.22 3.91

TABLE 4 Test results of the No. 3 pile.

No. Load (kN) Duration (min) Settlement (mm)

Current Total Current Total

0 0 0 0 0 0

1 520 120 120 0.3 0.3

2 780 120 240 0.25 0.55

3 1,040 120 360 0.43 0.98

4 1,300 120 480 0.68 1.66

5 1,560 150 630 1.13 2.79

6 1,820 120 750 1.86 4.65

7 2,080 150 900 2.79 7.44

8 2,340 120 1,020 4.74 12.18

9 2,600 150 1,170 6.99 19.17

10 2,080 60 1,230 −0.25 18.92

11 1,560 60 1,290 −0.97 17.95

12 1,040 60 1,350 −1.03 16.92

13 520 60 1,410 −1.22 15.7

14 0 180 1,590 −2.18 13.52

α—Reductionfactorofbearingcapacityofnatural foundation

soilat thepileendof theSDCMpile

qpa—Endresistanceof theSDCMpile (kPa)

Ap—Thecross− sectionalareaof theSDCMpile(m2)

TABLE 5 Test results of the No. 8 pile.

No. Load (kN) Duration (min) Settlement (mm)

Current Total Current Total

0 0 0 0 0 0

1 520 120 120 1.12 1.12

2 780 120 240 1.21 2.33

3 1,040 120 360 1.49 3.82

4 1,300 120 480 1.74 5.56

5 1,560 120 600 1.98 7.54

6 1,820 120 720 1.8 9.34

7 2,080 120 840 1.67 11.01

8 2,340 120 960 1.77 12.78

9 2,600 150 1,110 2.44 15.22

10 2,080 60 1,170 −0.15 15.07

11 1,560 60 1,230 −0.26 14.81

12 1,040 60 1,290 −0.48 14.33

13 520 60 1,350 −0.7 13.63

14 0 180 1,530 −1.36 12.27

We take the smaller value of the abovementioned two; that is, the
characteristic value of the bearing capacity of the test pile calculated
by the code method is 2,460 kN, which is greater than 2,300 kN.
This test also directly verified that the piles do not fail when the
characteristic value is 2,300 kN, which indirectly explained the
rationality of 2,460 kN. For the sake of safety in actual engineering,
the characteristic value of the bearing capacity of the SDCM pile
foundation pile can be taken as 2,300 kN.

5.2 Economic comparison

Compared with the traditional CFG pile, the SDCM pile is used.
Combined with the actual project on which this test is based, the
base pressure of the SDCM pile is 490 kPa/m2, and the basement
area is temporarily 1,200 m2. The upper load is 588,000 kN, the
characteristic bearing capacity value of a single pile is 2,300 kN, and
the actual pile layout is 588,000/2,300 = 256. The actual number
of piles should be more than 256 according to the floor area
and pile spacing, the pile spacing is 2.1 m by 2.1 m, the single
pile treatment area is 4.41 m2, and the foundation bottom area is
1,200 m2, 1,200/4.41 = 272.The length of the strength composite pile
is 9 m, totally 2,448 m, and the comprehensive price permeter is 560
yuan (including all material costs, labor andmachinery costs, empty
pile fees, electricity costs, value-added tax, pile inspection fees, and
pile head cutting costs). The final cost of the SDCM pile is 560 by
2,448, that is, 1.3708 million Yuan.

If CFG piles were used, the base area is 1,200 m2, the pile spacing
is 1.2 by 1.2 = 1.44 m2, 1,200/1.44 = 833 (roots), the single pile length
is 19+ 0.5 = 19.5 m, the total pile length is 19.5 by 833= 16,243 m, the
unit price is 139 Yuan/m (including C25 concrete, labor, machinery,
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FIGURE 4
Construction photos of the in situ test.

FIGURE 5
Qs curves of test piles 1#, 3#, and 8#.

TABLE 6 Statistical table of vertical compressive static load test.

No. Time
(days)

Max. load
(kN)

Max.
settlement

(mm)

Rebound
amount
(mm)

Rebound
rate (%)

Characteristic
value of
bearing

capacity (kN)

1# 21 2,600 8.96 5.05 56.36 ≥1,300

3# 21 19.17 5.65 29.47

8# 21 15.22 2.95 19.38

electricity, value-added tax, pile inspection fee, and pile head cutting
costs), the construction cost is 16,243 by 139 = 2.2577 million Yuan,
and cancel cushion is 1,200 by 0.2 = 240 cubic meters (sand and
gravel), 350 Yuan/m3, which is 84,000 Yuan in total. The final cost
of CFG piles is 2.2577 + 8.4 = 2.3417 million Yuan.

In summary, the core composite pile is 1.378 million Yuan,
the CFG pile is 2.3417 million Yuan, and the pile foundation can
save 960,000 Yuan in cost; that is, the SDCM pile saves 41% of
cost.

In addition, for CFG piles, because the upper part of the pile
length is in the fine sand layer and the lower part is in the clay
layer during construction, the quality of the pile body is not easy
to control, and the pile may have shrinkage and mud inclusions.
Since the pile distance is only 1.2 m, it is necessary to take jump
driving, it is difficult to remove the soil at the pile position for the
second time, and the pile position is not easy to control. During
the construction of the CFG pile, a large amount of sediment is
displaced, limited by the control of dust, and it is difficult to transport
outside, which affects the construction period, especially in the rainy
season, and construction in the foundation pit, as the supply of
concrete is not timely.Due to air pollution, themixing station cannot
guarantee the continuous supply of concrete, resulting in repeated
stoppage of drilling, broken piles, and waste of concrete. We can
easily control the quality using the SDCM pile, and the quality
of the finished PHC pipe piles is guaranteed. The construction
period is short, no soil is unearthed, and it is not restricted by the
environment. After the strength of composite piles is processed,
the length of the piles can be guaranteed to enter the fine sand
layer.

6 Conclusion

Taking the silt and sandy soil of Huanghuai alluvial strata as
the research background, this study carried out an in situ test on
the SDCM pile based on the PHC pile, and the results are as
follows:

(1) The SDCMpile based on the PHCpile with a length of 8.0 m can
provide the characteristic value of bearing capacity of 2,300 kN,
which can meet the vertical load requirements of general high-
rise buildings.

(2) The SDCM pile has high promotion value in similar sites. The
construction quality of the outer core has a significant effect on
the bearing capacity of the SDCM pile.The construction quality
should be strictly controlled.

(3) Compared with the CFG pile, the SDCMpile has the advantages
of high strength, guaranteed construction quality, large bearing
capacity, and good economy.
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