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Modeling the biaxial,
rate-dependent response of
filament-wound FRP tubes

Angela Lanning* and Arash E. Zaghi

Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, United
States

This work studies the rate-dependent mechanical behavior of filament-wound
fiber-reinforced polymer (FRP) composite pipes. Commercially available tubes
with a filament winding angle of ±55° were tested under cyclic axial compression
for four loading rates. Stress relaxation under constant strain was observed
as well as a dependence of stress on the strain rate. A novel modeling
methodology is presented to capture the nonlinear cyclic response, including
the viscoelastic behavior of the epoxy matrix and the interaction of axial and
hoop strains. This is accomplished by defining an element configuration with
separate elements for the epoxy matrix and the glass fibers. The nonlinear and
viscoelastic behavior is incorporated using the generalized Maxwell model. A
machine learning (ML) calibration framework is adapted for this study and used
to calibrate the nonlinear and viscoelastic properties for the analytical model
using a convolutional neural network (CNN). The CNN is trained to identify and
understand the interdependencies among the model parameters. The calibrated
model parameters are used to simulate the experimentally measured response
of the FRP tubes and were found to be applicable across the range of strain
rates. The proposed modeling methodology accurately predicted the axial stress
and hoop strain time histories as well as the rate-dependent stress relaxation
during constant axial strains. The accuracy capturing the measured stress-strain
responses demonstrated the synthetic datasetwas adequate for training theCNN
without requiring additional experimental data.

KEYWORDS

fiber-reinforced polymers (FRP), viscoelasticity, composite materials, convolutional
neural network (CNN), model calibration

1 Introduction

In recent decades, fiber-reinforced polymer (FPR) composites have become prevalent
across a broad range of engineering applications, such as high-pressure containers, gas
and liquid transfer pipes, and mobile bridging components. These composite materials
are often used in place of traditional metallic materials due to their superior strength-
to-weight ratio and corrosion-resistance. The development of large-volume automated
manufacturing processes, such as filament winding, has decreased costs and furthered the
adoption of prefabricated filament-wound FRP tubes in structural applications. For example,
prefabricated FRP tubes are commonly used to manufacture CFFT (concrete-filled FRP
tube) columns, which are a durable alternative to conventional reinforced concrete columns
(Mirmiran and Shahawy, 1996; Zaghi et al., 2012). Commercially available filament-wound
FRP tubes commonly have fibers oriented at ±55° as it is near the optimum design for
pressure vessel loading (Carroll et al., 1995). Additionally, this fiber orientation suitable for
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CFFTs as it provides both longitudinal reinforcement and
confinement to the concrete core (Hain et al., 2019).

Inmany structural applications, FRP composites are subjected to
high-velocity dynamic loadings that can produce multi-axial states
of stress. Typically, rate-effects for conventional structural materials
are negligible under short-term loading conditions. However, FRP
composites have shown to have rate-dependent behavior largely
attributed to the viscoelastic properties of polymers and polymeric
composites (SUVOROVA, 1985; Gates, 1992; Carroll et al., 1995;
Kujawski and Ellyin, 1995; Chandra Ray and Rathore, 2015;
Fallahi et al., 2020). The viscous behavior is largely dependent on
the fiber orientation with respect to the direction of loading. As
the glass fibers exhibit very little time-dependent or nonlinear
behavior, the rate-effects are more pronounced when loading is
not along the fiber direction (Carroll et al., 1995; Kujawski and
Ellyin, 1995). For fiber angles of ±55°, the principal stress direction
is often not along the fiber direction. Thus, the polymer matrix
takes a portion of the applied load, which causes the composite
to exhibit rate-dependent behavior. Various existing models focus
on stress and strain behaviour in FRP composites under particular
conditions or loading scenarios. For instance, researchers have
explored linear elastic behaviour, grain orientations, and other
aspects. These models, however, often fail to consider nonlinear and
cyclic responses, interaction of axial and hoop strains, and rate-
dependent behaviour in a comprehensivemanner (Yuan andMilani,
2023; Zheng and Teng, 2023). Additionally, despite documented
viscoelastic and nonlinear behavior, theoretical studies on FRP tubes
in structural applications typically ignore viscoelastic effects or
assume linear elastic behavior, regardless of the fiber orientation or
direction of loading (Shao and Mirmiran, 2004). The current work
aims to address these limitations by presenting a novel modeling
methodology that accounts for these variables. Furthermore, this
study uniquely integrates ML aspects to calibrate the nonlinear and
viscoelastic properties of the model, which sets this work apart from
conventional modeling approaches.

This work proposes a modeling methodology that captures
the short-term rate-effects of FRP tubes as well as the nonlinear
cyclic response and interaction of axial and hoop strains. This was
accomplished by separating the contribution of the epoxy matrix
and glass fibers by defining the element geometry that is derived
from the fiber orientation and laminate properties. As a result, the
nonlinearity and rate-dependent behavior can be directly assigned
to the matrix elements, whereas the elements representing glass
fibers remain elastic.The viscoelastic behaviorwas represented using
the generalized Maxwell model (GMM), which is commonly used
to represent viscoelastic materials (Christensen, 2012; Findley and
Davis, 2013). The proposed modeling approach was validated using
the experimental response of six FRP tubes tested under cyclic
axial compression. The specimens were filament wound with fiber
angles of ±55° with respect to the longitudinal axis. The modeling
methodology can be adapted to various fiber angles; however, this
work focuses on ±55° as it is typical for commercially available
FRP tubes (Carroll et al., 1995). Additional research is needed to
evaluate the accuracy capturing the response for different composite
architectures, including fiber orientation and pipe thickness. The
FRP tubes were tested under a range of loading rates, or strain rates,
to capture the rate-effects and the loading protocol was defined so
that the stress relaxation during constant strain was captured.

