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The accumulation and incineration of waste tires have caused great damage to
the environment. Therefore, recycling waste tires efficiently and economically
has become an important issue in protecting world resources and the
environment. In this study, 5%, 10%, and 15% rubber particles were used to
replace fine sand in concrete, and basalt fibers (0.1%, 0.2%, and 0.3%) and
polypropylene fibers (0.1%, 0.15%, and 0.2%) were added to rubber concrete to
prepare hybrid fiber rubber concrete (HFRC). The experiments investigated the
changes of mechanical properties of basalt (BF), polypropylene (PPF) fibers, and
rubber particles when they were blended into concrete respectively, and the
degree of influence of each factor on themechanical and carbonation resistance
of HFRC was investigated based on the orthogonal test. The results show that
the rubber concrete’s mechanical and carbonation properties are improved
to varying degrees after adding hybrid fibers. When the basalt fiber content
is 0.2% and the polypropylene fiber content is 0.15%, the overall mechanical
properties of HFRC reach the best state. When the basalt fiber content is 0.2%,
the polypropylene fiber content is 0.15%, and the rubber content is 5%, the
carbonation resistance of HFRC is the most ideal. In addition, the microstructure
of HFRC was observed by scanning electron microscope.

KEYWORDS

basalt fiber, polypropylene fiber, rubber concrete, mechanical properties, carbonation
resistance C.I.C. TU528, literature identification code: A

1 Introduction

With the rapid development of the global construction industry, traditional concrete
has been unable to meet some projects due to its brittleness, poor toughness, and easy
cracking. Therefore, the project’s general trend is to develop in the direction of green and
efficient. The Chinese market has a huge amount of rubber loss, and the number of used
tires discarded each year is among the highest in the world. According to the report of the
tire industry project of the World Business Council for Sustainable Development, about
1 billion tires are produced globally every year, and about 4 billion waste tires have been
accumulated (Sienkiewicz et al., 2012). In 2019, 6.8million tons of waste tires were recovered
in China, down 3.7% from the previous year (Cao et al., 2013). As an organic polymer
elastic material, the gas composition produced by rubber combustion is complex, containing
some harmful gases (Zhang and Rao, 2011; Thomas and Gupta, 2016), including polycyclic
aromatic hydrocarbons, SO2, NO2, etc., and burning the remaining powder will pollute
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the soil. Therefore, the accumulation and incineration of waste tires
have caused great damage to the environment. Therefore, recycling
waste tires efficiently and economically has become an important
issue in protecting world resources and the environment.

In the ordinary concrete to add rubber particles to replace
some of the fine aggregates prepared and the concrete is called
rubber concrete (Rubber Concrete, referred to as RC). It has
the characteristics of low mechanical strength, low density, good
impact resistance, good toughness, good sound insulation, and high
resistivity (Wang et al., 2014; Lv et al., 2015; Guo et al., 2017; Si et al.,
2017; Wen and Liu, 2018; Wang W. N., 2019). Using rubber to
replace part of the aggregate reduces the amount of natural aggregate
and helps to solve the large accumulation of waste tires. At the same
time, rubber concrete has more advantages than ordinary concrete
in some special fields, so it has also attracted scholars in recent
years.

