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Introduction: A full three-dimensional (3D) microstructure characterization that
captures the essential features of a given material is oftentimes desirable for
determining critical mechanisms of deformation and failure and for conducting
computational modeling to predict the material’s behavior under complex
thermo-mechanical loading conditions. However, acquiring 3D microstructure
representations is costly and time-consuming, whereas 2D surface maps taken
from orthogonal perspectives can be readily produced by standard microscopic
procedures. We present a robust and comprehensive approach for such 3D
microstructure reconstructions based on three electron backscatter diffraction
(EBSD) maps from orthogonal surfaces of two-phase materials.

Methods: It is demonstrated that processing surface maps by spatial correlation
functions combined with principal component analysis (PCA) results in a small set
of unique descriptors that serve as a representative fingerprint of the 2D maps. In
this way, the differences between surface maps of the real microstructure and
virtual surface maps of a reconstructed 3D microstructure can be quantified and
iteratively minimized by optimizing the 3D reconstruction.

Results: To demonstrate the applicability of the method, the microstructure of a
metastable austenitic steel in the two-phase region, where austenite and
deformation-induced martensite coexist at room temperature, was
characterized and reconstructed. After convergence, the synthetic 3D
microstructure accurately describes the experimental system in terms of
physical parameters such as volume fractions and phase shapes.

Discussion: The resulting 3D microstructures represent the real microstructure in
terms of their characteristic features such that multiple realizations of statistically
equivalent microstructures can be generated easily. Thus, the presented approach
ensures that the 3D reconstructed sample and the associated 2D surfacemaps are
statistically equivalent.
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1 Introduction

Material structure plays a vital role in driving all material
innovation efforts aimed at improving material properties and
performance. The three-dimensional (3D) characterization of
microstructures is oftentimes desirable to capture the essential
features of a given material and to determine critical mechanisms
of deformation and failure. Using 3D microstructures is also
essential to conduct computational modeling to predict the
material’s behavior under thermo-mechanical loading conditions
(Benito et al., 2019). However, acquiring 3D microstructure
representations is costly and time-consuming because standard
microscopic procedures can only produce 2D surface maps, even
though the material is inherently three-dimensional. Current state-
of-the-art methods for 3D microstructure characterization are serial
sectioning techniques (Spowart, 2006; Zaefferer et al., 2008;
Mücklich et al., 2018) or X-ray tomography (Echlin et al., 2012;
Ebner et al., 2013; Wang et al., 2013). Both methods produce a
truthful characterization of the 3D structure of an individual
specimen but require a rather large effort both in sample
preparation and in the software-based reconstruction of the 3D
structure. Therefore, the lack of systematic ways for characterizing
the 3D microstructure represents a significant challenge in materials
science.

It is important to point out that the aforementioned direct 3D
measurement techniques such as serial sectioning techniques or
X-ray tomography yield a deterministic description of an
instantiation of an individual microstructure and these methods
are generally applied to very small sample sizes, which may raise
doubts on the statistical significance of their representation of the
microstructure being investigated. However, a truthful statistical
representation of a material’s microstructure is essential to establish
a link to bulk properties. Currently, most of the well-established
homogenization theories use statistical measures of the
microstructure to build structure-property links (Fullwood et al.,
2008a; Baniassadi et al., 2012; Tabei et al., 2013). Hence, for such
applications, a statistical representation of the microstructure is
sufficient to predict the macroscopic properties of a sample (Balzani
et al., 2014). Typically, characterizing a material in two dimensions
using standard microscope procedures yield information on surface
areas that are large compared to microstructural feature sizes, e.g.,
the grain size, with a reasonable effort. In consequence, linking of 2D
statistical descriptions from surface maps to 3D statistics is a
potentially powerful approach. Extensive research into this idea
has been conducted, demonstrating that it is simple to collect
relevant microstructure statistics from carefully chosen 2D
sections in polycrystalline samples and to assemble them into 3D
spatial statistics; the required effort, however, is orders of magnitude
lower than that required to measure the material structure in 3D
volumes (Mason and Adams, 1999; Gao et al., 2006; Fullwood et al.,
2010). Furthermore, these studies have demonstrated that higher-
order distribution functions characterizing the 3Dmaterial structure
may be derived from data gathered in 2D sections using stereology
theory. It is important to note that these prior attempts did not seek
to reconstruct a 3D material microstructure using the obtained 3D
microstructure statistics, but rather they focused on collecting the
3D microstructure statistics and directly applying them to estimate
bulk properties (Adams and Field, 1992; Adams, 1993).

Nevertheless, reconstructing a statistically representative 3D
microstructure facilitates property predictions using numerical
simulation approaches. Unlike homogenization theories, which
merely require the specification of proper microstructure
statistics, the representative volume element (RVE) technique
relies on the geometrical representation of 3D microstructures to
apply numerical tools such as micromechanical simulations (Biswas
et al., 2020a). The difficulty of statistical microstructure
reconstruction is dependent on the particular microstructure
statistics. For example, if one simply considers the volume
fractions of the constituents’ local states or phases, also called 1-
point spatial correlations, it is straightforward to produce
reconstructions that reflect appropriate microstructure statistics.
In other words, when starting with such a basic description,
there are usually many potential reconstructions. Among the
available resources for statistical microstructure reconstructions,
DREAM3D (Rollett et al., 2004; Groeber and Jackson, 2014) and
Kanapy (Biswas et al., 2020a; Biswas et al., 2020b) are noted here.
They take as input scanning electron microscopy (SEM) or electron
backscatter diffraction (EBSD) data from one to three orthogonal
surface maps of a polycrystalline sample to generate a full 3D model
of the microstructure. By representing each constituent grain as an
ellipsoid, the microstructure will reflect selected statistics such as
volume fraction, grain size and aspect ratio distributions, and
crystallographic texture, including orientation distribution
function (ODF) and misorientation distribution function
(MODF) (Adams et al., 1993; Xu et al., 2014). Nonetheless, the
lineal path function (Lu and Torquato, 1992), the cluster correlation
function (Jiao et al., 2009), or the spatial n-point correlations are
more preferred high-dimensional statistical descriptors (Jiao et al.,
2007; Kalidindi et al., 2011). Also, integral descriptors such as
Minkowski tensors have received considerable interest
(Scheunemann et al., 2015).

