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With the continuous expansion of the city scale, while rapidly advancing
foundation pit construction, it has become a top priority to prevent the
potential safety hazards caused by efforts to catch up with deadlines. In this
case, deep foundation pit monitoring can provide important technical support for
the foundation pit design and construction safety. However, conventional
foundation pit monitoring for point monitoring of structural characteristics
cannot accurately locate local strains and related cracks, and cannot provide
real-time monitoring of support structures, ordinary soil constitutive models
cannot consider the strain hardening characteristics of soft soil. This paper
aimed to analyze the characteristics of excavation deformation of a deep
foundation pit with internal support in the Dalian Donggang Business District
by combining the methods of optical fiber monitoring and finite element
simulation. In this study, distributed optical fiber monitoring and routine
monitoring were adopted to carry out the synchronous excavation monitoring
of foundation pit support structures. The main monitoring objects were the deep
horizontal displacement of the support piles and the surface settlement of the
foundation pit. Moreover, the authors used the Plaxis finite element software
based on the Hardening Soil-small (HSS) model to conduct the numerical
simulation analysis, and the results were compared with two groups of the
measured data of the deep foundation pit obtained from the aforementioned
research. Additionally, in light of the SSA-BP neural network, the back-analysis
method of HSS model parameters in the Dalian area is proposed. The findings
show that, under the premise of selecting reasonable parameters, the results of
finite element analysis of the HSS model, considering the small strain
characteristics of the soil, demonstrate a high degree of fit with the actual
deformation law of foundation pits, which proves the rationality of the model.
Furthermore, it was verified that the distributed optical fiber monitoring has
conspicuous advantages in terms of data continuity and accuracy in contrast
to routine monitoring. The research results of this paper can provide reference for
deformation monitoring and early warning regarding the support structures of
deep foundation pits.
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1 Introduction

Deformation of foundation pits is the result of the interaction
between the support structures and soil (Zheng et al., 2016).
Considering the property of soil being of great complexity and
diversity, it is a necessity to select reasonable soil constitutive model
and parameters, which ensures the entire process of excavation of
foundation pits is effectively simulated, so as to provide important
technical support for the design of foundation pits as well as for
construction safety (Zhao et al., 2016). The Hardening Soil model is
an advanced constitutive model of soil, which takes the strain
hardening characteristics of soft soil into account and regards the
stress history and stress path as a significant basis for calculating soil
stiffness. Furthermore, its deformation calculation results consider
the combined action of foundation pit support structures and the
surrounding soil (Zong and Xu, 2019). The variation pattern of soil
stiffness can be classified into three kinds: very small strain (<
0.001%), small strain (0.001%–1%), and large strain (>1%)
(Atkinson and Sallfors, 1991). Schweiger et al. (2009) studied a
large amount of engineering monitoring data and found that, during
the excavation process of foundation pits, most soil within the
excavation range is in a state of small strain. As has been shown
by numerous experiments, the deformation characteristics of soil
mass under the small strain condition are fairly complicated and
highly non-linear (Chen et al., 2021; Gu et al., 2021; Li et al., 2021;
Zhang et al., 2022).

For the reasons given above, the Hardening Soil-small (HSS)
model, taking the features of small strain of soil into consideration,
was adopted to research the deformation trend of soil and support
structures in foundation pit engineering, which improves the
accuracy and rationality of the numerical analysis (Benz, 2007).
Kim and Finno (2019) obtained the HSS model parameters of their
research region through back-analysis of soil test results, and, by
resorting to the sensitivity analysis of the model parameters at
different stages of excavation, the parameters of the HSS model
were optimized. Afterward, the researchers applied them to the
numerical simulation of foundation pit deformation and then
compared the derived data with the field measured values. The
comparative results demonstrated that the HSSmodel can effectively
predict the deformation of both side walls and the surface settlement
of foundation pits. Wang et al. (2013) referred to plenty of
experimental results and related studies, modified parameters
Eref
50 , E

ref
oed, E

ref
ur , γ0.7, and Rf via sensitivity analysis, calculated Gref

0

through the back-analysis method, and finally concluded a set of
preliminarily complete determining HSS model parameters on the
basis of typical HS model parameters in Shanghai (Wang et al.,
2012). Mu et al. (2012) acquired the HSS model parameters of the
soil around a foundation pit via the back-analysis based on the
coupling of MATLAB and Macro, and completed a numerical
simulation of the construction process. They then compared and
analyzed the change rule of the simulated value and the measured
value. The comparative results indicated that the HSS model,
considering the characteristics of small strain soil, can accurately
adapt to the soil stiffness, which would effectively reduce the finite
element calculation error of the next excavation. The rationality of
the back-analysis method has been verified as well in the studies.
Liang et al., 2017 obtained the main parameter values and their
proportional relationships of the HSS model of typical clay layers in

Shanghai through laboratory soil tests, and compared the calculated
values and measured values of the deformation of the support
structures based on foundation pit engineering examples. The
study showed that the HSS model and the parameters gained
from the test method are applicable to the simulation of
foundation pit excavations in soft soil areas of Shanghai. Wu
et al. (2021), on the basis of deep foundation pit engineering of
typical soft soil in Shanghai, utilized Plaxis to establish a three-
dimensional model according to the HSS model and corresponding
parameters, carried out finite element analysis on the whole process
of excavation, and studied the deformation of deep foundation pit
excavations in the typical soft soil of Shanghai. This study delivered a
technical reference for the design and construction of narrow-long
deep foundation pits Shi et al. (2016) studied the stiffness parameters
Eref
50 , G

ref
0 , and γ0.7 in the HSS model of typical soil layers in the

Xiamen area, and the model’s sensitivity to the numerical simulation
results of underground engineering. They sorted and compared the
deformation sensitivity of each parameter at each stage of
foundation pit excavation by using the single control soil layer
parameters and orthogonal test method. This provides a reference
point for the precise control of foundation pit deformation in the
process of engineering investigations.

In summary, in contrast with the HS model, the HSS model
takes into account the small strain characteristics of soil better,
hence it is widely used in engineering issues such as foundation pit
excavation. The HSS model, however, requires more parameters
which are relatively difficult to obtain to characterize soil properties.
Therefore, experimental methods or back-analysis is commonly
adopted to achieve the parameters. On the other hand, the
properties of soils in different regions may be various, so the
correction and calibration of parameters in specific applications
should align with the realistic situation of the region.