Su et al. (2015) found that the smaller the rubber particle size,
the less the strength loss. The small size rubber filled the internal
pores of the concrete, improved the internal stress concentration,
and then improved the bending strength. Fattuhi (Fattuhi andClark,
1996) studies have shown that small rubber particles have a higher
degree of influence on compressive strength. Yilmaz (Yilmaz and
Degirmenci, 2009) believes that when rubber aggregate replaces fine
aggregate by 20% in concrete, it has higher flexural strength than
traditional concrete, and therewill be no brittle failure after cracking.
When the rubber replacement rate increases from 20% to 30%, the
flexural strength of rubber aggregate concrete decreases, and the
drop becomes smaller and smaller with the reduction in particle size.
However, Skripkiūnas et al. (2009) found the opposite conclusion:
the larger the rubber particle size, the lower the strength loss. In
addition, Richardson et al. (Li et al., 2020) showed that although the
strengthof concrete decreased after adding rubber, therewasno clear
relationship between compressive strength and rubber particle size.
Pham et al. (2020) believed that the carbonation depth of rubber
aggregate concrete is higher than that of ordinary concrete, and
increasingwithsubstitutionrate.Garros(2006)usedrubberaggregate
to replace 25% of fine aggregate (0 ∼ 4 mm) and coarse aggregate
(4–10 mm),respectively.Thecarbonationdepthdecreasedby5.2 mm
after replacing fine aggregate and 4.2 mm after replacing coarse
aggregate. The results show that the effect is relatively good when
replacing fine aggregate. Wang (Wang T., 2019) found that when the
water-cement ratio is 0.45, the carbonation depth is proportional
to the rubber substitution rate, In contrast when the water-cement
ratio is 0.55, it shows a different law. Bravo (Bravo andde Brito, 2012)
and Guptaa et al. (2014) believed that there was a linear relationship
betweencarbonationdepthandrubber substitutionrate.Huang et al.
(2021) studied the effect of the chloride environment and freeze-
thaw cycle on the appearance and mechanical strength of concrete
with a rubber particle size as the main factor and concluded that the
smaller the rubber aggregate size, themore significant the strength of
the test block will change in the low-temperature environment. The
microscopic analysis of the scanning electronmicroscope shows that
withtheincreaseinfreeze-thawtimes,themacroporeratioinordinary
concrete is higher than that in rubber concrete. Ye (2013) found that
the addition of rubber to concrete improved its frost resistance, the
rubber material with small particle size had better frost resistance,
and theouter surfaceof the test blockwas relatively small.Richardson
et al. (RichardsonCoventryEdmondson et al., 2016) found thatusing

rubber particles as additives in concrete can minimize the loss of
compressive strength andprovidemaximumfreeze-thawprotection.

The fiber has good crack resistance and strengthening and
toughening effects, which can inhibit the formation and expansion
of internal cracks in concrete. Basalt Fibre (BF) is a new type of fiber
with good performance, low cost, good environmental protection,
good insulation, and good corrosion resistance, which can be evenly
distributed in concrete. An appropriate amount of basalt fiber
can improve the mechanical properties of concrete, significantly
improve its toughness and failure mode, improve the toughness
index and fracture performance, and alleviate the brittleness of
concrete (Li et al., 2020). Researchers Jiang (JiangFanWu et al.,
2014) and Alnahhal (Alnahhal and Aljidda, 2018) both concluded
that basalt fiber concrete made by adding BF to concrete has high
splitting tensile strength and flexural strength. Su (Su and Xu, 2023)
tested BFC with different BF doses against sulfate erosion and
showed that the fibers improve the internal structure of concrete
to enhance the load-bearing and deformation capacity and improve
the compactness, thus improving the erosion resistance of BFC.
Li et al. (Li and Gao, 2022) found that the appropriate amount of
basalt fibers produced bridging and hoop effects, which inhibited
the development of cracks and could improve the compressive and
splitting tensile strength of concrete.

Polypropylene Fiber (PPF) has the characteristics of simple
production, low cost, thermal conductivity, and acid and alkali
resistance, and has beenwidely promoted. Ju et al. (2018) added PPF
toreactivepowderconcreteand found that themechanicalproperties
of the concrete were all improvedwith PPF dosing between 0.3% and
0.9%. Zhang (2019) investigated the hydromechanical properties of
base concrete in depth by properly controlling the long-term curing
and ageing period of base concrete and increasing the viscosity
content of PPF fibers. The results showed that the addition of fiber
content greatly improved the mechanical compressive movement
strength and extensibility of the base concrete, and improved the
mechanicalcompressiveresistanceandtoughnessofthebaseconcrete.
Liang (Liang and Liu, 2012) et al. selected different mechanical
strength values and sizes of materials using PPF fibers in turn, and
conductedstrengthmeasurementtestsaftercrackingofconcretewalls
ofvariousbuildingmaterialsunder thesamemechanical strengthsize
conditionsinturn,respectively.Theresultsshowedthattheadditionof
polypropylenefibersofdifferent thicknesses could effectivelyprevent
concrete cracking, delay the formation of cracks in the hardening
stageofconcrete, andgreatly improve thecrackresistanceofconcrete.
Ccasani Jean (Ccasani et al., 2021) et al. studied the effect and regular
changes of two different lengths of PPF fibers on the compressive
strengthandflexuralstrengthofreinforcedconcreteaggregates,andthe
experimental results showed that thefiber concrete solidThenumber
of cracks and the degree of cracking formed in the early stage of the
slab had greatly improved compared to plain concrete.Moreover, the
additionofPPFfiberstotheconcretespecimensimprovedtheductility
of theconcretespecimens, resulting inhigherstrengthof thesolidslab
elements.