To avoidmaking arbitrary choices of microstructure descriptors,
the n-point spatial correlations can be used to select descriptors in a
systematic approach (Fullwood et al., 2010; Kalidindi et al., 2011).
Using this approach, the microstructure descriptors can be selected
according to their expected significance in affecting the effective
properties of the material (Garmestani et al., 2001; Saheli et al., 2005;
Adams et al., 2012). Although one-point spatial correlations only
contain volume fraction information, they have been successfully
applied to reconstruct microstructures. 2-point spatial correlations
not only account for the 1-point statistics but also integrate higher-
order statistical descriptions (Baniassadi et al., 2012; Sheidaei et al.,
2013). These studies often attempted two-dimensional
reconstructions using all of the selected classes of n-point
statistics. For instance, phase-recovery algorithms have been
utilized to reconstruct 2D microstructures (Fullwood et al.,
2008b). Additionally, Monte-Carlo approaches have been
employed to reconstruct microstructures using obtained spatial
correlations (Garmestani et al., 2009; Tabei et al., 2013).
Typically, the evolution of a microstructure is determined by the
minimization of an objective function that represents the differences
between spatial correlations of the reconstructed and original
microstructures. In this context, Seibert et al. developed a
gradient-based optimization method for reconstructing 3D
microstructures from 2D micrographs (Seibert et al., 2021b;
2021a). They defined the objective error function using a variety
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of microstructure descriptors like spatial correlations and Gram
matrices. In their work, the chosen descriptors were differentiable
with respect to the microstructure and a gradient-based
optimization technique was applied to minimize the error
function. Additionally, Turner et al. (2016) utilized location and
neighborhood histogram reweighting to develop a solid texture
synthesis algorithm for microstructure reconstruction. This
approach provides a means to generate statistically similar 3D
microstructures in cases when only 2D measurements are
possible. Furthermore, several data-driven microstructure
reconstruction techniques using Generative Adversarial Networks
(GANs) (Yang et al., 2018; Kench and Cooper, 2021) and
Variational Autoencoders (VAEs) (Noguchi and Inoue, 2021;
Zhang et al., 2021), have been presented. Although these
techniques have low computing time, they require a training data
set and can only reconstruct a microstructure from a specific point
in the latent space, not a specific descriptor. Hence, the descriptors of
a microstructure are represented by the latent space variables in a
neural network. Furthermore, in the absence of a training data set,
the transfer learning method has been employed for microstructure
reconstruction (Li et al., 2018; Bostanabad, 2020). This approach has
been also extended to incorporate 2-point statistics (Bhaduri et al.,
2021).

In the present work, an alternative workflow is suggested to
generate synthetic 3D two-phase microstructures resembling real
ones in a statistical sense from 2D surface maps of three orthogonal
surfaces. The applicability of the proposed method is demonstrated
through the 3D reconstruction of microstructures of metastable
austenitic steels in the two-phase region. For this purpose, a
metastable austenitic steel, where austenite and deformation-
induced α- martensite co-exist in room temperature (Egels et al.,
2018), is characterized by three EBSD maps from orthogonal
surfaces.

The paper is organized as follows: After this introduction,
Section 2 presents the microstructure reconstruction workflow
and the background and equations for accurately computing
spatial correlations. Furthermore, a PCA-based low-dimensional
representation of these statistical features is introduced. Thereafter,
the definition of a suitable loss function that quantifies the
differences between descriptors of the synthetic and experimental
surface maps and the differential evolution optimization approach
for minimizing the loss are presented. In Section 3, the applicability
of the proposed workflow for the reconstruction of 3D samples is
demonstrated for case studies on the 3D reconstruction of synthetic
and experimental microstructures. The obtained results are
summarized in Section 4.

2 Methods and workflow

This paper focuses on 3D reconstruction of two-phase materials
based on three orthogonal surface maps. To demonstrate the
applicability of the method, the microstructure of a metastable
austenitic steel in the two-phase region, where austenite and
deformation-induced α- martensite co-exist at room temperature,
is characterized and reconstructed. The microstructure of this two-
phase steel is characterized by EBSD microscopy. Details of the
experimental procedures will be provided in Section 3.2. The

schematic workflow for 3D microstructure reconstruction from
three EBSD maps of orthogonal surfaces is depicted in Figure 1.
The workflow’s input is the set of surface maps of a reference sample.
We use the x, y, and z to refer to each distinct orientation. The colors
yellow and gray show α- martensite and austenite, respectively,
while black indicates areas of the microstructure that are not
indexed. The 3D reconstruction is pursued based on an inverse
procedure that generates synthetic 3D microstructures with
arbitrary physical parameters and then compares the synthetic
surface maps taken from the 3D synthetic sample with the real
ones. In an iterative procedure, the parameters of the microstructure
generator are optimized until the best possible agreement between
the corresponding surface maps of synthetic and real
microstructures is achieved. In this way, the physical parameters
of the real microstructure are automatically attained since they are
the converged input parameters for the microstructure generator.