Foundation pit engineering monitoring refers to a procedure
during foundation pit excavation, including monitoring the
deformation of the foundation pit support structures and their
surroundings using equipment and instruments, analyzing
monitoring data to report results, and lastly comparing the
results with alarm values to judge the excavation’s safety (Xi and
Wei, 2020). Although some normal monitoring methods can be
used for fixed-point monitoring of structural characteristics, they
cannot precisely locate the local strain and relevant cracking,
perform real-time monitoring on support structures, and realize
the continuous measurement of strain, bending moment, and
uneven settlement (Fu and Peng, 2018). In addition, point
measurement frequency is not conducive to the timely discovery
of dangerous situations to ensure the safety of the project and is
subject to other disadvantages like adjacent buildings being possibly
affected. This poses a huge challenge in preventing construction
hazards. Wang N. et al., 2020 conducted a synchronous monitoring
experiment between the traditional reinforcement meter and the
distributed optical fiber, and concluded through comparative
analysis that distributed optical fiber has advantages in concrete
support axial force and deformation monitoring. Qiu and Sun
(2020) designed a monitoring plan for the support pile of deep
foundation pits in the light of distributed optical fiber sensing
technology and successfully measured its continuous distributed
deformation information. Based on that, monitoring and analysis of
the deformation process of the support structures during foundation
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pit construction were completed. Zhu et al. (2022) designed two
types of deployment methods for fiber optic sensors, single
U-shaped and multi-U-shaped. Combined with the actual
engineering, they employed these two methods to acquire the
monitoring data on the displacement of drilled cast-in-place
piles, and compared them with the results obtained by inclined
tube monitoring methods. The results revealed that both types of
distributed optical fiber layout methods are effective in monitoring
pile deformation and are better than that of the inclinometer tube
method. When it comes to the limitations, the measurement object
is the single pile, without taking the interlocking pile as the support
structure into account. Thus, the influence of complex deformation
caused by the interaction between piles on monitoring has not yet
been researched.

In recent years, with the rapid development of computer
technology, the concept and algorithms of machine learning are
being constantly upgraded and evolved. Many scholars use the BP
neural network regression algorithm to carry out prediction research
on measured data sets. Luo et al., 2020 compared the effect of the
GA-BP neural network, support vector regression model (SVR), and
random forest model (RF) on the prediction of foundation pit
deformation by inputting datasets with the same features. The
results demonstrated that the mean square error of the GA-BP
neural network is smaller, which indicates that it has strong
forecasting ability. Wang et al., 2021 established a simple and
valid BP neural network model for analysis and concluded that
the number of the hidden layer nodes had a high sensitivity to the
influence of the prediction results. Meng et al., 2022 proposed an
implementation process of multi-step rolling forecasting of the
deformation of deep foundation pits based on the BP neural
network, which achieved the expected effect and supplied
feasibility for monitoring equipment to realize automatic
predictions.

On the basis of the aforementioned studies, this paper,
concentrating on a deep foundation pit project in the Dalian
Donggang Business District, executed the real-time monitoring of
the whole process of excavation deformation of the deep foundation
pit through the methods of routine monitoring and distributed
optical fiber monitoring. In addition, the sparrow search algorithm
combined with the BP neural network algorithm were used to invert
the HSS model parameters. The finite element numerical analysis
model of the foundation pit was established using geotechnical
Plaxis finite element software to simulate the whole construction
process of the foundation pit. Finally, the authors compared and
analyzed the measured data with simulation results. This paper aims
to provide reference for data monitoring and deformation analysis
during deep foundation pit excavation.

2 Deformation monitoring principle of
optical fibers distributed in piles

In the 1980 s, (Rogers, 1980) proposed the optical time-domain
reflectometry technology, which has rapidly developed into a new
backbone of monitoring in the field of structural health monitoring.
In testing the technique, the light signal is scattered and reflected
when injected into different media. Thus, the received optical signal
is input in the form of an optical pulse from the fiber optic jumper

head. The intensity of the reflected light signal is measured as a
function of time; it therefore can be converted into the length of the
optical fiber. Moreover, the optical demodulator demodulates the
physical parameters of the object such as strain, temperature,
acceleration, and pressure. Distributed optical fiber sensing
technology usually adopts conventional single-mode optical fibers
as the transmission medium, which is simple and convenient. Its
sensing signal is mainly transmitted through light, with optical fiber
as the medium to check and detect external measured signals. It is a
new type of optical fiber sensing technology, optical fiber enjoying
the advantages that the traditional monitoring method is beyond
comparison, including easier bending, a lighter weight, smaller size,
and more anti-interference (Gao et al., 2017). Accordingly, optical
fiber has become a hot trend in the field of monitoring research since
the time of its emergence.

2.1 Calculation of pile body stress

When the optical fiber is buried in the pile, the axial deformation
of the optical fiber and the axial deformation of the pile are both
ε(z). The axial strain ε(z) of the optical fiber is measured by the
testing instrument, then the pile body stress σ(z) is:

σ z( ) � ε z( ).Ec (1)
Among them, Ec is the elastic modulus of the cast-in-place pile

and z is the pile depth.

2.2 Calculation of pile body axial force

According to the pile body stress σ(z), the pile body axial force
Q(z) is:

FIGURE 1
Deformation diagram of pile body under horizontal load.
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Q z( ) � σ z( ).A (2)

2.3 Calculation of pile body deflection

When the pile body is bent, the distributed strain of the pile body
under different load deformations can be obtained by testing the
strain value of the distributed sensing optical cable buried inside the
pile body.

Assuming ε1 and ε2 respectively are the strain values measured
by the optical fibers inside and outside the pile at a depth of z along
the direction of its body, then the axial compressive strain εa(z) and
bending strain εm(z) are

εm z( ) � ε1 − ε2( )
2

(3)

εa z( ) � ε1 + ε2( )
2

(4)

As shown in Figure 1, under the action of horizontal load p, the
pile top mn rotates and deforms to m′n around the point n.
Assuming that the length of the longitudinal arc line segment
O1O2 on the neutral axis of the pile is dz, the corresponding
curve’s bending deformation angle is dθ, and the curvature
radius is ρ(z), then the bending strain at the distance of y(z)
from the neutral axis is:

εm z( ) � y z( )dθ
dz

(5)
1

ρ z( ) �
dθ
dz

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (6)

Substituting Eq. 5 into Eq. 6 yields the following relationship:

εm z( ) � y z( )
ρ z( ) (7)

When the pile is bent, the relationship between the curvature
radius and the bending moment is:

1
ρ z( ) �

M z( )
EI

(8)

In Eq. 8: EI is the bending stiffness, kN ·m2; E is the elastic
modulus; and I is the moment of inertia of the pile section.