Adding an appropriate amount of fiber to cement mortar
can compensate for the strength loss caused by rubber particles.
Therefore, BF fiber and PPF fiber are mixed and added to rubber
concrete to prepare a new hybrid fiber rubber concrete (HFRC).

The primary purpose of this paper is to study the effects of
different fiber and rubber substitution rates on the mechanical
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and carbonation properties of concrete. The mechanical properties
and carbonation resistance of rubber concrete and fiber-reinforced
rubber concrete were evaluated. In the context of rapid social
development, the contradiction between the deterioration of the
natural environment and the shortage of natural resources is
becoming more and more acute, and the green low-carbon and
energy-saving social development mode has become a necessary
path for the future sustainable and rapid development of countries
all over the world. In order to protect the ecological environment
and waste utilization, the use of an appropriate amount of waste
tire rubber particles instead of natural sand and add the right
amount of mixed fibers to prepare fiber rubber concrete, not only
can improve the brittle properties of ordinary concrete, but also can
make the concrete to obtain light weight, elastic shock absorption,
noise and sound reduction, heat insulation and heat preservation,
deformation of energy consumption and good durability and other
new properties for the application of rubber concrete in the field of
road, railroad and bridge engineering to provide a reference basis.

2 Experimental programs

2.1 Materials

In this paper, P.O42.5 ordinary Portland cement produced by
China Bohai Cement Co., Ltd. is used. Its chemical composition

conforms to the Chinese GB175-2007 standard (Yan et al., 2007).
The fine aggregate adopts natural river sand, the fineness modulus is
2.72, the water content is 3.06%, the apparent density is 2643 kg/m3,
and the bulk density is 1,070.4 kg/m3. A continuous grading
mechanism breaks the coarse aggregate. The particle size range is
5–25 mm, the apparent density is 2650 kg/m3, the bulk density is
1,166.2 kg/m3, and the crushing index is 8.9%. Coarse aggregate
and fine aggregate align with the requirements of China’s GB50086-
2001 standard (Cheng and Duan, 2001). The water for mixing and
curing is local domestic water, the pH value is 6.9, and the chloride
and sulfate content is 250 mg/L, which aligns with China’s JGJ63-
2006 standard (Ding et al., 2006). The BF fiber and PPF fiber used
in this experiment were manufactured by China Tianlong Basalt
Continuous Fiber Co., Ltd. and China Tianyi Engineering Fiber
Co., Ltd. respectively. The appearance is shown in Figure 1, and
the specific parameters are shown in Table 1 and Table 2; China
DujiangyanHuayi Co., Ltd., manufactured the rubber particles used
in the test. The appearance is shown in Figure 2, and the indicators
are shown in Table 3.

2.2 Methods of test

The experiment mainly explores the influence of BF, PPF
fiber, and rubber particles on concrete. Based on the orthogonal
test, the mechanical and carbonation resistance of HFRC are

FIGURE 1
Fibers: (A) Short-cut basalt fiber; (B) Short-cut polypropylene fiber.

TABLE 1 BF physical property index.

Diameter/μm Length/mm Density/kg.m-3 Tensile strength/MPa Modulus of elasticity/GPa Elongation at break/%

16 12 2,700 3,500 100 3.2

TABLE 2 PPF physical property index.