The workflow in Figure 1 incorporates a microstructure
generator tool from the open-source python package pyMKS to
produce synthetic 3D two-phase microstructures based on physical
parameters, such as volume fraction and phase shape (Brough et al.,
2017). From the surfaces of a synthetic microstructure, 2D images
are produced similar to the surface maps of the real material.
Consequently, the reconstruction task is implemented as an
optimization problem in which the synthetic 3D microstructure
is iteratively modified until the difference between synthetic and
experimental surface maps is minimized. The primary challenge in
this optimization problem lies in defining a proper loss function to
be minimal that quantifies the differences between surface maps in a
physically sound yet numerically efficient way. We demonstrate that
processing surface maps by spatial correlation functions, often
referred to as 2-point statistics, and PCA results in a small set of
unique descriptors that serve as a fingerprint of the 2D maps
(Niezgoda et al., 2013). These descriptors encode the topological
information of 2D maps in a compact format and can be used to
characterize both experimental and synthetic surface maps. In this
way, the differences between the two sets of surface maps can be
quantified and iteratively minimized.

The 2D surface maps are analyzed using the 2-point statistics tool
in pyMKS with the aid of computationally efficient Discrete Fourier
Transformation-(DFT)-based approaches (Brough et al., 2017).While
2-point statistics provide visually intuitive representations of
microstructures, they are very high dimensional. PCA, which is an
effective dimensionality reduction approach that results in a small set
of unique descriptors, is used to reduce the high dimensionality of the
2-point statistics representation. To obtain a set of 2D surface maps as
the data basis for fitting the PCA, pyMKS is employed. In the
following sub-sections, the context and equations for computing
the 2-point spatial correlations, as well as a PCA-based, low-
dimensional representation of these statistical features are
presented. Subsequently, the differential evolution optimization
strategy for minimizing the loss is described, along with the
definition of an appropriate loss function that quantifies the
differences between the descriptors of the synthetic and
experimental surface maps. In this study, all reconstructions have a
final volume size of 2003 voxels. The reconstruction size has been
chosen to be small enough to be generated within the available
computer resources, while still being large enough to ensure that
enough of the microstructure’s features are captured in the
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reconstruction. All reconstructions are performed on a system with
64 GB of memory and Intel W-2255 10-core CPU.

2.1 Digital microstructure

For the mathematical representation of material
microstructures, discretized representations have been widely
employed (Adams et al., 2012). Specifically, in these cases, the
most convenient representation of the microstructure is an array,
mh

s , whose values represent the volume fraction of the local state of
the material, h, in the RVE’s spatial bin, s. Spatial bins are generated
via a uniform tessellation of the RVE and local states are used to
index the prominent material properties such as thermodynamic
phase identifiers for a two-phase material. In 2D, spatial bins
correspond to pixels, and in 3D, to voxels. To characterize the
microstructure, this representation assumes that there is a finite
number of unique material local states, h � 0, 1, 2, . . . , H, that can
occupy each spatial bin in the RVE, s � 1, 2, . . . , S. Here, the spatial
bins in a 3D RVE are indexed using the 3D vector index
s � (s1, s2, s3), enabling intuitive visualization of the reconstructed
3D microstructure. In addition, S represents the set of all possible s
values (s ∈ S). Since the focus of this study is on two-phase
microstructures (h � 0 for austenite regions and h � 1 for
martensite regions), we need only account for the volume
fraction of one phase, and the volume fraction of the other phase
is equal to (1 −mh

s ). Specifically, we focus will be on eigen
microstructures, in which only one of the phases fills each spatial
bin. Simply put, mh

s can only be zero or one for the two-phase
metastable austenitic steels. That is, each pixel or each voxel is

allowed to take an integer number either 0 or 1. Note that most
microstructures seen in experiments are often represented as eigen
microstructures, with the spatial resolution limited by the
characterization instrument’s resolution. However, the majority
of structural composites display sharp thermodynamic phase
boundaries. Consequently, the discretization error caused by
eigen microstructure representations is typically localized to the
voxels close to the phase boundaries and if a sufficiently small spatial
bin size is used, this error can be minimized.

In this section, we generate a large dataset of voxelated 3D
eigen microstructures, extract their 2D cross-sections, and
quantify their 2-point correlations. PyMKS microstructure
generator algorithms are used to generate 3D two-phase
microstructures with a size of 200 × 200 × 200 voxels, from
which 2D cross-sections are extracted orthogonal to the x-, y-,
and z-axes to obtain 2D images that serve as a data basis for fitting
the PCA. Using a higher resolution increases the computing cost,
while a lower resolution results in an incorrect representation of
the smallest features (i.e., phase areas). Here, a resolution of
200 × 200 × 200 was used to capture the most important
features in the two-phase microstructures and higher
resolutions were not feasible due to excessive computing costs.
Three classes of microstructures inspired by those observed in real
material samples are considered: equiaxed, pancake-shaped
(oblate), and cigar-shaped (prolate) secondary austenitic phases
with a volume fraction ranging from 0.1 to 0.5 with a sequence of
0.1. Three examples of generated 3Dmicrostructures using pyMKS
with various volume fractions and morphologies of the secondary
austenitic phase are shown in Figure 2. Areas of austenite are
shown in blue, while martensitic regions are shown in red.