M z( ) � EI
εm z( )
y z( ) (9)

The curvature of the plane curve can be calculated by
mathematical theory:

1
ρ z( ) � ±

d2ω

dz2
(10)

Substituting Eq. 10 into Eq. 8 yields:

±
d2ω

dz2
� M z( )

EI
(11)

According to the sign convention between the bending
moment and deflection, take the negative sign on the left side
of Eq. 9, that is:

d2ω

dz2
� −M z( )

EI
� −εm z( )

y z( ) (12)

Substituting Eq. 9, 10 into Eq. 12, an approximate solution for
the torsional crankshaft is obtained. Although there is an action
subjected to horizontal loads, the deformation of the pile bottom is
minor enough to be negligible. Given the above reasons, it is
assumed that the bottom end of the pile is completely fixed, the
deflection is integrated to obtain the general solution equation of
deflection:

w z( ) � −∫z

H
∫z

H

εm z( )
y z( ) dzdz − Cz − D (13)

In Eqs. 13, H is the burial depth of the pile; C, D is the constant of
integration The discrete data can be obtained by solving:

w z( ) � ∑n

i�1∑n

i�1
εm zi( )
R

ΔzΔz (14)

In Eq. 14, n is the number of measuring points from the pile
bottom to the depth of z; R is the pile radius; and ΔZ is the testing
distance interval of the fiber optic monitoring instruments.In
Figure 1: p is the horizontal load; ρ is the curvature radius.

3 Introduction to HSS model

A large amount of engineering experiences indicate that it is
quite difficult to accurately analyze and predict geotechnical
engineering deformation. One possible important reason is the
lack of reasonable understanding and application of soil
deformation characteristics, especially the small strain. At
present, the Hardening Soil-small (HSS) model has been
widely used for deformation analysis in practical engineering
due to its ability to properly consider the non-linear and stress-
related characteristics of the modulus of the elastic (small strain)
phase of soil. This model further optimizes the assumed
conditions of the Hardening Soil (HS) model. It is an
advanced soil model developed based on the fruits of soil

FIGURE 2
Relationship between axial strain and deviatoric stress of
consolidated soil.
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consolidation tests and triaxial tests. The HS model simulates the
shear hardening and volume hardening of soil when unloading
during the plastic stage of the soil. These two hardening
situations explain the stress state of internal deformation and
failure of soil, which generally occur simultaneously. The results
of their hardenings should be determined by the stress path and
the characteristics of the soil; therefore, they can simulate various
types of soil in a comparatively realistically way. The relationship
between the axial strain and deviatoric stress of consolidated soil
is shown in Figure 2.

In Figure 2: qa is the asymptotic value of hyperbola; E50 is the
stiffness modulus related to the confining pressure of soil; Eur is the
modulus adopted by the stress path of unloading and reloading; and
E0 is the stiffness of soil under very small strain. qa, E50, and Eur can
be obtained from the following equation.

E50 � Eref
50

c′ cotφ′ − σ3′
c′ cotφ′ + pref

( )m

(15)

Eur � Eref
ur

c′ cotφ′ − σ3′
c′ cotφ′ + pref

( )m

(16)

qf � c′ cotφ′ − σ3′( ) 2 sinφ′
1 − sinφ′

qa �
qf
Rf

(17)

In the formula: Eref
50 is the reference stiffness modulus; Eref

ur is the
modulus of unloading and reloading; qf is the ultimate shear stress;
Rf is the damage ratio; pref is the reference confining pressure; c′ is
the effective cohesion; φ′ is the effective internal friction angle; m is
the dependence index of stiffness level; and σ3′ is the effective small
principal stress.

Based on the HS model, the HSS model takes the small strain
properties of the soil into account by adding two parameters, making
the simulation closer to the real situation. In dynamic triaxial tests,
the small strain characteristics of soil is discovered, and the HSS
model considers the increasing trend of soil stiffness under small
strain conditions. Therefore, its soil excavation simulation under
unloading has better adaptability compared to other constitutive
models.

The empirical formula of small strain stiffness G0
ref is:

As Hardin et al. [28] deduced through extensive experiments,
the empirical formula of small strain stiffness G0

ref is:

Gref
0 � 33 ×

2.973 − e0( )2
1 + e0

OCR( )m (18)

In Equation 18: e0 is the initial void ratio of the soil; Gref
0 is the

reference shear modulus for small strains; and OCR is the over
consolidation ratio.

According to the research of Brinkgreve and Broere. (2006), γ0.7
can be expressed as:

γ0.7 �
1

9G0
2c′ 1 + 2 cos 2φ′( )( ) − σ1′ 1 + K0( ) sin 2φ′( )[ ] (19)

For Equation 19, there exists:

G0 � Gref
0

c′ cotφ′ − σ3′
c′ cotφ′ + pref

( ) (20)

In Equations 19, 20: σ1′ is the effective major principal stress; G0

is the initial shear modulus under static load; Gref
0 is the reference

initial shear modulus for small strains; and K0 is the normally
consolidated lateral pressure coefficient at rest.

4 Sparrow search algorithm BP (SSA-
BP) neural network model

4.1 Sparrow search algorithm principle

The Sparrow Search Algorithm (SSA) is a swarm intelligence
algorithm based on the sparrow population proposed for the first
time in 2020 (Xue and Shen, 2020). Its main inspiration comes from
the behavior of sparrow populations in foraging and anti-predation.
By optimizing the exploration and development of search space to a
certain extent, SSA has a great improvement over other common
intelligent optimization algorithms in search accuracy, convergence
efficiency, stability, and the obviation of local optimal solution,
which makes it a novel method of global search optimization.

The sparrow search algorithm consists of three different roles:
producers, scroungers, and early warnings Among them, individuals
with a high level of adaptability in a population are called producers,
typically accounting for 10%–20% of the entire population. The rest
of the individuals are scroungers, relying on the producers who find
a source of food to obtain nutrition. Meanwhile, scroungers may
engage in competition with producers. Any sparrow can turn into a
producer by searching for better food sources. However, the total
proportion of producers and scroungers in the group remains
steady.

Furthermore, a certain proportion of early warmings would
randomly generate in the sparrow population, usually within the
range of 10%–20%. The scouters’ pivotal role is to detect potential
threats such as predators, and to send alarm signals upon detection.
If the alarm signal exceeds a certain safety threshold, the producers
are responsible for leading all scroungers to a safe area. The position
of the sparrow population is simulated by using the following
matrix:

X �
x1,1 x1,2 . . .
x2,1 x2,2 . . .

. . . x1,n

. . . x2,n
..
. ..

. ..
.

xm,1 xm,2 . . .

..

. ..
.

. . . xm,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

In the formula, m is the number of sparrows and N is the
dimension of the variables to be optimized.