The analytical model parameters were calibrated using a
machine learning (ML) calibration framework (Lanning et al.,
2022), which was previously proposed to calibrate the parameters
of nonlinear structural models when experimental data is limited.
The framework trains a convolutional neural network (CNN) to
predict the model parameters given the time history responses from
an analytical model. As only analytical simulations are used to train
the CNN, the learning is centered on the underlying constitutive
relationships and interactions of the parameters. Additionally, it
enables deep learning techniques to be applied without requiring
substantial experimental data. Deep neural networks, such as CNNs,
offer the advantage of extracting features in high-dimensional spaces
directly from raw data (Sadoughi and Hu, 2019; Kiranyaz et al.,
2021). For the current application, this enables the entire hysteresis
curve to be included rather than a few engineering parameters
or the backbone curve, which allows significantly more nonlinear
information to be considered. Thus, a deep learning model capable
of learning features directly from the hysteresis curve offers promise
for the successful calibration of difficult nonlinear parameters
in high-dimensional spaces, ultimately enhancing the accuracy
of simulations. Previous studies have shown ML techniques can
successfully identify material properties of composites under
complex loading conditions, including variable temperatures, high-
rate loads, and triaxial stresses (Gandomi et al., 2012; Liu et al.,
2019; Yan et al., 2020; Chen et al., 2021; Nguyen et al., 2021).
Additionally, ML has been shown to be a promising tool for
the design and discovery of new composite materials (Gu et al.,
2018; Paul et al., 2019; Qiu et al., 2021). These studies utilized deep
learning techniques to address the vast design space, which was
commonly narrowed down using domain knowledge, experience,
and intuition (Chen and Gu, 2019). Despite these promising results
as well as the demonstrated difficultly and importance of correctly
identifying the nonlinear and viscoelastic behavior of composites
(Goh et al., 2004; Qvale and Ravi-Chandar, 2004; Suchocki and
Molak, 2019), the applicability ofML to the calibration the nonlinear
and viscoelastic properties has been limited. This work aims
to address this knowledge gap through the proposed modeling
methodology and application of ML for calibration.

In the current work, an analytical model was developed to
simulate the axial stress response and hoop strain under axial
compressive loading. A CNN was then trained to predict a total
of 16 model parameters given the axial strain, hoop strain, and
axial stress time histories. The parameters to be calibrated included
those representing the nonlinear and viscoelastic behavior of the
FRP tube. After training, the network was prompted with the
experimentally measured data. The experimental data is effectively
used as a new task for the CNN, with the advantage that it shares
underlying principles and structures with the synthetic data. This
method exploits the network’s ability to learn from a large amount
of synthetic data and apply that knowledge to understand and
predict parameters given a small amount of experimental data. The
experimental data was obtained by testing FRP specimens under
four strain rates.Themiddle two strain rateswere thenused to obtain
the calibrated parameters using the trained CNN. The parameters
were then fed back to the analytical model to simulate the behavior
of the FRP tube under all four strain rates. This enabled evaluation
of the predicted parameters outside of the strain rates used for
prompting.
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2 Materials and methods

2.1 Objective and approach

This study proposes a novel modeling methodology for filament
wound FRP pipes to represent the nonlinear cyclic behavior,
including the viscoelastic behavior of the epoxy matrix and
the interaction of axial and hoop strains. Experimental testing
of FRP pipes under different strain rates was conducted and
used to inform the modeling approach. The specimens were
filament wound with fiber oriented at ±55° with respect to the
longitudinal axis. A previously proposed ML-based calibration
framework (Lanning et al., 2022) was followed to obtain a set
of model parameters applicable to the range of strain rates.
The ML framework consisted of training a convolutional neural
network (CNN) to predict the model parameters using a dataset
of analytical simulations. This approach allowed the CNN to learn
the underlying relationships of the model parameters, which can
then be extrapolated to the experimentally measured responses after
training. The framework was modified to incorporate the proposed
analyticalmodelingmethodology and subsequently used to calibrate
a total of 16 model parameters, including those representing the
nonlinear and viscoelastic behavior of the FRP tube. The following
sections detail the experimental program, the analytical modeling
methodology, and the machine learning-based calibration process.

2.2 Experimental program

Six FRP tube specimens were tested under cyclic axial
compression. The FRP tube specimens each had an inner diameter
of 163 mm, a thickness of 3.53 mm, and a height of 305 mm. Cyclic
compression was used to show the stiffness degradation and residual
displacements of the specimens after each loading cycle. Four strain
rates were studied, as shown in Table 1. The second and third strain
rates (100 and 4,000 µε/sec) were selected to encompass typical rates
for quasi-static loading, i.e., lower than typical rates for material
characterization and higher than typical use case scenarios outside
of impact loading (Daniel et al., 2011; Chandra Ray and Rathore,
2015). Two specimens were tested under strain rates 2 and 3. Rates
2 and 3 were then either decreased or increased by five-fold to
determine strain rates 1 and 4, respectively.The response under rates
1 and 4 were not used when applying the ML framework to obtain
the model parameters. This allowed the accuracy of the predicted
parameters to be evaluated for strain rates outside of the range given
to obtain the parameters. As such, only one specimen was tested for
strain rates 1 and 4.The process for preparing the experimental data
and obtaining the parameters is discussed in detail when the ML
framework is presented.

2.2.1 Specimen preparation
The FRP pipes were manufactured in Little Rock, Arkansas by

NOV Fiber Glass Systems, a producer of filament wound pipe for
applications in the oil and gas, chemical, industrial, marine, and
offshore industries (Fiber Glass Systems, 2018). The pipes were
filament-wound with glass fibers oriented at ±55° with respect to the
longitudinal axis of the tube. During the filament-winding process,
the glass fibers were fed through an epoxy resin bath and deposited

TABLE 1 Specimen description and test parameters.

Test ID Strain rate, µε/sec No. of specimens

55-R1 20 1

55-R2 100 2

55-R3 4,000 2

55-R4 19,000 1

on a rotating steelmandrel. A CNC system controlled themovement
to achieve the targeted fiber angle. Each layer consisted of fibers at
both positive and negative orientations. The pipes were heat cured
at 121°C for 75 min and then raised to 163°C for 45 min. The pipes
were cooled to ambient temperature and cut to length prior to
testing. Owens Corning Advantec® Type 30® rovings were used as
the glass fiber reinforcement and an amine-cured epoxy resin was
used as the polymer matrix.The FRP tubes had a tensile Modulus of
Elasticity of 11.58 GPa, a hoop Modulus of Elasticity of 20.82 MPa,
and a Poisson’s ratio of hoop strain to axial strain due to stress in the
axial direction of 0.35, as specified by the manufacturer (Systems,
2012).