FIGURE 1
A schematic description of the workflow to reconstruct 3D microstructures from surface maps. The input is represented by three EBSD maps from
orthogonal surfaces of a two-phase steel (yellow: martensite, gray: austenite) from which a low-dimensional, yet representative vector of descriptors is
extracted. The corresponding descriptors are generated from a synthetic 3D microstructure (red: martensite, blue: austenite) such that a scalar loss
function can be evaluated to assess the similarity between the surface maps of real and synthetic microstructures. In an iterative procedure, the
parameters of the 3Dmicrostructure generator are optimized such that the loss function becomes minimal. The microstructure generator tool from the
open-source python package pyMKS is used to produce synthetic 3D microstructures (Brough et al., 2017).
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Thereafter, the PCA is fitted using a dataset of 2-point correlation
maps obtained for 1050 2D cuts extracted from the generated 3D
synthetic microstructures. This dataset for the fitting of the PCA
method is generated by producing 10 slices in each direction of
each 3D sample, which is demonstrated in Figure 3 for the
microstructure shown in Figure 2B.

2.2 Microstructure statistics

Conventionally, the common practice has been to rely on
intuitive metrics that reflect statistics of two-phase
microstructures, such as the average elemental composition,
phase volume fractions, lattice parameters, and averaged phase
shape and orientation. These metrics provide simple
representations of complex microstructures by several scalar
quantities, thereby facilitating microstructure specification,
comparison of effects of varying processing conditions, and

incorporation of the microstructure into property prediction
models. These measures, however, fail to account for critical
higher-order statistical features and for a given set of values for
these extremely low-dimensional properties, it is for most
microstructures almost impossible to construct statistically
similar instantiations of the original material structure, i.e., an
inverse mapping from (several) scalar quantities is practically
impossible. Consequently, we infer that these simple metrics fail
to adequately capture the complexities of a real microstructure.
Richer statistical descriptors, such as n-point spatial correlation
functions, often known as n-point statistics, have a substantially
larger dimensionality. Recent research has demonstrated that by
combining the physics-inspired concept of n-point spatial
correlations, combined with machine learning dimensionality
reduction techniques such as PCA, a systematic and thorough
quantification of a microstructure is achievable (Basu et al.,
2022). The idea is to gather local neighborhood information in a
systematic way around some chosen point in the microstructure. 1-

FIGURE 2
Three-dimensional synthetic microstructures with varying volume fractions (VF) and shapes of the secondary phase, including (A) equiaxed phase
with VF = 0.3, (B) prolate phase with VF = 0.2, and (C) oblate phase with VF = 0.4.

FIGURE 3
The data basis for the fitting of the PCA method is generated by producing 10 slices in (A) x-, (B) y-, and (C) z-direction of each 3D sample, here
demonstrated for the microstructure shown in Figure 2B.
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point spatial correlations (i.e., n = 1) are the simplest n-point spatial
correlations since they simply indicate the probability of observing a
given local state of interest at a given spatial point in the material
structure. Such basic statistics only capture the volume fraction of
the various local states of a microstructure. 2-point statistics describe
the first-order spatial correlations between the distinct constituent
phases in thematerial. Hence, they provide a quantitative measure of
neighborhood statistics by focusing on a pair of material points
connected by a certain vector. In general, higher-order spatial
correlations, i.e., 3-point spatial correlations and higher, are
known to affect the effective characteristics; however, for the
class of eigen microstructures investigated in this paper, it is
expected that these correlations will have non-linear relationships
with the 2-point spatial correlations (Mann and Kalidindi, 2022).
Here, this will become clear from the fact that eigen microstructures
will be reconstructed statistically from their 2-point spatial
correlations. In the following, the quantitative framework for
extracting these statistical features from 2D surface maps
generated in the previous section is presented.

The 2-point spatial correlations, represented by fhh′
r , are

defined as a measure of the joint probability of locating local
states h and h′ in the RVE, separated by a discretized vector
indexed by an integer array r, which has a direction and a

magnitude. Different combinations of h, h′, and r yield a
different statistical metric for the microstructure of the
material. 2-point statistics are commonly employed for a wide
range of possible values for h, h′, and r (Turner et al., 2016).
Specifically, the mathematical definition of the 2-point spatial
correlation is (Kalidindi, 2015)

fhh′
r � 1

S
∑
S

mh
sm

h′
s+r (1)

in which S represents the total number of RVE spatial bins. The
fast Fourier transform (FFT) technique is particularly useful in
computing fhh′

r (Niezgoda et al., 2008; Cecen et al., 2015). fhh′
r is

called auto-correlation if h and h′ are of the same phase and is
called cross-correlation otherwise. Eq. 1 implies that the space of
the 2-point spatial correlations is substantially smaller than the
space of all microstructures, and this is because microstructures
that are related to one another by translations and inversions
have the same set of 2-point spatial correlations. This is one of
the primary benefits of utilizing spatial correlations to represent
microstructures. The filtered-out microstructures possess the
same effective mechanical properties as the microstructures
maintained in the 2-point spatial correlations space.
Consequently, they eliminate a substantial amount of

FIGURE 4
Middle planes in (A) x-, (B) y-, and (C) z-direction of the three-dimensional sample shown in Figure 2B (left column) and the associated 2D auto-
correlation maps for austenite regions (second column), for martensite regions (third column), and the cross-correlation between the two phases (right
column).
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descriptor space redundancies. In other words, it is significantly
simpler to probe the fhh′

r space than the mh
s space.