Diameter/μm Length/mm Density/kg.m-3 Tensile strength/MPa Modulus of elasticity/GPa Elongation at break/%

18–48 12 910 600 2.4–3.2 16
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comprehensively analyzed, and microscopic analysis of HFRC are
carried out. According to the Chinese GB/T50081-2002 standard
(Rong et al., 2002), the mechanical properties of the concrete test
block made of two sizes, a 100 mm × 100 mm × 100 m cube test
block in 5000 kN universal testing machine for compressive and
splitting tensile strength test; the specimen with a size of 100 mm
× 100 mm × 400 mm was used for the flexural test. According to
theChineseGB/T50080-2016 standard (Leng et al., 2016), the prism
specimens with a test size of 100 mm × 100 mm × 300 mm were
used for the carbonation depth test. The carbonation depth test was
carried out in a standard carbonation box. The test was carried out
according to the Chinese GB/T50082-2009 standard (Leng et al.,

FIGURE 2
Rubber particle.

2009). All the specimens above were cured in the standard curing
room for 28 days.

3 Mechanical test

To explore the hybrid fiber rubber concrete properties, the
experiment was designed to investigate the effect of three factors
acting alone on the mechanical properties of concrete, rubber
particles with 5%, 10%, 15% replacement of fine sand, BF, PPF fiber
admixture of 0.1%, 0.2%, 0.3% and 0.1%, 0.15%, 0.2%, respectively.
The concrete mix is shown in Table 4.

3.1 Results and analysis

The influence of various factors on the mechanical properties
of concrete is shown in Figure 3. After adding BF, PPF, and rubber
particles, the overall mechanical properties of concrete specimens
were significantly improved, and the original obvious brittle failure
characteristics were changed. With the increase of BF and PPF
fiber content, the specimens’ compressive strength, splitting tensile
strength, and flexural strength increase first and then decrease. This
is mainly because when the content of BF and PPF is too high, it
is easy to appear “agglomeration” phenomenon, which makes the
ability of the specimen to withstand external forces worse, resulting
in a decrease in the mechanical properties of the model. With
the increase in rubber replacement rate, the overall mechanical
properties of the models gradually decrease.Themain reason can be
attributed to the low strength of the rubber material itself compared
with the fine aggregate, the weak bearing capacity, and the relatively
poor bonding capacity with the cement mortar. There are many soft
surfaces between rubber and cement mortar, resulting in a decrease
in overall strength. Secondly, the rubber itself has the air-entraining
effect, and the air content inside the specimen will increase with

TABLE 3 Physical properties of rubber.

Particle size/mm Apparent density/kg.m-3 Heating reduction/%≤ Ash content/%≤ Iron content/%≤ Sieve residue/%≤

1–2 750 0.62 6.75 0.029 0.014

TABLE 4 Proportioning of concrete.

Mixtures Water (kg/m3) Cement (kg/m3) Sand (kg/m3) Stone (kg/m3) BF (%) PPF (%) Rubber (%)

BF0.1 185 411 631 1,195 2.7 0 0

BF0.2 185 411 631 1,195 5.4 0 0

BF0.3 185 411 631 1,195 8.1 0 0

PPF0.1 185 411 631 1,195 0 0.91 0

PPF0.15 185 411 631 1,195 0 1.37 0

PPF0.2 185 411 631 1,195 0 1.82 0

R5 185 411 599 1,195 0 0 8.95

R10 185 411 568 1,195 0 0 17.9

R15 185 411 536 1,195 0 0 26.85

BF0.1 represents BFC, with 0.1% BF, content; PPF0.1 represents PPFC, with 0.1% PPF, content; R5 represents RC, with 5% rubber content.
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FIGURE 3
Mechanical properties test results.

the increase of rubber content, resulting in a decrease in the overall
compactness of the concrete.

3.2 Comprehensive analysis of mechanical
properties of HFRC

To analyze the comprehensive influence of BF (A), PPF (B), and
rubber (C) on the mechanical properties of HFRC under different
dosages, the orthogonal test was designed, and the test results were
analyzed by range and variance statistical analysis.The concrete mix
ratio is shown in Table 5.

3.2.1 Range analysis
The range analysis of HFRC is to calculate the influence of BF

fiber (A), PPF fiber (B) and rubber (C) on the test results of HFRC.

The orthogonal table of three factors and four levels is selected
for orthogonal test, and these effects are expressed in the form of
charts.Then, themaximumandminimumvalues are found by range
analysis, and the influence degree of each factor on the test results of
HFRC is determined.