2.2.2 Test procedures and instrumentation
The experimental setup and instrumentation are shown in

Figure 1A. The specimens were loaded with a spherical bearing to
provide a moment-free end condition. The overall displacement of
the loading platen wasmeasured by two 50-mm stroke displacement
transducers. The transducers were centered on opposite sides of the
tubes. Local strains were measured by triaxial strain gauge rosettes
on the side of the column at mid-height (Figure 1A). The gauges
were 5 mmand at angles of 0°, 45°, and 90° as shown in Figure 1B.All
specimens were tested in a Satec 1780 kN hydraulic testingmachine.

A displacement-based loading protocol was defined by targeting
axial strains given the average reading from the displacement
transducers. Additional time was added between loading cycles so
that the total loading time per cycle was equivalent for each loading
rate. This also allowed the stress relaxation under constant axial
strain to be measured. A representative loading protocol is shown in
Figure 2, with compressive strains shown as positive. The first cycle
targeted 0.5% strain and the subsequent cycles increased by 1.0%
strain. The cyclic compression continued with increasing targets
until the FRP tube ruptured or the resistance of the specimens
dropped to 50% of the peak load.

2.2.3 Stress-strain relationships and motivation
for modeling approach

Sample stress-strain relationships for each rate are shown in
Figure 3, according to the average axial strain gauge readings.
Compression is shown as positive, and tension is shown as negative.
The backbone curves are compared in Figure 4A. For presentation
purposes, only one response is shown for each rate as the repeated
tests (i.e., 55-R2 and 55-R3) resulted in comparable responses. The
results demonstrate that as the loading rate increases, the stiffness
and peak stresses increase. The failure strains were comparable for
the different rates, with all specimens failing around 3.0% strain.
Additionally, rates 3 and 4 are shown to have comparable stiffnesses,
despite rate 4 being approximately five times larger than rate 3.
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FIGURE 1
Representative view of (A) typical test setup and (B) rosette strain gauge.

FIGURE 2
Representative loading protocol.

Figure 4B shows the Poisson’s ratio, νah, calculated as the ratio
of hoop to axial strain and plotted against the axial strain. The first
point was calculated in the elastic region and the succeeding points
were taken as the average ratios while the pipes were being loaded.
It is plotted against the average axial strain during corresponding
times. Figure 4B demonstrates that Poisson’s ratio initially decreased
as the loading rate increases. This is consistent with previous
findings for filament-wound FRP tubes with fibers oriented at ±55°,
which found Poisson’s ratio of 0.28 and 0.43 for loading rates of
approximately 270 and 23 kPa/s, respectively (Carroll et al., 1995).
While the laminate properties of the specimens differed, the trend
for the elastic properties is consistent with the observations in
Figure 4B. In the current study, the Poisson’s ratio increased as the
axial strain increased in the subsequent loading cycles, with a more
substantial increase for the high loading rates, rate 3 and rate 4.
As such, the relationship between axial strain and hoop strain has
rate-dependent behavior.These observations were used to develop a
macro-scalemodelingmethodology that captured the nonlinear and
rate-dependent behavior of the FRP tubes as well as the interaction
of hoop and axial strains, which is detailed in the following sections.

2.3 Analytical modeling

An analytical model was developed to capture the nonlinearity
and rate-dependent behavior of the FRP tube as well as the
interaction of axial and hoop strains. To accomplish this, an
element configuration was defined with horizontal and vertical
elements that represented the epoxy matrix and diagonal elements
that represented the glass fibers. This approach allowed the
nonlinearity and rate-dependent behavior observed experimentally
to be represented by the matrix elements, distinct from the glass
fibers, which remain largely elastic. Additionally, the interaction of
axial-hoop deformations is inherently captured and the strain gauge
measurements from the experimental investigation can be used
for model verification. Figure 5 outlines the modeling approach.
Figure 5A includes a view of the test setup and the relationship
to the element configuration, which is detailed in Figure 5B. This
configuration enables the nonlinear and viscoelastic behavior to
be assigned to the elements representing the epoxy matrix and
the diagonal elements to remain elastic (Figure 5B). Additionally,
this configuration enables the relationship between axial and
horizontal strain to be captured. As shown in Figure 5A, under axial
compressive loads, the length, L, decreases and the diameter, D,
increases. This deformation is shown in Figure 5C for the element
configuration. The proposed modeling methodology can be easily
updated for FRPs with different fiber or matrix properties as well as
different fiber orientations.

The element properties and nonlinear behaviorwere determined
in four parts. First, the in-plane material constants were calculated
using the classical laminate for a given fiber angle. Next, the
element properties for the proposed model were calculated
given the elastic material properties. After verification of the
elastic element model, a preliminary relationship capturing the
nonlinear and rate-dependent behavior was defined and assigned
to the elements representing the epoxy matrix (horizontal and
vertical). Finally, the nonlinear and rate-dependent properties
were calibrated using a previously proposed ML framework
(Lanning et al., 2022). The simulated responses due to the CNN-
predicted parameters were then verified using the experimental
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FIGURE 3
Experimental stress-strain response for specimens (A) 55-R1, (B) 55-R2, (C) 55-R3, and (D) 55-R4.

FIGURE 4
Experimental results including (A) stress-strain envelope curve and (B) Poisson’s ratio.

FIGURE 5
Overview of analytical modeling methodology including (A) motivation for element configuration due to deformation of length and diameter under
axial loads, (B) schematic view of configuration including property definitions, and (C) deformation of elements under axial load and relationship to
Poisson’s ratio.
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results. The following sections outline the procedure for obtaining
the elastic properties as well as the details of the analytical
model. After which, the ML-based calibration process is introduced
and used to obtain the nonlinear properties for the analytical
model.

2.3.1 Calculation of in-plane elastic properties for
the FRP tube

The in-plane elastic properties of a FRP tube can be calculated
for a given fiber winding angle, θ, with respect to the longitudinal
axis, using the classical laminate theory. The approach previously
suggested in (Hamed et al., 2008; Hain et al., 2019) for filament
wound pipes was used to calculate the axial stiffness, Ea, hoop
stiffness, Eh, Poisson’s ratio when loaded in the axial direction, νah,
and Poisson’s ratio when loaded in the hoop direction, νha, using the
unidirectional material properties. The general approach is detailed
below with the results provided for the ±55° FRP tubes used in the
current study.