Corresponding fitness of the sparrow population:

F X( ) �
f x1,1 x1,2 . . . . . . x1,n[ ]( )
f x2,1 x2,2 . . . . . . x2,n[ ]( )

..

.

f xm,1 xm,2 . . . . . . xm,n[ ]( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

� f x1( ) f x2( ) . . . f xm( )[ ]T
In the formula, xm is the position of themth sparrow and f(xm)

is the fitness value of the mth sparrow.
The updated description of the producers’ location is as follows:
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xt+1i,j � xti,j. exp
−i
αT

( ),R2 < ST

xti,j + Q.L,R2 ≥ ST

⎧⎪⎪⎨⎪⎪⎩ (23)

In the formula: t is the current number of iterations; T is the
maximum number of iterations; Q is the random number
subjected to standard normal distribution; L is the 1 × N
matrix with internal elements all being 1; R2 (R2 ∈ [0, 1]) is
the warning value of the system; and ST (ST ∈ [0.5, 1]) is the
safety value of the system.

When R2 < ST, it indicates that the environment is safe, that
is, there are no predators around the sparrow population. In this
setting, the producers are in a widespread search state. When
R2 ≥ ST, it suggests that a certain number of scouters have
detected dangerous predators and sent alarm signals. At this
point, the sparrow population, led by the producers, quickly
makes an anti-predation response and move to another
safety zone.

The updated description of the scroungers’ location is as follows:

xt+1i,j �
Q. exp

xtw − xti,j
i2

( ), i> n
2

xt+1p + xti,j − xt+1p

∣∣∣∣∣ ∣∣∣∣∣.A+.L, i≤
n
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (24)

In the formula, xt
p is the optimal position occupied by the

current producers; xt
w is the current global worst position; and A+ is

the 1 × n matrix, with randomly distributed elements of one or
-1 which satisfies A+ � AT(AAT)−1.

The updated description of the early warmings’ location is as
follows:

xt+1i,j �
xtb + β. xti,j − xtb

∣∣∣∣∣ ∣∣∣∣∣, f i ≠ f g

xti,j + K .
xti,j − xtw
∣∣∣∣∣ ∣∣∣∣∣
f i − f w( ) + ε

⎛⎝ ⎞⎠, f i � f g

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (25)

In the equation: xt
b is the current location that coincides with the

center of gravity of the species group, which refers to the current global
optimal position; β is the step size control parameters, obeying the
normal distribution with a mean value of 0 and variance of 1; K is a
uniformly distributed random variable on the interval [-1,1];fg andfw

are, respectively, the current fitness values under the global optimal and
worst conditions;fi is the fitness value corresponding to the ith sparrow
in the current iteration; and ε is the arbitrarily small number, which
satisfies the condition of meaningful fractions.

When fi ≠ fg, it means that the sparrows are at the edge of the
group and easier to recognize the danger; therefore, they need to be
ready to change the position at any time to achieve a higher fitness.
When fi � fg , it denotes that the center of the population have also
perceived the danger, which requires a quick approach from other
individuals to avoid predators.

4.2 SSA-BP model

The performance of the BP neural network depends on the
setting of its weights and thresholds; for this reason, optimizing
these parameters is necessary to improve the performance. In

the traditional optimization methods, problems such as non-
convexity, high dimensionality, and multimodality often need to
be tackled with, and the computational complexity is very high
and prone to falling into local optimal solutions. As a new type of
heuristic optimization algorithm, the sparrow search algorithm
can avoid these problems. It can search for the optimal solution
by imitating the sparrow’s foraging behavior and the global
optimal solution in a short time with high efficiency and
accuracy.

In accordance with the improved algorithms above,
employing the sparrow search algorithm to optimize the
weights and thresholds of the BP neural network can enhance
its accuracy and generalization ability, so as to better adapt to
practical application scenarios. Additionally, this method has
a good optimization effect in preventing some of the problems of
traditional optimization methods, such as local optimal solutions
and high computational complexity. Therefore, the
sparrow search algorithm is an optimization method suitable
for the BP neural network. The prediction flow chart
of the improved SSA-BP model is shown in the following
Figure 3:

FIGURE 3
Prediction flow chart of SSA-BP model.
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5 Introduction to deep foundation pit
engineering

5.1 Introduction of the engineering

The deep foundation pit engineering in Dalian Donggang
Business District, with a length of about 100 m and a width of
about 50 m, is equipped with a three story basement. The depth of
the foundation pit is 14.0–15.7 m, its excavating area being about
5,150 m2. The plan of using a secant pile with two reinforced
concrete internal supports has been adopted as the foundation
pit support structure. The design of the brace layout is that the
north side adopts the ring brace while the south side takes the corner
brace. In addition, the support pile put to use is a 1.2 m diameter
secant pile. The cross-section of the foundation pit support system is
illustrated in Figure 4.

The strata on the site of this project are in sequence from top
to bottom: plain fill, mucky silty clay, silty clay, completely
weathered slate, intensely weathered slate, moderately
weathered slate, and slightly weathered slate. In terms of the
engineering example of the adjacent parallel field, the water level
elevation of groundwater in the surrounding area of the site
reaches 1.80 m. Its main aquifer is earth fill, which is a strong
permeable stratum.

5.2 Layout of conventional deep foundation
pit monitoring

In order to ensure the stability and safety of the foundation pit
engineering, impactful monitoring must be carried out throughout
the construction. To analyze the results of monitoring, it is necessary
to conduct global monitoring, comprehensively analyzing multiple

associated measurement points and monitoring projects. By doing
so, it is beneficial to reduce construction risks by determining
whether the support design is in need of modification, and
whether there is room for improvement in the construction
technology and methods. It is also conducive to monitor the
deformation and safety of the surrounding construction areas.
Figure 4 shows the layout plan and measurement points of the
foundation pit.

FIGURE 4
Layout plan and measurement points of the foundation pit.

FIGURE 5
Typical engineering geological sectional drawing of the
foundation pit.
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The stratigraphic distribution and characteristics of the site of
this project are as follows, and the typical engineering geological
sectional drawing is shown in Figure 5.

Plain fill: in a slightly dense state, mainly composed of cohesive
soil, slate, and quartzite gravels. The particle grading is ordinary,
with an average Cone dynamic penetration test (DPT) of 6.2.

Mucky silty clay: in a soft plastic state, with a high content of
organic matter.

Silty clay: in a plastic state, locally containing quartz fine sand,
with an average standard penetration test (SPT) of 9.8.

Completely weathered slate: extremely soft rock and terribly
fractured.

Intensely weathered slate: with developed joints and fissures, soft
rock, and fractured. The basic quality level of the rock mass is
Grade V.