Auto-correlations of the martensite and austenite phases and
their cross-correlation function are computed for the generated 2D
surface maps. Since fhh′

r represents a 2D array for 2D images, it is
easy to visualize. Figure 4 depicts the 2D spatial correlation maps
obtained for the middle planes of the 3D sample shown in Figure 3.
The correlation maps include the auto-correlation maps for
austenite and martensite regions and the cross-correlation maps
between the two phases. The 2-point spatial correlation maps
possess unique characteristics. They are spatial fields with a
natural origin at the zero vector, i.e., r � 0 in Eq. 1. The sharp
peak at r � 0 and the overall drop with increasing |r| can be seen in
the spatial correlation maps of in Figure 4. In particular, the central
peak value in autocorrelation maps for each phase corresponds to its
area fraction, while the asymptotic value corresponds to the square
of the phase area fraction. Microstructural features such as size and
shape distributions are also captured by the 2-point spatial
correlations (Fullwood et al., 2010; Kalidindi, 2015). Figure 4
shows that the shape of the central peak in the plots resembles
the average shape of the phase regions. Furthermore, even though
the vectors used to define spatial correlations have physical units of
length, those units are ignored here and they are associated with
pixels of unit size. We should also note that the elements of the 2D
arrays for maps of 2-point spatial correlations can only have
continuous values between 0 and 1.

The potential advantages of using 2-point spatial correlations as
the descriptors rather than the discrete microstructures have already
been discussed. In this context, it is important to note that the features
extracted via 2-point spatial correlations are capable to work as
universal features for many relevant effective bulk material
properties (Generale and Kalidindi, 2021). However, the
correlation maps of a 2D image are high-dimensional
representations of the microstructure. In Figure 4, each correlation
map is a 2D array of size 201 × 201 with r � 0 corresponding to the
element of (101, 101), and is therefore high-dimensional.
Therefore, even if only one autocorrelation is considered for
the 2-phase microstructure described on a 200 × 200 grid, a total
of 40401 discretized 2-point statistics would be required for fully
describing this microstructure. Although the correlation maps
provide visually intuitive representations of microstructures and
capture their various salient measures, comparing them
quantitatively or directly incorporating them for
microstructure reconstruction is challenging. Adding an
excessively large number of features could needlessly raise the
computing cost without adding appreciably more value in terms
of the additional information captured. Through the use of a
linear transformation, PCA presents a data-driven
dimensionality reduction strategy that maximizes the
explained variance in the dataset with the fewest number of
representative features (Jollife, 2002; Jollife and Cadima,
2016). It has been observed that using PCA on 2-point spatial
correlations can generate high-fidelity process-structure-
property (PSP) surrogates that can stand in for
computationally expensive models (Kalidindi, 2015). In the
next section, the PCA method is used to reduce the high
dimensionality of the 2-point statistics obtained for the 2D
images dataset. Used together, the formalism of n-point

spatial correlations and PCA allows to extract the salient and
low-dimensional microstructure features in a completely
unsupervised way. Then, these low-dimensional features are
used as the unique descriptors for microstructure reconstruction.

2.3 Dimensionality reduction

In the classification of various and large datasets of
microstructures and the development of data-driven PSP links,
low-dimensional representations are of great use. PCA is an
effective technique for dimensionality reduction which applies
a linear and distance-preserving transformation of data to a new
orthogonal basis that maximizes the variance captured in the data
in the least number of terms corresponding to the new PC basis.
PCs are a linear combination of the original components of the
data. Consequently, the number of variables in the new basis,
called PC scores, that are needed to adequately describe the data
is often considerably lower than the number of original variables
and the number of prominent variables in the new basis is
determined by the desired explained variance in the dataset.
Furthermore, PCA’s ability to preserve distance allows for
quantitative relative comparisons of the data points. In
Sections 2.1 and 2.2, we generated a large dataset of 2D
voxelated eigen microstructures and computed their 2-point
spatial correlations. Here, this dataset consisting of the
correlation maps for the 2D images is utilized to train the
PCA. Hence, inputs to the PCA established in this study are
2-point spatial correlations maps, which consist of 2D arrays of
size 101 × 101 with r � 0 corresponding to the element of
(51, 51), given that a radius of 50 has been used as the cutoff
for correlation maps. In the following, the quantitative
framework for the PCA method is presented and applied to
the 2-point spatial correlation maps to reduce their
dimensionality and derive salient microstructure descriptors.

FIGURE 5
Explained variance in data in terms of the number of PC basis
vectors used for the low-dimensional presentation.
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PCA provides an ordered orthogonal decomposition into PC
basis, which allows for a typically handful of scalar PC scores to
be used as the fingerprint of the surface maps. This method can
be regarded as the identification of patterns (basis vectors) and
then weighting of these patterns (PC scores), to effectively
capture the variance in the 2-point spatial correlations of the
microstructure dataset. Once these patterns and their scores
have been determined, the 2-point statistics of the kth

microstructure in the dataset (or a new microstructure to be
added to the dataset) can be represented by the linear
combination of the patterns (Niezgoda et al., 2011; Niezgoda
et al., 2013),