The classical laminate theory can be used given the following
assumptions: 1) the layers have the same materials, angles, and
thicknesses, 2) the layup is balanced and symmetric, 3) the laminate
of the cylindrical shell is constrained so that curvature and twist
cannot change under uniform axis-symmetric loading, 4) the
unidirectional layer is transversely isotropic in the 2–3 plane, 5)
the shell acts as a thin-walled cylinder with negligible through-
thickness effects, resulting in a plane stress condition. Given these
assumptions, the FRP tube can be characterized with a 3 × 3 stiffness
matrix using only four unidirectional material properties, E1, E2,
v12, and G12, where direction 1 is parallel to the fibers and direction
2 is perpendicular to the fibers. The stiffness matrix is shown in
Eq. 1 relating the stress and strain in the principalmaterial directions
using Hook’s law for a single unidirectional lamina of an orthotropic
material.

[[[[

[

σ1
σ2
τ12

]]]]

]

=
[[[[

[

Q11 Q12 0

Q21 Q22 0

0 0 Q66

]]]]

]

[[[[

[

ε1
ε2
γ12

]]]]

]

(1)

where:
ν12
E1
=
ν21
E2

Q11 =
E1

(1− ν12ν21)

Q22 =
E2

(1− ν12ν21)

Q12 =Q21 =
ν12E2
(1− ν12ν21)

Q66 = G12

The four unidirectional properties were calculated using the
fiber and matrix properties. The longitudinal fiber and matrix
moduli were 81 GPa and 3.2 GPa, respectively, and the fiber
volume faction was 0.6, obtained from the manufacturer. The fiber
and matrix Poisson’s ratios were assumed to be 0.23 and 0.35,
respectively, based on suggested typical values (Daniel et al., 1994).
The rule of mixtures was used to calculate the longitudinal modulus
and Poisson’s ratio, E1 and v12, using Eqs 2, 3, respectively. The
rule of mixtures typically underestimates the transverse modulus,

E2, and in-plane shear modulus, G12, which are matrix-dominated
properties. To combat this, Halpin-Tsai’s relationships were used,
shown in Eqs 4, 5, for ξ = 1, as suggested by (Daniel et al., 1994)
based on experimental testing. As glass fibers are isotropic, the
longitudinal fiber modulus was replaced with the transverse fiber
modulus, E2f . The unidirectional properties, E1, E2, v12, and G12,
were calculated to be 49.9 GPa, 11.16 GPa, 0.278, and 4.18 GPa,
respectively.

E1 = E fV f +Em(1−V f) (2)

ν12 = ν fV f + νm(1−V f) (3)

E2 =
ξE fEm

(1−V f)E f +V fEm
(4)

G12 =
ξG fGm

(1−V f)G f +V fGm

(5)

Next, the classical laminate theory was applied to calculate
the in-plane elastic properties given the previously reported
unidirectional properties and a fiber angle of 55°, following the
approach detailed in (Hamed et al., 2008; Hain et al., 2019). This is
accomplished by transforming the stress-strain relationships from
the material to the loading directions to obtain the hoop and
axial properties given the specified fiber angle. These relationships
are shown in Eq. 6. The in-plane elastic constants are solved for
using Eqs 7–10 with the results provided in Table 2. The calculated
properties have close agreement to the manufacturer’s reported
properties (Systems, 2012), which are included in Table 2 for
comparison. The calculated in-plane properties were used in the
subsequent calculations for the proposed element configuration.

[[[[

[

σa
σh
τah

]]]]

]

=
[[[[

[

Q11 Q12 0

Q21 Q22 0

0 0 Q66

]]]]

]

[[[[

[

εa
εh
γah

]]]]

]

(6)

where:

Q11 =m4Q11 + 2m2n2(Q12 + 2Q66) + n4Q22

Q12 =Q21 =m2n2(Q11 +Q22 − 4Q66) + (m4 + n4)Q12

Q16 =Q61 =m
3n(Q11 +Q12 − 2Q66) +m

4n4(Q12 −Q22 + 2Q66)

Q22 = n4Q11 + 2m2n2(Q12 + 2Q66) +m4Q22

Q26 =Q62 =mn3(Q11 −Q12 − 2Q66) + nm3(Q12 −Q22 + 2Q66)

Q66 =m2n2(Q11 +Q22 − 2Q12 − 2Q66) + (m4 + n4)Q66

m = cosθ, n = sinθ

Ea =
Q11Q22 −Q12Q12

Q22

(7)

Eh =
Q11Q22 −Q12Q12

Q11

(8)

νah =
Q12

Q22

(9)

νha =
Q12

Q11

(10)
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TABLE 2 Calculated versus specified in-plane properties.

Ea (GPa) Eh (GPa) νah νha

Calculated 10.93 20.32 0.40 0.75

Manufacturer specified 11.58 20.82 0.35 0.61

2.3.2 Calculation of properties for proposed
element configuration

The in-plane elastic properties of the FRP tube (Ea, Eh, νah,
νha) were used to calculate the elastic properties for the proposed
element configuration.These include the element stiffnesses, K, and
angle, α, defined in Figure 5B. The subscript f is used to indicate
the section properties for the diagonal elements, which represent
the glass fibers. The subscripts a and h indicate the axial and hoop
elements, respectively. As the horizontal and vertical elements both
represent the epoxy matrix, the section properties, Aa,h and Ea,h, are
replaced by (AE)m.The resulting fiber andmatrix element stiffnesses
are defined in Eqs 11, 12, respectively.

K f =
(AE) f
L f

(11)

Ka,h =
(AE)m
a,h

(12)

The values for AEf , AEm, and α, were solved for by applying a
unit load, assuming length of 1 for Lf , and enforcing equilibrium
in the x-direction, equilibrium in the y-direction, and displacement
compatibility. This was repeated for a vertical unit load and
horizontal unit load given the known in-plane elastic constants.The
deformed shape under a vertical unit load is shown in Figure 5C.
The value for α was calculated separately from the given fiber angle
of ±55° to ensure the relationship between horizontal and vertical
deformations could be enforced.The calculated values forAEf ,AEm,
and α were 37.1 GPa, 8.6 GPa, and 56.4°, respectively, given the
calculated in-plane properties previously reported in Table 2.