The results of range analysis of mechanical properties of HFRC
are shown in Table 6. In the table, K1 is the sum of the strengths of
HFRC under level 1, K2 is the sum of the strengths of HFRC under
level 2, K3 is the sum of the strengths of HFRC under level 3, and K4
is the sum of the strengths of HFRC under level 4. k1 is the average
value of each strength of HFRC under level 1, k2 is the average value
of each strength of HFRC under level 2, k3 is the average value of
each strength of HFRC under level 3, k4 is the average value of each
strength of HFRC under level 4. R is the extreme difference. Rubber
has themost obvious effect on the compressive strength ofHFRCcan
be found from the test results, BF fiber has a great influence on the
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TABLE 5 Orthogonal test fit ratio.

Mixtures Water (kg/m3) Cement (kg/m3) Sand (kg/m3) Stone (kg/m3) BF (%) PPF (%) Rubber (%)

NC 185 411 631 1,195 0 0 0

HFRC1 185 411 631 1,195 2.70 0.91 0

HFRC2 185 411 631 1,195 5.40 1.37 0

HFRC3 185 411 631 1,195 8.10 1.82 0

HFRC4 185 411 599 1,195 0 0.91 8.95

HFRC5 185 411 599 1,195 2.70 0 8.95

HFRC6 185 411 599 1,195 5.40 1.82 8.95

HFRC7 185 411 599 1,195 8.10 1.37 8.95

HFRC8 185 411 568 1,195 0 1.37 17.90

HFRC9 185 411 568 1,195 2.70 1.82 17.90

HFRC10 185 411 568 1,195 5.40 0 17.90

HFRC11 185 411 568 1,195 8.10 0.91 17.90

HFRC12 185 411 536 1,195 0 1.82 26.85

HFRC13 185 411 536 1,195 2.70 1.37 26.85

HFRC14 185 411 536 1,195 5.40 0.91 26.85

HFRC15 185 411 536 1,195 8.10 0 26.85

TABLE 6 Range analysis of mechanical properties of HFRC.

Range analysis Influence factors K1 K2 K3 K4 k1 k2 k3 k4 R

Compressive strength A 175.95 182.07 186.42 178.79 43.99 45.52 46.6 44.7 2.62

B 177.97 180.91 182.56 181.79 44.49 45.23 45.64 45.45 1.15

C 204.95 188.78 174.82 154.68 51.24 47.19 43.70 38.67 12.57

Splitting tensile strength A 18.17 20.11 21.02 19.60 4.54 5.03 5.25 4.90 0.71

B 18.98 19.49 20.20 20.23 4.75 4.87 5.05 5.06 0.31

C 20.41 19.64 19.52 19.33 5.10 4.91 4.88 4.83 0.27

Flexural Strength A 25.78 27.03 28.11 26.30 6.45 6.76 7.03 6.58 0.58

B 25.93 26.79 27.43 27.07 6.48 6.70 6.86 6.77 0.38

C 27.61 27.16 27.00 25.45 6.90 6.79 6.75 6.36 0.54

splitting tensile and flexural strength of concrete, while PPF fiber has
no significant effect on themechanical properties of HFRC. It shows
that the content of rubber particles and BF fiber is an essential factor
affecting the mechanical properties of HFRC.

The changing trend of mechanical properties of HFRC is shown
in Figure 4. When the content of PPF is 0.15%, the compressive
strength and splitting tensile strength of HFRC increase by 2.58%
and 5.86%, respectively, compared with those without PPF. When
the content of BF is 0.2%, the compressive strength, splitting tensile
strength, and flexural strength of HFRC increase by 5.93%, 15.64%,
and 8.99%, respectively, compared with those without BF, and the
increase is the largest. The elastic modulus of the rubber material
itself is very low, and the strength is significantly lower than that of

stone and sand. In addition, the bonding force between the rubber
and the cement-based contact surface is poor, and it is easy to form
a soft surface. The addition of fibers makes the pores between the
rubber and the cement-based filled by fibers, replacing the original
rubber-cement-based loose contact surface, and the compactness is
improved (Wei, 2023).