P k( )
l � ∑

J

j�1
α k( )
j ϕjl + 〈Pl〉 (2)

where α(k)j are the PC scores, ϕjl are basis vectors, obtained by PCA,
and 〈Pl〉 is the average 2-point statistics for the dataset. The
dimensionality reduction effect is achieved by approximating the
equality condition in Eq. 2 to a well-defined precision by truncating
the series to the first R principal components such that R≪ J, which
capture a specified level of variance in the dataset. As shown in
Figure 5, the first five PC basis vectors in this study capture more
than 99% of the variance in the data. This small set of PC scores
serves as the unique descriptors characterizing each 2D image.
Figure 6 illustrates the first four PC basis vectors corresponding
to the auto-correlation of austenite and martensite phases and the
cross-correlation between the two phases. Figure 7A shows the low-
dimensional representation of the dataset consisting of 2D images in
terms of the first four PC scores. In addition, Figures 7B, C illustrates
the correlation between the first four PC scores with volume fraction

FIGURE 6
PC basis vectors for (A) auto-correlation for the austenite phase, (B) auto-correlation for the martensite phase, and (C) cross-correlation between
the two phases. The rows from top to bottom correspond, in order, to the PC1, PC2, PC3, and PC4 basis vectors.
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and phase shape. As can be seen in this figure, PC1 correlates linearly
with volume fraction, but the volume fraction is not orthogonal to
other PC scores. Although PC scores vary in terms of volume
fraction and phase shape, it is, in general, not straightforward to
infer their correlations.

2.4 Loss function

Having chosen a small set of PC scores as the unique descriptors
to characterize 2D surface maps, reconstructing a statistically
equivalent 3D digitized microstructure is cast as an optimization
problem by adjusting an initial 3Dmicrostructure to minimize a loss
function. The reconstruction workflow depicted in Figure 1 is based
on this inverse procedure to first generate synthetic 3D
microstructures using arbitrary physical parameters, and then to
compare the resulting artificial surface maps to the corresponding
real ones in descriptor space. Hence, the optimization seeks to
update the 3D physical parameters, including volume fraction
and phase shape, in a way that the average difference between
the PC scores of the reconstruction and the PC scores of the
reference images is minimized.

The mean squared error (MSE), which provides a quantitative
measure of differences between the PC scores, serves as the basis for

defining the loss function, hereafter denoted by E. The adjustment is
done by iterating over 3D physical parameters, i.e., volume fraction
and phase shape, to minimize E, which measures the differences
between the PC scores of the synthetic images and those of the
reference images in each direction,

E � ∑
i�x,y,z

PCavg i( ) − PCref i( )
����

���� (3)

where ‖ ‖ represents the L2-norm, and PCref (i) is the vector of
selected PC scores for the reference image orthogonal to direction i.
In order to compare the generated 3D microstructure to reference
images, the 3D microstructure is first sliced in all three spatial
dimensions to obtain stacks of 2D images, with ten slices taken from
each direction. Hence, a 3Dmicrostructure with 2003 voxels is sliced
in each spatial dimension to obtain a total of 3 × 10 slices, each with
2002 pixels. The PC scores is then computed for each slice separately.
Subsequently, the average value of the selected PC scores in each
direction is calculated, denoted by PCavg (i). Then, the L2-norm of
the difference between PCavg (i) and PCref (i) is computed. This
means that the experimentally desired PC scores in each
direction should be closely reflected in the PC scores obtained
for each slice in the same direction. In this way, anisotropy can
be taken into account, as different PC scores can be assigned in various
directions. When computing the loss, it should be noted that PC scores

FIGURE 7
(A) Low-dimensional presentation (PC scores) of spatial correlation data, including PC1 against PC2 and PC2 against PC3 plots, and (B) the variation
of PC1, PC2, PC3, and PC4 scores in terms of volume fraction and (C) the variation of PC1, PC2, PC3, and PC4 scores in terms of phase shape.
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are standardized by removing the mean and scaling to unit variance.
Hence, all PC scores will be centered around 0 and have variance in the
same order, otherwise the PC scores with larger variance may dominate
the loss function. Afterwards, an optimization procedure is run from the
initial guess until the reconstruction converges and furthermodifications
to the reconstructed microstructure are negligible. For optimization, the
differential evolution approach is used with the target to minimize the
loss function defined in Eq. 3. This optimization method uses a
stochastic approach and performs more function evaluations than
traditional gradient-based methods (Kumar et al., 2008). This
optimization algorithm alternates the microstructure in three
dimensions by assigning different values of volume fraction and
phase shape to generate a 3D microstructure that minimizes the
error between the PC scores of the reference images and those of the
artificial ones. For this study, the criterion for convergence was whether

or not the average absolute change in loss value was smaller than 10−3.
We also imposed a strict limit on the number of repetitions, often 1000,
in cases where this convergence condition was not met.

3 Applications

In this section, we examine the applicability and performance of
the suggested microstructure reconstruction workflow. For this
purpose, two classes of two-phase microstructures are considered.
The first includes synthetic surface maps, digitally generated using
pyMKS (Brough et al., 2017), while the second class contains
experimental surface maps, acquired using EBSD measurements
on metastable austenitic steels in the two-phase region (Egels et al.,
2018).