2.3.3 Analytical model setup
The analytical modeling was performed in OpenSees, which

is an open-source, object-oriented structural analysis framework
(Mazzoni et al., 2006). The element configuration defined in
Figure 5B was modeled in OpenSees using a truss element object
to define the vertical, horizontal, and diagonal elements. The
schematic view of the nonlinear analytical model is shown in
Figure 6 along with the element types, material commands, and
constitutive material models.Themodel parameters to be calibrated
with the ML framework are shown in boldface in Figure 6 and
summarized in Table 3. The measured axial strain was used as the
input displacement in the analytical model and the resulting axial
stress and hoop strain were recorded. The general analytical model
details are discussed below, with a focus on the parameters requiring
calibration.

Prior to defining the nonlinear relationships, the elastic response
was verified for the model configuration under a unit axial load for
the calculated properties, AEf , AEm, and α. The section properties,
AEf and AEm, were assigned to the uniaxial material “Elastic”,
and used to define the fiber and epoxy matrix properties. The

angle, α, was used to define the length of the elements, consistent
with the calculations discussed previously. After verification of the
elastic properties, the nonlinear and viscoelastic behavior were
defined for the epoxy matrix using the generalized Maxwell model
(GMM), which is commonly used to represent viscoelastic materials
(Christensen, 2012; Findley and Davis, 2013). The GMM consists
of multiple Maxwell models assembled in parallel with a single
spring element, as shown in Figure 6. A single Maxwell model is
composed of an elastic spring and a viscous dashpot connected in
series. The GMM combines multiple Maxwell models, permitting
the stress relaxation to occur in a set of times, not only at a single
time. FiveMaxwell elements were initially defined in the GMM, and
theML framework was used to determine the spring stiffness,Km, of
eachMaxwell element.The relaxation time, τ, was fixed and differed
for each Maxwell element. As such, the Km could be decreased by
the ML framework if an irrelevant relaxation time was selected,
simplifying the number of parameters predicted by the framework.
TheKm valueswere separate for the horizontal and vertical elements,
resulting in a total of 10 Mxmodels initially defined.The viscoelastic
parameters for the horizontal and vertical components were left
independent to enable capturing the rate-dependent behavior of
the Poisson’s ratio observed in the experimental results as well as
in previous studies (Suchocki and Molak, 2019). After calibration,
the inconsequential Maxwell elements in the GMM were removed
(i.e., elements with Km values <100 MPa) to simplify the model.
This process is discussed further in the results and discussion
section.

The nonlinear spring element in the GMM was defined with a
uniaxial material to represent the nonlinear behavior of the matrix
(Figure 6). Due to the limitations of the available uniaxial material
models within OpenSees, multiple material models were used to
capture the nonlinear hysteresis response. The configuration of
the uniaxial materials representing the nonlinear spring in the
GMM is shown in Figure 6. This setup included a combination
of the uniaxial materials “SteelMPF” and “SelfCentering” to capture
the hysteresis shape while enforcing the recentering behavior
of the FRP tube. The response of specimen 55-R1 was used to
define the preliminary envelope curve for the uniaxial materials.
This ensured the general shape was captured prior to adding the
viscoelastic components and generating the analytical training
dataset. The hysteresis response for “SteelMPF”, “SelfCentering”,
and the combined response when in parallel is shown in Figure 6
along with the constitutive relationships. To capture the gradual
yielding, four “SteelMPF” materials were defined in series with
progressive yielding points. The parameters to be calibrated for
each uniaxial material are in Table 3. To simplify the number
of parameters requiring calibration, the hardening ratios, b, for
the four “SteelMPF” materials were defined to approximate the
envelope curve for specimen 55-R1.The hardening ratios were then
shifted uniformly by a single constant, bk, which was included as
a calibration parameter in the framework. A total of 16 analytical
model parameters requiring calibration were included and defined
as target variables when training a CNN. The ranges of the
parameters, as shown in Table 3, were selected to encompass
the expected values estimated through specified or calculated
material properties, material testing, and engineering judgment
(Wilson, 2004; Shao et al., 2005; Systems, 2012; Zaghi et al.,
2012).
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FIGURE 6
Schematic view of the nonlinear analytical model of a FRP composite tube. The mechanistic rheological model for the GMM is shown consisting of a
nonlinear spring element and i Maxwell elements. The OpenSees material commands are identified along with the general shape of the hysteresis
curves. The parameters to be calibrated are shown in boldface.

TABLE 3 Details of model parameters to be calibrated by the CNN, including themodeling component, interval of input values, and OpenSees commands.

Analytical component OpenSees material command Model parameter Range Unit

Glass fibers -- Fiber angle, α 45.0–65.0 deg

uniaxialMaterial Elastic Fiber stiffness, AEf 20.0–65.0 GPa

Resin matrix (GMM) uniaxialMaterial SteelMPF Initial stiffness, Ko 4.0–13.0 GPa

Hardening factor, bk 0–0.10 --

uniaxialMaterial SelfCentering Post-activation stiffness, kp 0.0–2,500 MPa

Ratio of forward to reverse activation stress, β 0.1–1.8 --

uniaxialMaterial Maxwell Vert. spring 1 stiffness, Kmv1, τ = 10 5.0–2000 MPa

Vert. spring 2 stiffness, Kmv2, τ = 50 5.0–2000 MPa

Vert. spring 3 stiffness, Kmv3, τ = 100 5.0–2000 MPa

Vert. spring 4 stiffness, Kmv4, τ = 250 5.0–2000 MPa

Vert. spring 5 stiffness, Kmv5, τ = 500 5.0–2000 MPa

uniaxialMaterial Maxwell Horz. spring 1 stiffness, Kmh1, τ = 10 5.0–2000 MPa

Horz. spring 2 stiffness, Kmh2, τ = 50 5.0–2000 MPa

Horz. spring 3 stiffness, Kmh3, τ = 100 5.0–2000 MPa

Horz. spring 4 stiffness, Kmh4, τ = 250 5.0–2000 MPa

Horz. spring 5 stiffness, Kmh5, τ = 500 5.0–2000 MPa

2.4 Parameter calibration using
convolutional neural networks

The ML framework proposed by Lanning et al. (Lanning et al.,
2022) was adapted and used in this study to obtain the model
parameters for the FRP tubes tested under variable loading rates. In
the framework, the analytical model that was previously calibrated
given the elastic properties of themodel through unit axial loads was