3.2.2 Analysis of variance
The degree of influence of each factor was analyzed by

the statistical calculation of the analysis of variance of HFRC
specimens, which is shown in Table 7. When the influence degree
of representative test factors on the results is “extremely significant”,
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FIGURE 4
Variation trend of mechanical properties of HFRC.

expressed as “**”. When the degree of influence of the representative
test factors on the results is “more significant”, expressed as “*”.
When, the degree of influence of the representative test factors on
the results is “not significant”, expressed as.

It can be seen from the variance analysis that the influence of
PPF content on the splitting tensile strength and flexural strength
of HFRC is “more significant”. On the other hand, the influence of
rubber content on the compressive strength and flexural strength of
HFRC is great, and the influence on the splitting tensile strength
is not obvious. BF content is the most critical factor affecting the
compressive strength, splitting tensile strength, and flexural strength

of HFRC. Taken together, the variance analysis test data showed
consistent results with the range analysis data.

4 HFRC carbonation performance test

Based on the orthogonal test designed in Table 5, the HFRC
prepared with different amounts of basalt fiber (A), polypropylene
fiber (B) and rubber (C) was combined according to the designed
factor level, 16 groups of different mix ratios, and 3 specimens
were made in each group, total 48 specimens. After the curing was
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TABLE 7 Variance analysis of HFRCmechanical properties.

Indicators Source of difference Square and SS Degree of freedom df Mean Square MS F-value Significance

Compressive strength A 15.190 3 5.063 13.340 **

B 3.025 3 1.008 2.656 .

C 341.299 3 113.743 299.674 **

Error 2.277 6 0.380 - -

Splitting tensile strength A 1.065 3 0.355 26.322 **

B 0.273 3 0.091 6.742 *

C 0.169 3 0.056 4.169 .

Error 0.081 6 0.013 - -

Flexural strength A 0.765 3 0.255 15.168 **

B 0.307 3 0.102 6.082 *

C 0.662 3 0.221 13.129 **

Error 0.101 6 0.017 - -

FIGURE 5
Carbonation surface visual graph.

completed, the carbonation test was carried out according to the
Chinese GB/T50082-2009 (Leng et al., 2009) standard. After 3d, 7d,
14d, and 28d rapid carbonation, the carbonation depthwas detected.
The HFRC was subjected to microscopic detection and analysis by
SEM electron microscopy.

4.1 Carbonation results and analysis

The visualization of the cross-section after carbonation and the
results of the carbonation depth test are shown in Figures 5, 6.
The test results show that no matter what content design level,
the carbonation depth is improved compared with NC, but the
improvement of carbonation depth is not obvious with the increase
of rubber content. Under different carbonation ages, the appearance
of carbonation depth of HFRC specimens is shown in Figure 8.
Among them, the pink-filled area represents the uncarbonated
area, and the light gray area outside the specimen represents the
carbonation area. On the 7th day of carbonation, the carbonation
area is concentrated at the four edges, and the area is small; when

the carbonation was carried out on the 14th and 28th days, the
carbonation area gradually spread from the four edges to the center,
and the area occupied was increasing. It can be seen that the
carbonation depth is positively correlatedwith the carbonation time,
so the carbonation age is an important reason to determine the
carbonation depth.

The influence trend of the carbonation depth of HFRC is shown
in Figure 6. When the rubber content is 5% and the BF fiber
content is 0.2%, the carbonation depth of HFRC at different ages
increases with age, and the carbonation depth of the specimen
increases. When the rubber content is 5% and the PPF fiber content
is 0.15%, the carbonation depth of HFRC at different ages also
increases gradually, indicating that age has a great influence on
the carbonation of HFRC. When the content of BF fiber is 0.2%
and the content of rubber is different, the carbonation depth of
HFRC at different ages increases with the increase of rubber content.
When the content of PPF fiber is 0.15%, the results are consistent,
indicating that the carbonation depth increases with the increase
of rubber content. When the rubber incorporation is zero, the
incorporation of BF andPPFfibers can reduce the carbonationdepth
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FIGURE 6
The changing trend of HFRC carbonation depth.

of concrete and improve the carbonation resistance of HFRC to the
greatest extent, indicating that the incorporation of fibers plays a
positive role in the carbonation of concrete.