FIGURE 8
(A) The reference 3D microstructure, and its 2D cross-sections normal to the (B) x-, (C) y-, and (D) z-directions in the second column and their
corresponding auto-correlation map for the austenite phase in the third column. The area fraction of the austenite phase is 0.46 in (A), 0.33 in (B), and
0.42 in (C), which corresponds to the highest central value in each auto-correlation map. The original 3D microstructure has a volume fraction of
0.396 and average phase shapes of 15, 45, and 100 voxels along the x-, y-, and z-axes, respectively.
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3.1 Synthetic microstructure

The 3D microstructure reconstruction workflow is first validated
using synthetic 2D surface maps obtained from the orthogonal
surfaces of a reference two-phase 3D microstructure. For this
purpose, the pyMKS microstructure generator is first employed to
create a 3D microstructure with a volume fraction of 0.4 for the
austenite regions andmean shape of 15, 45, and 100 voxels along the x,
y, and z-axes, respectively; shown in Figure 8A. Afterwards, three
surface maps are extracted from this microstructure. For this purpose,
the 3D microstructure is digitally sectioned along three orthogonal
planes, which are normal to the x-, y-, and z-axes. These orthogonal
cross-sections of the 3Dmicrostructure are used as input 2D reference
images for the reconstruction procedure. These three orthogonal
reference maps together with their autocorrelation map for
austenite can be seen in Figures 8B–D. The variation of
PC1 through PC5 as a function of area fraction is depicted in
Figure 9 as scattered plots for the two-dimensional dataset images
as well as for the generated synthetic reference images. In each plot,
the gray point denotes the dataset images. Here, the first five PC scores
are selected as the fingerprint of each image. Then, based on the
proposed workflow described in Section 2, the three synthetic surface
maps are used to reconstruct a statistically similar microstructure in
three dimensions, which is then compared to the original 3D
microstructure shown in Figure 8A.

The reconstructed microstructure shown in Figure 10A
correspond to the minimum loss value plotted in Figure 10B.
Furthermore, the evolution of physical parameters during

optimization is illustrated in Figures 10C–F. The time required to
reconstruct a 3D microstructure depends primarily on the
reconstruction resolution, and in this case total reconstruction
took around 5 h. The volume fraction of the austenite regions in
the reconstructed 3D microstructure is 0.4 and its average shape is
found to be 12, 46, and 105 voxels along the x-, y-, and z-axes. As can
be seen in Figure 10B, the final loss value is not zero and reaches a
minimum of 0.15 as a result of comparing the mean value of PC
scores in 10 slices in each direction with the reference PC scores. If
the number of slices in each direction used to define the loss function
is increased, the final value of loss should decrease. As illustrated in
Figure 10, once the loss minimization has been performed, the
physical parameters of the reference 3D microstructure including
the volume fraction of austenite regions and its mean phase shapes
are accurately reproduced in the reconstructed 3D microstructure.
The original values for the physical parameters of the reference 3D
microstructure are shown as dashed red lines in Figures 10C–F. In
these figures, the output of the differential evolution algorithm for
each iteration is shown and it corresponds to the smallest loss value
found up to that point during optimization. Although the
reconstructed microstructure in Figure 10A is not identical to the
reference microstructure in Figure 8A, they possess similar three-
dimensional physical parameters and are statistically similar in
terms of the first five PC scores. Hence, they can be regarded as
two realizations of the same microstructure, sharing similar
properties, but with different phase locations and shapes. Based
on these results, we conclude that the five PC scores accurately
reflect the important microstructural characteristics. Furthermore,

FIGURE 9
Variation of PC1 through PC5 scores in (A–E) as a function of area fraction for the dataset images and reference images. The gray points denote the
values obtained from all images in the dataset used to generate the PC basis vectors shown in Figure 6.
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each optimized 3D microstructure, with a loss value less than a
chosen threshold, would be statistically similar to the reference
microstructure in terms of the first five PC scores. As a result,
the proposed workflow can be used to generate large databases of
statistically similar synthetic microstructures.

3.2 Experimental microstructure

After validating the reconstruction workflow in Section 3.1, its
feasibility for use with experimental microstructures is explored in
this section. Based on three experimental images from orthogonal
surfaces of a metastable austenitic steel sample, the microstructure is
reconstructed in three dimensions. For this purpose, three surface
maps of this two-phase steel were produced with EBSD microscopy,
which are illustrated in Figure 11. These three orthogonal surface
maps were acquired from a deformed tensile specimen of AISI 304L
type austenitic stainless steel. The examined specimen was a round
tensile specimen with a diameter of 5 mm, which was plastically
deformed at room temperature until failure at 61 % elongation. The
chemical composition of the material is listed in Table 1.

To investigate the microstructure in three orthogonal directions,
three different samples were cut out of the fractured tensile
specimen, of which two represent views orthogonal to the tensile

axis and one represents the view parallel to the tensile axis. These
EBSD phase maps can be seen in Figure 11, in which the x-axis
corresponds to the tensile axis. The samples were embedded in a
resin bond and then metallographically prepared by several steps of
grinding and polishing with a diamond suspension. A final
preparation step of vibratory polishing with colloidal SiO2

suspension was applied for 12 h to receive a sufficient surface
quality for EBSD measurements. The EBSD measurements were
performed using a field emission gun SEMMIRA3, equipped with a
Nordlys Nano EBSD detector by Oxford Instruments. The SEM was
operated at an acceleration voltage of 20 kV and a working distance
of 17 mm with a 70° tilted sample holder. For each of the orthogonal
views, a two-dimensional map with a size of 145 × 190 µm was
recorded with a step size of approximately 0.13 µm. In the evaluation
of the measured data in the software AZtecHKL, the phases FCC,
BCC, and HCP iron were taken into account for austenite, α-
martensite, and ε- martensite, respectively. It is known that
metastable austenitic steels undergo a phase transformation from
austenite to ε- and/or α- martensite due to stress or plastic
deformation. The transformation is strongly dependent on local
phase stability and crystallographic orientation with respect to the
loading direction. This phase transformation is similar to the two-
way effect observed in shape memory alloys, except that it is
irreversible upon unloading, resulting in a stable martensitic