subsequently used to generate a dataset of simulations given different
permutations of the nonlinear or rate-dependent parameters that
require calibration. The synthetic dataset was then used to train
a CNN to predict the model parameters. Next, the trained CNN
was prompted with the experimental data to obtain the calibrated
parameters. The experimental data is effectively used as a new
task for the network, with the advantage that it shares underlying
principles and structures with the synthetic data. This method
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exploits the network’s ability to learn from a large amount of
synthetic data and apply that knowledge to understand and predict
from a small amount of experimental data. To accomplish this,
the experimental responses of specimens tested under rates 2 and
3 were used for prompting. The average predicted parameters
were used to generate the analytical response for the four loading
rates. The following sections discuss details of the ML framework,
including generation of the synthetic dataset, network architecture,
and network validation.

2.4.1 Generation of the synthetic dataset
Theanalyticalmodel previously introducedwas used to generate

a dataset of 30,000 analytical simulations for training the CNN
given different permutations of the parameters requiring calibration.
A quasi-random number generator was used to define these
parameters within the bounds shown in Table 3. A quasi-random
number generator was implemented as it minimizes discrepancy
between generated points to fill the multi-dimensional space in
a uniform manner (Skublska-Rafajłowicz and Rafajłowicz, 2012;
Sobol', 1967; Matoušek, 1998). This results in the synthetic dataset
containing a comprehensive representation of the 16 parameters and
their effect on the predicted response. The quasi-random number
dataset was generated using the Sobol sequence (Sobol', 1967). The
first 1,000 points were omitted, and the sequence was scrambled
using Owen’s scrambling algorithm to reduce correlations and
improve uniformity (Matoušek, 1998).

In addition to the model parameters, the input axial strain was
varied within the synthetic dataset. This was done to incorporate
the variations in the loading protocols, such as the loading rate
and differences in achieved displacements during the loading
and unloading cycles. A representative sample set of the loading
protocols are shown in Figure 7 in addition to the idealized
loading protocols for specimens 55-R2 and 55-R3 for reference.
The relationship between the axial and hoop strains was varied
by randomly adjusting the recorded hoop strain amplitude by
±5%. This introduced additional noise to the training data to
mitigate overfitting and improve performance for the experimental
data.

The input axial strain and resulting stress and hoop strain from
the analytical model were used to train the CNN.The input data was
reshaped into a 2D array following the data preparation approach
suggested in (Lanning et al., 2022). In this approach, the cell data
representing the amplitude is used to define pixel intensity for
an image when processed by a CNN. The signal amplitudes were
rescaled to an integer from 0 to 255, representing pixel intensity.
The 2D arrays for the axial strain, hoop strain, and axial stress
time histories were concatenated into the red, green, and blue
color channels to create a single RGB image for a given analytical
simulation. This resulted in a single input image corresponding to
the model parameters for training a CNN.

2.4.2 Network architecture
CNN architectures typically contain an image input layer,

convolutional layers, and an output layer. Each convolution layer
uses a kernel to extract features from local regions of the input.
The kernel is a matrix of weights that slides across the input and is
convolved with the pixels from a small area of the input to form the
output feature maps. The CNN architecture for the current study is

FIGURE 7
Sample set of loading protocols used to generate synthetic dataset for
training the CNN.

depicted in Figure 8, as well as a representative input image, which
included the axial strain, hoop strain, and axial stress arrays. The
CNN architecture in this work included three convolution layers
with kernel sizes of 3 × 3. Zero-padding was used so that the
convolution layers did not alter the spatial dimensions of the input.
Each convolution layer included rectified linear unit (ReLU) as the
activation function, which introduced nonlinearity to the system.
Each convolution layer was succeeded by a pooling layer, which
down-sampled values in the feature maps to reduce the number of
parameters and dimensionality of the feature maps. A pooling size
and stride of 1 × 2 was used, which down-sampled the adjacent
points in the time-history without distorting the order. A dropout
rate of 20% was introduced prior to the fully connected layer as a
regularizationmethod to prevent overfitting (Srivastava et al., 2014).
Finally, a fully connected layer was used to convert the feature map
into a feature vector the size of the number of output variables. As the
data was synthetically generated, a large dataset with 30,000 samples
was used in this study.

The synthetic dataset was divided into training, validation, and
testing subsets using an 80/15/5 split. The Adam optimization
algorithm (Kingma and Ba, 2014) was used with an initial learning
rate of 0.001, which decreased by a factor of 0.1 every 10 epochs.
The validation dataset was used to calculate accuracy and loss
during training to monitor the progress. Root mean-squared-error
(RMSE) was defined as the loss function. Early stopping was used
to automatically terminate training when the current validation loss
had exceeded the lowest validation loss 10 times.

2.4.3 Validation of the trained CNN
The performance of the CNN was assessed using the accuracy

capturing the model parameters for the testing dataset as well as the
validation RMSE and loss, which were measured during training.
The testing dataset included 5% of the synthetic dataset and was
unseen during training to prevent overfitting. The trained network
had a validation RMSE and loss of 0.43 and 0.11, respectively. The
predicted model parameters had an average R2 value of 0.93 for the
training set, 0.92 for the testing set, and 0.89 for the validation set.
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FIGURE 8
CNN architecture.

The accuracy of the network during training lowered when random
noise was added to the synthetic dataset. However, the performance
decrease was insignificant for the testing dataset and the accuracy
difference between the data subsets was lessened, indicating the
addition of noise decreased overfitting and improved the capability
to generalize. As a result, the accuracy capturing the experimental
responses also improved.