The results show that the optimal dosage of BF fiber is 0.2%, and
the carbonation depth at different ages is reduced by 11.46%, 5.03%,
4.70%, and 8.59%, respectively, compared with that without dosage.
Theoptimal content of PPF fiber is 0.15%, and the carbonation depth
is reduced by 28.40%, 28.54%, 15.09%, and 20.37%, respectively,
compared with the amount of undoped PPF. When the rubber
content is 5%, the maximum decrease is 27.73% compared with the
undoped. Therefore, when the content of BF, PPF fiber, and rubber
is 0.2%, 0.15%, and 5% respectively, the carbonation resistance of
HFRC is the best.

Observing the trend of carbonation depth in Figure 6, the
carbonation depth of HFRC decreased first and then increased.
The reason for this is that the specimen has a tendency to reduce
the carbonation rate significantly in the early stage of carbonation
due to the continuous absorption of CO2 and water for reaction,

which makes the matrix volume larger, and the reaction products
fill some voids with appropriately doped rubber particles. However,
the surface properties of rubber particles (organic materials) are
far different from those of cement matrix (inorganic materials),
resulting in certain pores between rubber particles and cement
matrix, which ismanifested by theweak interfacial bonding between
them. At the same time, rubber particles increase the interfacial
transition zone between coarse aggregate and cement matrix,
thus weakening the interfacial bond between concrete matrix and
coarse aggregate, so the internal structural compactness of concrete
decreases, making concretemore inhomogeneous and thus affecting
the carbonation process (Ruan and Li, 2012). Through the results,
The influence degree of the three factors on the carbonation depth
of HFRC at 3d, 7d, 14d, and 28d is C > B > A. The rubber content
is a significant factor affecting the carbonation depth of HFRC, and
PPF fiber has a good effect on improving the carbonation resistance
of HFRC. It can be seen from the data that although adding an
appropriate amount of fiber can delay the carbonation rate of HFRC,
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FIGURE 7
SEM images of rubber concrete during carbonation.
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FIGURE 8
SEM images of rubber concrete during carbonation.

with the increase of fiber and rubber substitution, the improvement
effect of carbonation depth is general. Because the fiber diameter is
small and the specific surface area is large, an appropriate amount of
fiber will be evenly distributed in thematrix to form a fiber grid after
mixing with the mortar. When the cracks in the cement mortar are
interlaced with the fibers, the contact interface between the fiber and
the cement matrix will form a bond stress to connect the concrete
matrix around the crack, effectively resisting the stress concentration
at the crack tip when the external load is applied, and preventing
the crack from expanding. At this time, the tensile strength and
toughness effect brought by the fiber is greater than the weak surface
effect. When the fiber content is too large, it is easy to agglomerate,
resulting in weak internal surfaces and reduced compactness (Wang,
2014). Secondly, due to its air-entraining properties, the rubber
content increases the internal air content of the concrete, and the
pores become larger, accelerating the CO2 invasion.

4.2 Microstructure investigation and
analysis

Concrete itself is a heterogeneous material. After adding rubber
particles, there will be no chemical reaction. Instead, these rubber
aggregates will be wrapped by the surrounding cement stone. Due
to the material properties of rubber itself, rubber concrete has
more heterogeneous material interfaces than ordinary concrete.
The contact interface between rubber and concrete has repulsive
force, and the connection between these interfaces is not close, and
there are more voids (Ruan and Li, 2012). The microstructure of

the surface and fibers of fractured concrete specimens with a 10%
rubber admixture in HFRC was investigated by scanning electron
microscopy (ZEISS GEMINI300, Germany).