Moderately weathered slate: the rock core is in a block and short
column shape, with developed joints and fissures. The rock mass is
of a layered structure and relatively complete. Its basic quality grade
is Grade IV.

Slightly weathered slate: relatively hard rock; the basic quality
level of the rock mass is Grade III.

Figure 6 manifests the sectional drawing of the foundation pit
support system, which is located in the upper left side of the
layout plan. According to the requirements of relevant
specifications, combined with the support design of the
foundation pit engineering as well as the actual construction
situation onsite, the monitoring objects of the project were
determined to include the foundation pit support structure
and surface settlement outside the pit, etc. The content and
items of routine monitoring are as follows:

(1) Horizontal deformation of the support pile (CX1-CX7).
(2) Ground surface settlement monitoring (DB1-DB17).

In line with the specifications and design requirements, the
horizontal displacement was monitored by using an
inclinometer. According to the design documents for the
foundation pit support of this project, it was planned to set up
seven deep horizontal displacement points. They were
respectively arranged at the corners of the support structure
and in the middle of the long side, with a horizontal spacing
of no more than 50 m between two monitoring points. The point
numbers above are: CX1~CX7.

The monitoring points of the ground surface settlement around
the foundation pit were set on the sidewalks and green belts
surrounding the pit. Of them, there were two additional points
added to the original green space on the north side. The point
numbers above are: DB1~DB17.

FIGURE 6
Sectional drawing of the foundation it support system.

FIGURE 7
Schematic diagram of field test of deep foundation pit support
structure.
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5.3 Layout of distributed optical fiber
monitoring

In view of the harsh construction environment such as soil filling
and grouting, the research team applied tightly sleeved optical fiber
technology in this monitoring study. It has the favorable form of
encapsulation protection and fine effect of strain transmission;
hence, it can adapt to the harsh working environment of the
underground diaphragm wall. The technology breaks through the
traditional concept of point sensing to measure strain, temperature,
and damage information at any point on the optical fiber, execute
continuous distributed monitoring of the measured objects, and
study the overall strain behavior of the measured objects, in order to
achieve the purpose of guiding the site construction and later
structural health diagnosis.

This project used the distributed optical fiber method to monitor
the southwest section of the foundation pit. The support pile
adopted is a 1.2 m diameter secant pile, and the length of the
pile in this section is 32 m according to the design drawing of
the foundation pit support. The experimental system is shown in
Figure 7. Depending on different types of pile, considering the
survival rate of sensing fibers, operability of construction, and
installation, as well as monitoring accuracy, it is required to
handle crucial technical aspects including the layout plan and
temperature compensation. There were at least four sensing

FIGURE 8
Photos of the onsite operation of the optical fiber monitoring
scheme. (A) optical fiber. (B) steel cage.
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optical cables that needed to be set inside the cast-in-place pile, and
the optical fibers were laid on the main reinforcement of the steel
cage by using rebar as the carrier. Additionally, the optical fibers
needed to be laid along the inner side of the rebars to prevent the
direct impact of concrete on the optical fibers during concrete
pouring. In order to systematically grasp the real situation of the
pile, a dual U-shapedmethod was adopted to ensure the survival rate
of the optical fiber and the reliability of the data.

After rebar workers on the construction site finished the steel
cage, the main reinforcement position where the optical fiber was to
be pasted needed to be ground and then wiped clean with alcohol
wipes. Next, tightly sleeved optical fibers at the corresponding
positions of rebars were laid before 502 glue was evenly applied.
When pasting distributed optical fibers, attention needed to be paid
to straightening the fibers and sticking them without relaxation. The
bend needed to be protected by a metal hose—this part of the dataset
was not studied. After that, the steel pipe was used to connect the
optical fiber at the pile head, and coil the fibers to prevent damage
caused by the hoisting of the steel cage.

Metal-based cord-like optical fibers have good encapsulation
technology, and the strain transmission effect is within a
controllable range. Therefore, they were arranged along the main
reinforcement of the steel cage symmetrically and placed on the
inner side of the steel cage, where it was difficult to touch the
surrounding rock and soil as well as the grouting equipment. A
dedicated locking device and epoxy were used to tighten when fixing
the optical fiber at fixed intervals, which prevented them from
slipping. The sensing optical cable was pre-tensioned to keep
itself straight, and was fixed using the binding method. Large
intervals could be taken when binding the temperature
compensated optical fibers. The onsite operation of the optical
fiber monitoring scheme is demonstrated in Figure 8.

The temperature sensing compensation optical fibers are tightly
sleeved optical fibers and was installed parallel to the measurement
object. Furthermore, the indirect compensation method was used to
install a temperature compensation optical cable which is not
affected by the structural strain beside the sensing optical cable.
The real strain of the measurement object was obtained by
subtracting the measured value of the temperature compensation

optical cable from the monitoring result of the deformation
monitoring optical cable.

5.4 Monitoring instruments

The optical fiber data acquisition device utilized in this research
is the Neubrex NBX-8100 from Japan. Table 1 shows the parameters
of the NBX-8100, which uses PSP-BOTDR technology. This
equipment went into production in 2018, and it is the most
advanced product in the field of distributed optical fiber in the
international industry. It has the smallest spatial resolution and the
most stable performance, and all of its indicators fulfill the
requirements of this experiment. The exterior of the instrument
is shown in Figure 9.

The sensing optical cable adopts the metal-based cord-like strain
sensing optical cables (model: NZS-DSS-C02) produced by Suzhou
Nanzhi Sensing Technology Co., Ltd. This sensing optical cable is
protected by multiple metal reinforcements. Used in conjunction
with Brillouin Optical Time Domain Reflectometry (BOTDR), the
surface strength has been greatly improved and the measurement
results can be directly used in displacement conversion providing
technical support for test results. The research group (Wang G. et al.,
2020) has calibrated the sensing optical cable in the early stage to
obtain the temperature and strain coefficients of the cable. The
performance and technical parameters of the sensing optical cable
are shown in Table 2.