The model parameters for the FRP pipes were obtained by
prompting the trained network with the experimentally measured
axial strain, hoop strain, and axial stress. The experimental
responses for the specimens loaded under rates 2 and 3 (55-
R2 and 55-R3) were used to obtain the calibrated parameters.
This included two specimens tested under each rate, resulting
in four sets of predicted parameters. The values were averaged
and used to generate the analytical responses for the specimens
tested under all four rates (i.e., 55-R1, 55-R2, 55-R3 and 55-R4.)
This was done to evaluate the accuracy capturing the response
of specimens tested with rates outside of the range used for
prompting.

3 Results and discussion

3.1 Predicted response of FRP tubes

The experimental responses for the specimens loaded under
the rates 2 and 3 were fed to the trained network to obtain the
calibrated parameters. The predicted parameters were all within
the range of estimated values from material testing, constitutive
equations, or manufacturer specifications. This indicates that the
network did not compensate with unrealistically large or small
values when prompted with experimental data. Table 4 includes
the average model parameters as well as the average values for
the four specimens tested under rates 2 and 3, for comparison.
The standard deviation and coefficient of variance (COV) are
also reported in Table 4, as the COV permits comparison of
the variance between parameters with different units. Within the
GMM, the Maxwell elements with Km values less than 100 MPa
were removed as they had a negligible effect on the response. As
previously discussed, these elements were initially included to allow

the relaxation time, τ, to be calibrated without including it as a
direct training parameter. As removing these parameters had a
negligible effect on the predicted response, a new network was not
trained. The parameters for the remaining Maxwell elements are
reported included in Table 4 for simplicity. The predicted values
for the nonlinear parameters were comparable between the two
rates, i. e., the parameters defined uniaxial materials “SteelMPF” and
“SelfCentering”. In contrast, the viscoelastic parameters assigned
to the Maxwell elements had the largest COV of the calibrated
parameters. This was anticipated as the Maxwell elements with
lower relaxation times (τ < 50 s) have a less substantial effect on
the response under the slower loading rates. Despite the limited
effect, the trained network predicted reasonable values without
greatly over-predicting or underpredicting. This suggests some
information was encoded into the time history, despite the limited
effect on the global response. However, if the model is anticipated
to be used for various loading rates, it is suggested that a range
of loading rates be obtained experimentally and used for model
validation.

The predicted parameters for specimens 55-R2 and 55-R3 were
averaged and used in the OpenSees analytical model to simulate
the response of the FRP tube under the four loading rates, as
previously discussed.The resulting responses are shown in Figure 9,
including the axial stress-axial strain hysteresis, axial stress-hoop
strain hysteresis, and the stress time history. The predicted Poisson’s
ratios are compared to the measured values in Figure 10. The global
axial stress-strain responses were successfully captured for the two
loading rates used for calibration as well as under rates 1 and 4. The
R2 values were calculated for the axial stress and hoop strain time
histories given themeasured and predicted responses to quantify the
accuracy across the time history. The R2 values for the axial stress
time histories were 0.982, 0.995, 0.994, and 0.992 for specimens 55-
R1, 55-R2, 55-R3, and 55-R4, respectively. The R2 values for the
hoop strain time histories were 0.987, 0.997, 0.997, and 0.984 for
specimens 55-R1, 55-R2, 55-R3, and 55-R4, respectively. Overall, the
accuracy was higher for the specimens used to calibrate the model
parameters (55-R2 and 55-R3). The high accuracy simulating the
response of specimens 55-R1 and 55-R4 demonstrated the calibrated
parameters are applicable outside of the rates used for prompting.
This accuracy is attributed to adequate information on the full
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TABLE 4 Predictedmodel parameters given the experimentally measured responses.

Model parameter 55-R2 55-R3 Mean, μ Stand. dev, σ Units COV (100*σ/μ)

Fiber angle, α 54.1 54.2 54.1 0.062 deg 0.11

Fiber stiffness, AEf 31.2 31.7 31.4 0.286 GPa 0.91

Initial stiffness, Ko 7,440 7,030 7,240 206 GPa 2.85

Hardening factor, bk 0.049 0.052 0.05 0.002 -- 2.97

Post-activation stiffness, kp 0.350 0.330 0.34 0.013 MPa 3.75

Ratio of forward to reverse activation stress, β 0.065 0.070 0.07 0.003 -- 3.99

Vert. spring 1 stiffness, Km1, τ = 10 490 712 601 111 MPa 18.4

Vert. spring 2 stiffness, Km2, τ = 50 904 627 766 138 MPa 18.0

Vert. spring 5 stiffness, Km5, τ = 500 804 692 748 56.0 MPa 7.50

Horz. spring 1 stiffness, Km1, τ = 10 1950 2,140 2050 98.7 MPa 4.82

Horz. spring 2 stiffness, Km2, τ = 50 1,070 995 1,032 52.7 MPa 5.10

Horz. spring 3 stiffness, Km3, τ = 100 415 328 371 43.5 MPa 11.7

range of loading rates being included in the large synthetic training
dataset.

3.2 Response under biaxial loading
conditions

The analytical model was used to investigate the effects of
biaxial loading and variations in the fiber orientation for angles
between ±45° and ±70°. Biaxial loading was simulated by applying
simultaneous strain time histories in both the axial and hoop
directions. The hoop strain was applied proportionally to the
axial strain for strain ratios (εh/εa) between 0.4 and 0.55. This
is relevant for applications such as in CFFT columns, where
the FRP tube provides confinement to the concrete core. After
unconfined concrete reaches stresses of approximate 0.7f′c, the
apparent Poisson’s ratio (or strain ratio εh/εa) of concrete increases
from approximately 0.2–0.5 (Elwi and Murray, 1979; Mirmiran and
Shahawy, 1997). The compressive strength, f ’c, of concrete typically
varies between 17 MPa and 35 MPa, which corresponds to 0.7f′c of
8.5 MPa and 17.5 MPa, respectively. At this point, the concrete core
will impose a hoop strain, εh, onto the FRP tube. For this study,
the strain ratio was assumed to be constant, and the response of
an FRP tube was simulated for four ratios, as shown in Figure 11A.
These results are compared to the unconstrained case, i.e., where εh
is free to displacement based on the FRP properties. The strain rate
was approximately 100 µε/sec, comparable to strain rate 2 from the
experimental program. For the unconstrained case (εh = free), the
initial stiffness and early cycles are comparable to the response under
εh = 0.4εa, as shown in Figure 11B. After achieving axial strains of
approximately 0.3%, the unconstrained response is comparable to
the response for εh = 0.45εa and subsequently εh = 0.5εa, as indicated
in Figure 11B. This reflects the variation in the measured Poisson’s
ratio from 0.4 to 0.5 for specimen 55-R2, as shown in Figure 4B. If
the applied strain ratio was less than the measured Poisson’s ratio,
the strain in the hoop direction was partially constrained, resulting

in a larger stiffness. Strain ratios above the measured Poisson’s ratio
resulted in biaxial loading conditions where, for the example of a
CFFT column, additional hoop displacement occurs due to crushing
of the concrete core. These cases resulted in a lower axial stiffness as
the hoop direction was displacing faster than in the unconstrained
case.