4.2.1 Effect of rubber particles on the
carbonation properties of HFRC

Figures 7A,B aremagnified images of the rubber concrete before
carbonation under the electron microscope, which can clearly
distinguish the cement hydration the products of, such as C−S−H
and AFt, which are thinly covered on the surface of the matrix.
Figures 7C,D are the microscopic morphology of the interfacial
transition zone of the internal material of ordinary concrete and
rubber concrete after magnification under the electron microscope.
The bonding between mortar and aggregate in ordinary concrete
is close and the interface is linear. The occlusion of rubber and
aggregate in rubber concrete has visible pores, and there are also
obvious pores in mortar, which shows that there are more weak
channels in rubber concrete and they are more vulnerable to CO2
erosion. Figures 7E,F show the images of the specimen after 3 days
of carbonation. From the enlarged image, it can be seen that there
are many CH plate crystals, AFt, a small amount of CaCO3, and
hexagonal flake AFm crystals in the concrete after carbonation for
3 days. Some holes are faintly visible, which may be because the
rubber particles are not compatible with the concrete aggregate and
some CO2 enters the matrix.The CaCO3 filled the honeycomb holes
left by the gap of the rubber boundary (Yuan, 2013). Figures 7G,H
shows themorphology of the specimen after 28 days of carbonation.
The general pattern in the figure can no longer identify C-S-H
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and other hydrates, and the gap in the transition zone increases
obviously.Therefore, it is easier for CO2 to enter the whole concrete,
with more paths and accelerated carbonation damage. The main
reason can be attributed to the fact that during the carbonation
process, CH releases chemically bound water to react with CO2
to form CaCO3. The volume of CaCO3 is larger than that of CH,
and it squeezes each other with the rubber interface to produce
larger cracks. In addition, the products of cement hydration, such
as C−S−H and AFt, will shrink with the progress of carbonation,
and cracks will occur on the surface of concrete, which expands
the channel for CO2 to enter the matrix and increases carbonation
damage (Yao and Bai, 2022). This indicates that the higher doping
of rubber particles has an inverse negative effect on enhancing the
anti-carbonation property.

4.2.2 Effect of fibers on the carbonation
properties of HFRC

The microstructure of fibers incorporated into rubber concrete
was analyzed by scanning electronmicroscopy. Figure 8A shows that
the fiber is uniformly and disorderly distributed in the concrete
matrix, and the fiber and the matrix are closely connected, which is
the premise that the fiber can enhance the carbonation performance
of rubber concrete. Figure 8B shows that the fiber spans the cracks in
each gap. As the carbonation progresses, the cracks in the concrete
matrix will become wider and larger. The effective fiber overlap
between the cracks can bear a part of the tensile stress, relieve
the stress concentration, delay the crack development, and slow
down the carbonation process. Figure 8C shows that too much fiber
content agglomerates inside the matrix, and the fiber can no longer
effectively exert its reinforcing properties. On the contrary, the pores
become larger due to aggregation, which reduces the carbonation
resistance of rubber concrete.

5 Conclusion

The effects of two fiber types on the mechanical properties
and carbonation resistance of RC were investigated. The following
conclusions can be drawn based on the experimental results and
analysis.

(1) Adding BF and PPF fibers into concrete respectively, the
compressive strength of plain concrete is not significantly
improved, and the splitting tensile strength and flexural strength
are greatly improved. With the increase of BF and PPF
content, concrete specimens’ compressive strength, splitting
tensile strength, and flexural strength increased first and then
decreased. The improvement effect of two kinds of fibers on the
mechanical properties of plain concrete is stronger than that of
a single fiber.

(2) With the increase in the replacement rate of rubber particles,
the mechanical strength of rubber concrete shows a decreasing
trend. However, incorporating fibers in rubber concrete can
compensate for the strength loss caused by some rubber. An
appropriate amount of fibers can be evenly distributed in cement

mortar to form a three-dimensional support structure, which
can improve the splitting tensile strength.

(3) The influence of PPF fiber content on the splitting tensile
strength and flexural strength of HFRC is not significant. The
influence of rubber content on the compressive strength and
flexural strength of HFRC is great, and the influence on the
splitting tensile strength is not obvious.WhenBFfiber content is
0.2% and PPF fiber content is 0.15%, the mechanical properties
of HFRC are the best.

(4) The early carbonation depth of HFRC is high, and the
later carbonation depth is reduced. The influence degree of
carbonation depth is rubber content > PPF fiber content > BF
fiber content. Adding an appropriate amount of fiber and rubber
can delay the carbonation rate of HFRC, but with the increase
of fiber and rubber substitution, the carbonation depth ofHFRC
decreases first and then increases. When the BF fiber content is
0.2%, the PPF fiber content is 0.15%, and the rubber content is
5%, the HRFC has the best carbonation resistance.

(5) Scanning electron microscopy tests were conducted on HFRC
to analyze the carbonation mechanism and the role of fiber
reinforcement from a microscopic perspective.
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