6 Back-analysis of HSS model
parameters

6.1 Finite element analysis

Using Plaxis for numerical analysis and calculation, a two-
dimensional finite element model of the northern ring brace
section (section 1-1) of the foundation pit was established. The
excavation length of the model was 100 m, the excavation depth was
14 m, and the length of the secant pile was 32 m. The complexity of
the calculation was reduced by using a half structure. The excavation
size inside the pit was 29.7 m, the ground behind the secant pile was
76 m, and the model’s vertical dimension was around 60 m. Both the
road load and the construction load around the foundation pit were
assumed to be 15 kPa. Although the model’s ultimate size was
100 m × 60 m, to simplify the model and make calculation easier,
the local pile grid and load grid were encrypted during the grid
generation procedure. The final northern ring brace model was
divided into 2,596 units including 21,303 nodes. The boundary
conditions were lower full constraint, left and right normal
constraint, and top free constraint. The final grid generation
result is shown in Figure 10.In accordance with the previous
research results of many scholars, a conservative method was
adopted. The secant pile was transformed into a diaphragm wall
and simulated by using plate elements based on the principle of
equivalent stiffness. Calculation of the moment of inertia was based
on the structural diagram of the secant pile in Figure 11:

In Formulas 21, 22, and 23, I1 is the moment of inertia of a single
pile minus the black part in the figure; I2 is the cross-sectional

FIGURE 9
NBX-8100 optical nanometer.
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moment of inertia of the common pile; I3 is the moment of inertia of
the quarter black part of the secant pile; R is the radius of the pile; a is
the secant distance between two piles; and y1 is half of the width of
the secant face surface.

Calculation of the equivalent thickness h0 was based on the
principle of equivalent stiffness:

I1 � I2 − 4I3, (26)
I2 � 1

4
πR4, (27)

I3 � ∫y1

−y1
y2 x − R − a

2
( )[ ]dy

� 2∫y1

0
y2

������
R2 − y2

√
dy

�
�������
R2 − y1

2
√ R2 − 2y1

2( )
4

− 2R − a( )y13
3

(28)

E1I1 + E2I2 � E0 4R − 2a( )h03
12

(29)

E0 � E1A1 + E2A2

A1 + A2( ) (30)

TABLE 2 Performance and technical parameters of the optical fiber sensor.

Fiber
type

Fiber
core

amount

Grating center
wavelength

(nm)

Reflectivity
(%)

Cable
type

Optical
cable

diameter
(mm)

Strain
test
range
(με)

Frequency shift-
strain

coefficient
(MHz·106)

Frequency shift-
temperature
coefficient
(MHz·°C−1)

G.652 1 1,527–1,568 0.01 Metal-
based

7 1.5 × 104 0.05 1.77

FIGURE 10
Mesh division of deep foundation pit model in section one
to one.

FIGURE 11
Structural diagram and moment of inertia calculation diagram of the secant pile.

TABLE 3 Support numerical simulation parameters.

Type Tensional rigidity/kN Equivalent length/m

Support 3.25 × 107 7.5
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In the formula, E1 is the elastic modulus of plain piles, E2 is the
elastic modulus of reinforced piles; E0 is the equivalent elastic modulus;
A1 is the cross-sectional areas of plain piles, A2 is the cross-sectional
areas of reinforced piles; and h0 is the equivalent thickness.

The support is composed of C40 concrete, the reinforced piles
are made of C30 concrete, and the plain piles are made of
C15 concrete. The input parameters for the inner support, which
is simplified by using anchor rods for simulation, are shown in
Table 3. The simulation parameters following the equivalent
calculation of the secant pile are shown in Table 4.

Before beginning the calculation, the calculation phase must be
defined Because of the non-uniformity of the foundation soil layer,
the calculation method of gravity loading was employed to construct
the initial stress field in the initial stage. The water level is set and the
phreatic water type is selected as the pore pressure calculation type.
At the initial stage, only the soil element is active, while the other
structural elements and road loads are deactivated. Before

excavation, the plate unit and road load are activated, and the
displacement of the obtained data reset to zero.

Pore pressure, having some significant impact on the
deformation of foundation pits, should be taken into account. In
the actual engineering of this paper, thanks to the sound sealing
performance of the secant pile, the calculation method of stable
seepage was used to consider the changes in pore pressure caused by
foundation pit excavation. The seepage computation of the model
was not considered due to the secant pile’s superior waterstop
capability The specific excavation sequence of the foundation pit
is shown in Table 5.

6.2 Sensitivity analysis of parameters

The HSS model comprises many parameters, and sensitivity
analysis of parameters is essential to improve the efficiency and
accuracy of inversion analysis. In this procedure, it is vital to
establish which parameters have the largest influence on the
model’s output outcomes in order to optimize parameters and
increase the accuracy and robustness of model prediction. Based
on similar projects and relevant literature, the initial parameters
of the typical soil layer HSS model in the Dalian Donggang
Business District could be determined. Through a comprehensive
analysis of the actual engineering values in the Yangtze River
Delta region (Yin, 2010; Wang et al., 2012; Wang et al., 2013;
Liang et al., 2017; Zong and Xu, 2019; Gu et al., 2021), Xiamen
region (Shi et al., 2016), Tianjin region (Liu et al., 2007), and
Jinan region (Li et al., 2019), it could be determined that the
unloading and reloading Poisson’s ratio ]ur is 0.20, the reference
stress pref is 100kPa, the failure ratio Rf is 0.7–0.9, the power

TABLE 4 Numerical simulation parameters of the plate element.

Type Tensional rigidity/(kN·m−1) Flexural rigidity/(kN·m) Equivalent thickness/m Gravity/(kN·m−2) Poisson ratio

Secant pile 2.64 × 107 2.30 × 106 1.021 8 0.15

TABLE 5 Sequence of excavation of The deep foundation pit.

Load steps Construction operation

0 Generate the initial stress field

1 Construct secant pile unit, activate the road load

2 Excavate to 2 m and construct the first support

3 Excavate to -1 m

4 Excavate to -3.8 m and construction of the second support

5 Excavate to -6.8 m

6 Excavate to -9.5 m, the bottom

TABLE 6 Computing parameters of the HS-Small model for soil layers.

Soil layer c′ (kPa) φ′ (°) γ (kN/m3) νur K0 pref (kPa) Eref50 (MPa) Erefoed (MPa) Rf m

Plain fill 1 10.00 18.00 18.00 0.20 0.69 100 5.73 5.21 0.75 0.88

Muddy silty clay 13.90 12.90 18.10 0.20 0.78 100 2.29 2.52 0.70 0.88

Silty clay 29.40 17.60 19.70 0.20 0.70 100 4.57 4.47 0.80 0.80

Completely weathered slate 60.00 20.00 19.50 0.20 0.74 100 13.75 13.75 0.88 0.75

In Table 6: Eref
50 is the secant modulus of the standard triaxial test; Eref

oed is the tangential compression modulus of the confined compression test; Eref
ur is the unloading and reloading modulus

under reference stress; Gref
0 is the reference shear modulus for small strains; and Knc

0 is the lateral earth pressure coefficient at rest of normal consolidation.

TABLE 7 Computing parameters of the MC model for soil layers.