The response when strain in the hoop direction is fully
constrained, i.e., εh = 0, is shown in Figure 12. This response
is compared to the calculated elastic stiffness according to the
schematic setup in Figure 5B. As shown in Figure 12, the response
is fiber-dominant, with slight nonlinear behavior due to the epoxy
matrix.

3.3 Future applications

The developed modeling methodology and the ML-based
approach in this study have broad applications for analyzing
structures made of filament-wound FRP tubes, such as piping
systems and CFFT elements. The advanced and intricate behavior
of FRP materials under variable rates of loading, including their
rate-dependent, viscoelastic and nonlinear behavior, are captured
accurately by the proposedmodel, which provides a solid foundation
for their structural analysis and design. The proposed FRP model
uses classical laminate theory to calculate the elastic properties based
on the specified fiber orientation. It can thus be used to evaluate the
performance of FRP pipes with different fiber winding angles under
the same loading conditions. By running simulations for various
fiber orientations and laminate thicknesses, the model can help
identify configurations that maximize the load-carrying capacity
and durability of the FRP tube for a given application. This could
be used as an optimization tool during the design phase.

For FRP piping systems commonly used in civil, chemical, and
petroleum industries, the analytical model could offer insightful
understanding of the response of the piping system under various
loading rates, such as wind pressure, water, and other in-service
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FIGURE 9
Experimental responses versus modeled responses including axial stress-hoop strain, axial stress-strain, and stress time history for specimens (A)
55-R1, (B) 55-R2, (C) 55-R3, and (D) 55-R4.

FIGURE 10
Poisson’s ratio of experimental and modeled responses for specimens (A) 55-R1, (B) 55-R2, (C) 55-R3, and (D) 55-R4.
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FIGURE 11
Effect of biaxial loading due to proportionally applied hoop strain showing the (A) full hysteresis response (B) zoomed view of the early cycles.

FIGURE 12
Response when strain in hoop direction is constrained compared to
then response when strain in hoop direction is free and the calculated
response assuming elastic behavior.

loads. The rate-dependent viscoelastic behavior can be significant
for FRP piping systems, especially when they are exposed to high
velocity dynamic loadings, cyclic loadings, or long-term loads.
Therefore, the considered ML-calibrated model can provide better
predictions of the safety and long-term performance of FRP pipes.
The most common loading on FRP piping systems is internal
pressure due to the fluid flowing through the pipe. The model
considers the element configuration that represents the matrix and
fiber elements. The biaxial loading on the piping system can be
modeled directly and can simulate the response of the FRP tube
under uniform internal pressure, which results in biaxial stresses
in the tube wall. The model can also be extended to consider

additional loads thatmay act on FRPpiping systems, such as external
pressure, bending and axial loads, allowing the interaction between
the various loading effects on the strains and stresses in the FRP tube
wall to be captured.

For CFFT elements, this modeling methodology allows a more
accurate representation of their structural behavior under static
and dynamic loads. These elements are frequently used in civil
engineering applications due to their high strength-to-weight ratios
and superior corrosion resistance. However, the simulation of
these structures is complex due to the viscoelastic behavior of the
composite materials and the interaction between concrete and FRP
tubes. For modeling CFFTs, a similar approach as the FRP model
can be followed to define the concrete core. A variation of the
element configuration as shown in Figure 5B can be used with
parameters calibrated to capture the rate-dependent behavior of the
concrete material. The two models can be integrated so that the
top and bottom nodes are connected with rigid elements and the
horizontal movement or hoop strain are tied so that the FRP tube
and concrete experience the same hoop strain.While the calibration
of the concrete core requires extensive simulations and is outside the
scope of the current work, the same framework may be used.

4 Conclusion

This work proposed a novel modelingmethodology to represent
the short-term viscoelastic properties of FRP tubes as well as
the nonlinear cyclic response and interaction of axial and hoop
strains. Experimental testing of filament-wound FRP tubes with
winding angle of ±55° under cyclic axial compression was used for
model validation. The FRP tubes exhibited viscoelastic behavior,
including stress relaxation under constant strain and a dependence
of stress on the strain rate. A previously proposed supervised ML
framework was modified to calibrate the model parameters with
limited experimental data. The framework consisted of training a
CNN using a synthetic dataset to learn the relationships between
the analytical model parameters and the axial stress, axial strain,
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and hoop strain time histories. The trained CNN had a validation
RMSE and loss of 0.43 and 0.11, respectively. The predicted model
parameters had an average R2 value of 0.93 for the training
set, 0.92 for the testing set, and 0.89 for the validation set. The
trained network was prompted with the experimental data to obtain
analytical model parameters for the FRP tubes that are applicable
to a range of loading rates. The results of the study demonstrated
a CNN can perform parameter calibration for nonlinear models of
composites and calibrate rate-dependent properties.

When prompted with the experimental data, the trained
CNN predicted reasonable model parameters and captured the
measured response of the FRPs over the range of loading rates.
The modeling methodology successfully simulated the nonlinear
cyclic response of the FRP tubes, including the viscoelastic behavior
due the epoxy matrix and the relationship of axial and hoop
strains.The accuracy capturing themeasured stress-strain responses
demonstrated the synthetic dataset was adequate for training the
CNNwithout requiring additional experimental data.The proposed
FRP modeling methodology was used to investigate the response
under biaxial loading. Additional research is needed to evaluate
the applicability of the model to various fiber orientations and
architectures.
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