Soil layer Gravity γ/(kN·m−3) Cohesion c′/kPa Angle of internal friction φ′/(°) Elastic modulus/GPa Poisson ratio

Medium-weathered slate 26.70 250.00 30.00 20.00 0.27

Slightly weathered slate 27.00 400.00 38.00 35.00 0.22
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exponent m is 0.7–0.9, the reference secant modulus Eref
50 ≈ Es,

and the reference tangent modulus Eref
oed ≈ Es. Table 6 displays the

HSS model’s initial parameters. As demonstrated in Table 7, this
article provides both the Mohr Coulomb (M-C) constitutive
model parameters for moderately weathered and slightly
weathered slate.

In this sensitivity analysis, seven parameters including Eref
50 , E

ref
oed,

Eref
ur , Rf, Gref

0 , m, and γ0.7 were selected as candidates, and four
different types of soil layers were selected, namely plain fill, mucky
silty clay, silty clay, and completely weathered slate. By observing the
changing amplitude of deep horizontal displacement at the bottom
of the foundation pit enclosure structure under the fluctuation

of ±10% of the above seven parameters, the sensitivity of
foundation pit deformation to each of the seven parameters
could be assessed. Figure 11 and Figure 12 show the relative
change of deep horizontal displacement when the parameter
increases and decreases by 10%.

The results of Figure 12 and Figure 13 reflect the sensitivity
of the foundation pit deformation to the seven parameters,
represented by the deep horizontal displacement of the
support structure at the bottom of the pit. The vertical axis
shows the rate of change of foundation pit deformation, which
refers to the change of the new foundation pit deformation after
the parameter increases or decreases by 10%. It can reflect the

FIGURE 12
Relative displacement changes when the parameter increases by 10%.

FIGURE 13
Relative displacement change when the parameter is reduced by 10%.
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comparison and reference situation between the new state and
the original state.

Figure 14 comprehensively considers the results of Figure 12
and Figure 13. The vertical axis data represent the average relative
displacement when four different parameters change, and it can
be seen from this that the changes of Gref

0 , γ0.7, and Eref
ur had a

significant impact on the calculation results. The sensitivity
ranking of the seven parameters selected above were: Gref

0 >
γ0.7 > Eref

ur > Eref
50 > Eref

oed > m > Rf , referring to relevant
literature (Shi et al., 2017; Chen et al., 2021; Gu et al., 2021;
Luo et al., 2021). It can be seen that changes in small strain
parameters Gref

0 and γ0.7 had a significant impact on the
deformation of the foundation pit, which is in good agreement

with the sensitivity analysis results in this article. Therefore, in
order to guarantee the hiberarchy of the numerical simulation
results, the first three parameters Gref

0 , γ0.7, and Eref
ur were selected

for inversion analysis.

6.3 Back-analysis model

6.3.1 BP neural network
On the basis of the preprocessing of raw data, MATLAB was

selected as the main mathematical tool for this inversion experiment of
parameters; the first 77 sets of total data samples were used as the
training set to train the network model, and the last four sets were used

FIGURE 14
Mean value of relative displacement change in deep horizontal displacement.

FIGURE 15
Relative error of the BP neural network test set.
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as the test set to input the trainedmodel for calculation. Considering the
balance between data volume and model complexity, an appropriate
displacement index needed to be selected which could avoid data
redundancy and model overfitting and improve the generalization
ability and prediction accuracy of the model. At the same time,
selecting appropriate input variables can reduce the complexity of
the network structure and reduce computational costs and training
difficulty. In addition, in underground engineering, different
displacement indicators can reflect different characteristics of
deformation. For example, the uplift of the pit bottom mainly
reflects the compression deformation of the underground soil layer;
the ground surface settlement mainly reflects the settlement
deformation of the soil layer; and the deep horizontal displacement
of the soldier pile reflects the stress state changes of the surrounding soil.
Taking these displacement indicators into account can more
comprehensively and accurately reflect the deformation situation of
underground engineering.

In summary, as per the results of the numerical simulation
orthogonal experiment, a total of eight displacement indicators,
including the maximum uplift of the pit bottom, three ground
surface settlements (2 m outside the pit, 6 m outside the pit, and
10 m outside the pit), and four deep horizontal displacements
(at the top of the pile, at support 1, at support 2, and at the
bottom of the pit) of soldier piles, were selected for this back-
analysis experiment. These eight indicators were used as input

values for the network structure, and 12 parameters to be
inverted were used as output values; thus, the input layer of
the neural network included eight nodes and the output layer
included 12 nodes. Through model debugging and multiple
rounds of training based on reference empirical formulas, the
optimal value for the number of nodes in the hidden layer was
determined to be five, thereby achieving the highest accuracy of
the model. Therefore, a back propagation neural network model
with an 8-5-12 network structure was established. The relative
error of the final result is shown in Figure 15.

The largest error among the four groups of samples was
51.7%, the minimum error was 0.3%, and the average error was
19.6%, as shown in Figure 14. To minimize the prediction error
of the BP neural network as much as feasible, study on its
optimization strategy was required, so an improved sparrow
search algorithm was introduced to optimize it.

6.3.2 SSA-BP model
This portion continued to use the BP neural network structure of 8-

5-12 from the previous section with the number of sparrows set to five
and the maximum number of iterations set to 50. The network model
was trained with the first 77 sets of total data samples as the training set,
and then the last four sets of samples were used in the learned model for
calculation. The relative error of the final results is shown in Figure 16.

The above graph depicts the prediction error of the BP neural
network optimized by the improved sparrow search algorithm. It is easy
to see that its overall trend is significantly lower than the initial BP
network; the maximum error among the four groups of samples was
15.6%, the minimum error was 0.03%, and the average error was 7.51%.
By analyzing the errors, it is possible to conclude that the accuracy of the
optimized neural network meets the actual engineering requirements. In
this paper, an improved SSA-BP neural network model was used to
perform back-analysis experiments on the parameters of the HSS
constitutive model, and the values of the back-analysis results are
shown in Table 8.

FIGURE 16
Relative error of the improved SSA-BP neural network test set.

TABLE 8 Inversion analysis results table of soil parameters.

Soil layer Erefur (MPa) Gref
0 (MPa) γ0.7 (10−4)

Plain fill 1 29.42 61.86 2.32

Muddy silty clay 24.51 44.11 2.66

Silty clay 30.20 61.12 4.55

Completely weathered slate 53.87 66.03 2.80
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7 Result analysis

7.1 Analysis of HSS model parameter errors

After substituting the parameters in the table into the calculation of
the PLAXIS finite element model, the deformation of the foundation pit
was obtained. Compared with the measured data, as shown in Table 9,
the maximum error between the measured value and simulated value of
Section 1-1 was 8.12%, which occurred at the pile top; the minimum

error was 0.53%; the average relative error was 10.43%, which is within
the allowable range of error, so this parameter inversion analysis met the
accuracy and precision requirements of the small strain model for
simulating the excavation of foundation pits.

7.2 Analysis of deep horizontal displacement

Figure 17 shows the strain monitoring data on the internal and
external side of the foundation pit. The left side shows the internal
optical fiber and the right side shows the external optical fiber; the pile
undergoes deformation under lateral earth pressure, resulting in tensile
strains on the internal sides of the foundation pit, and compressive
strains on the external sides of the foundation pit.

On 8 March 2021, the inner support had not been poured and the
support pile was under soil pressure on the external sides of the
foundation pit, causing tensile strain on the optical fiber on the outer
pile and compressive strain on the inner pile. On 29 March 2021, the
pouring of first inner support was completed, and the foundation pit was
excavated for the second time; near the excavation face, due to the
bearing of partial soil pressure by the inner support, the support pile
began to protrude and deform, causing compressive strain on the
external side of the pile and tensile strain on the internal side. The
monitoring results indicated that as the foundation pit is excavated, the
supports of internal and external stress in the foundation pit are reversed;
the inner support plays a significant role in sharing the stress of the
support pile. The soil pressure load it bears continues to increase, but its
axial force remains within a safe range, indicating that the inner support
structure has relatively high safety.

According to the monitoring results at different stages, the lateral
displacement of the support structure could be calculated by using the
deflection calculation method in Section 1, as shown in Figure 18. The
conventional measure in Figure 18 was to measure the deep horizontal
displacement of the support pile using inclinometer; the monitoring
location was located at CX1 in Figure 4. When the foundation pit was
excavated to −9.5 m, the maximum measured value of the deep
horizontal displacement clinometer of the support pile was 13.16 mm
obtained at −10.78 m; the maximum measured value of distributed
optical fiber was 11.32 mm obtained at −12.53 m; and the maximum
calculated valuewas 16.88 mmobtained at−13.03 m. It can be concluded
that the changing trends of the three are roughly the same, with the onsite
optical fiber results being slightly smaller than the results of the numerical
analysis; the reason for the errormay be that the finite element simulation
did not fully simulate the complex working conditions on site, such as
construction machinery and onsite loading. The optical fiber was

TABLE 9 Relative error between the measured value and the simulated value of the foundation pit deformation of Section 1-1.

Value Pit bottom
uplift (mm)

Settlement (mm) Horizontal displacement of support pile (mm)

2 m outside
the pit

6 m outside
the pit

10 m outside
the pit

Pile
top

Support
point 1

Support
point 2

Support
point 3

Measured value 123.623 9.276 9.428 8.451 3.980 4.950 9.630 11.590

Simulated value 125.455 9.906 8.005 7.779 4.320 4.440 8.256 12.505

Relative
simulated value

1.48% 6.79% 15.09% 7.95% 15.41% 10.30% 18.50% 7.89%

FIGURE 17
Monitoring value of the internal and external strain of the
foundation pit. (A) inside of the foundation pit. (B) outside of the
foundation pit.

Frontiers in Materials frontiersin.org16

Zhao et al. 10.3389/fmats.2023.1231303

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1231303


FIGURE 18
Horizontal displacement of the deep layers in section one to one. (A) excavated to 2 m. (B) excavated to −1 m. (C) excavated to −3.8 m. (D) excavated
to −6.8 m. (E) excavated to −9.5 m.

FIGURE 19
Surrounding surface subsidence.
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damaged because of onsite mechanical excavation and human factors,
but there were many remaining optical fiber monitoring data samples.
Because the sampling interval of the optical fiber is 0.05 m, it has a
significant advantage in studying the overall performance of the
measured object and can be fully compared with the results of finite
element analysis.

The optical fibermonitoring data was close to themonitoring data of
the clinometer; the sampling interval of the clinometer data is 0.5 m,
which is ten times that of optical fibermonitoring. The distributed optical
fiber basically realizes the structural deformation characteristics of the
measured object within a very small range, making it easy to study the
subtle changes in the impact of external loads, construction machinery,
and other factors on the foundation pit support structure and explore
their deformations. However, optical fibers require good packaging
technology and laying methods to achieve precise monitoring.

7.3 Analysis of surrounding ground surface
settlement

According to the monitoring of the measured points in DB7-DB9,
the relationship between the ground surface settlement of the
foundation pit and the distance between the measurement points
and the pit edge in Figure 19 was obtained. As shown in the figure,
the changing trend of measured data of settlement and simulated
calculation results was basically consistent, indicating that the HSS
constitutive model can well predict the ground surface settlement law
around deep foundation pit. During the excavation of the foundation
pit, the center of the ground surface settlement gradually moved
outward; when the excavation was completed, the deformation
finally stabilized. The final measured maximum value was
14.89 mm, which was obtained at a distance of 10 m from the pit
edge; the simulatedmaximum value was −16.2, which was obtained at a
distance of 12 m from the pit edge; the ratio of ground surface
settlement to excavation depth of the pit was 0.157% and 0.17%,
respectively.

8 Conclusion

Real-time monitoring of the full excavation deformation process of
deep foundation pits was carried out for a deep foundation pit project
with internal support in the Dalian Donggang Business District using a
combination of traditional monitoring and distributed optical fiber
monitoring. To undertake a back-analytical study of the HSS model
parameters, the sparrow search algorithm was integrated with the BP
neural network. Then, using the geotechnical finite element analysis
software Plaxis to simulate the entire foundation pit construction process,
a finite element numerical analysis model of the foundation pit was
established. The main research conclusions from the comparative
analysis of measured data and simulation results are as follows:

(1) With a maximum prediction error of 15.6%, a minimum
prediction error of 0.03%, and an average error rate of 7.51%,
the SSA-BP neural network utilized in this article performed better.
The performance to predict the dataset is enhanced.

(2) The study’s back-analysis of parameters met the accuracy and
precision requirements of the HSS small strain model for

modeling foundation pit excavation, and can serve as a
reference for comparable actual projects.

(3) The displacement values can be calculated using the micro strain
values of deep horizontal displacement obtained by the NBX-8100
optical and the deflection calculation method. The data of optical
fiber monitoring was similar to that of the clinometer, and the
sampling interval of the optical fiber monitoring data was
approximately 1/10 of the inclinometer, achieving the structural
deformation characteristics of the tested object within a very small
range. Furthermore, the data curve was relatively smooth and with
high continuity, demonstrating the superiority of distributed
optical fiber monitoring in terms of space and accuracy.

(4) The HSS constitutive model can accurately forecast
horizontal deformation and surrounding surface
settlement produced by deep excavation, providing the
technical assistance required for stress and deformation
analysis in complex excavation projects.
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