FIGURE 10
(A) Reconstructed 3D microstructure and the evolution of (B) loss function, (C) volume fraction, and phase shape along the (D) x-, (E) y-, and (F)
z-direction during optimization. The reconstructed 3D microstructure has a volume fraction of 0.4 and phase of 12, 46, and 105 voxels along the x-, y-,
and z-axes, respectively. The minimum value of the loss is 0.15. The red dashed lines in subfigures (C–F) indicates the parameter values that have been
used to generate the reference microstructure shown in Figure 8A.
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phase, at least when α- martensite is the transformation product
(Egels et al., 2018). In the EBSD maps of Figure 11, the colors yellow
and gray show α- martensite and austenite, respectively, while black
indicates areas of the microstructure that are not indexed. To ensure
compatibility with the synthetic dataset in Section 2, the resolution
of EBSD phase maps was reduced to a maximum of 200 pixels on
each side without losing important information in associated
correlation maps. This size was selected as a tradeoff between
good reconstructions and reasonable computational cost. Using
the presented workflow for microstructure reconstruction in

Figure 1, it is theoretically possible to reconstruct microstructures
of any resolution. However, due to the limited available
computational resources, the spatial resolution in reconstructed
microstructures is limited to approximately 0.95 µm. Figure 11
also depicts the auto-correlation maps for austenite obtained for
the rescaled experimental images, in which the central value
corresponds to the austenite area fraction. The set of correlation
maps depicted in Figure 11 represents how correlations should
generally look for cuts made anywhere along three orthogonal
planes of the experimental sample.

The resultant PC bases in Section 2.3 enable the transformation
of the correlation maps associated with the three EBSD maps into
the PC space. The 2-point spatial correlation maps used as input to
the PCA are standardized as a 101 × 101 array, with r � 0
corresponding to the element of (51, 51). Hence, a radius of
50 has is used as the cutoff for correlation maps. Figure 12
depicts the variation of PC1 through PC7 scores as a function of
area fraction for the dataset and EBSD phase maps. Here, the first

FIGURE 11
Original EBSD phase maps normal to the (A) x-, (B) y-, and (C) z-axes, the corresponding resized images, and the auto-correlation maps for the
austenite phase (gray phase) are shown from left to right. The area fraction of the austenite phase in resized images is 0.15 in (A), 0.13 in (B), and 0.17 in (C),
which corresponds to the maximum central value in each auto-correlation map. The original EBSD phase maps in (A), (B) and (C) have area fractions of
0.13, 0.11, and 0.15, respectively.

TABLE 1 Chemical composition of the examined material measured via optical
emission spectroscopy. Values are in wt. %.

Element C Si Mn Cr Ni Mo N Fe

wt. % 0.018 0.51 2.31 17.81 8.56 0.02 0.019 balance
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seven PC scores are selected as the fingerprint of each image. The
three-dimensional reconstruction task is then pursued according to
the workflow in Figure 1. To minimize the difference between the

experimental PC scores and those of the reconstructed
microstructure, the optimization algorithm alternates the
microstructure in three dimensions by assigning different values

FIGURE 12
Variation of PC1 through PC7 scores in (A–G) as a function of area fraction for the dataset images and EBSD phase maps.

FIGURE 13
(A) The final 3Dmicrostructure reconstructed from the experimental surface slices (see Figure 11), and the evolution of (B) loss function, (C) volume
fraction, and phase shapes along the (D) x-, (E) y-, and (F) z-direction during the optimization procedure. The reconstructed 3D microstructure has a
volume fraction of 0.15 and phase shapes of 63, 13, and 9 voxels along the x-, y-, and z-axes, respectively. The minimum value of the loss function is
0.085.
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of volume fraction and phase shape. When trying to reconstruct a
3D microstructure from just 2D images, there may be multiple
solutions or local optima for the optimization problem. To avoid
having the algorithm converge to a poor but locally optimal solution,
we set a limit on the optimization algorithm’s search space to
sensible solutions. Thus, (0, 1) is a reasonable search range for
volume fraction, and (1, 200) voxels in either direction is an
acceptable range for phase shape. Sometimes, though, better
results can be obtained by further restricting the solution to a
certain class of structures. For example, when reconstructing a
two-phase microstructure with elongated grains, we can impose
such a restriction on phase shape for reconstruction. However, this
strategy was not employed in this study and is recommended for
potential future research.

In Figure 13, the reconstructed 3D microstructure of the dual
phase material based on the three orthogonal EBSD maps shown in
Figure 11 is shown together with the convergence of the loss

function and the physical microstructure descriptors. In this
work, the effect of the number of 2D images in each direction on
the accuracy of the reconstruction has not been examined. As can be
seen in Figure 13B, the final loss value during optimization is not
zero and reaches a minimum of 0.85 as a result of comparing the
mean value of PC scores in 10 slices with the experimental PC scores
in each direction. The depicted reconstructed microstructure in
Figure 13A corresponds to the minimum loss value. This loss value
can be reduced if we increase the number of slices in each direction
used to define the loss function. The evolution of the physical
parameters including austenite volume fraction and its mean
shape along the x-, y-, and z-directions during the optimization
procedure are illustrated in Figures 13C–F. After convergence, the
volume fraction of austenite regions in the reconstructed 3D
microstructure is 0.15 and its average shape is 12, 46, and
105 voxels along the x-, y-, and z-axes. After the optimization
task, the mean value of PC1 through PC7 scores for ten slices

FIGURE 14
During optimization, the averaged value of PC1 through PC3 scores in slices normal to (A) x, (B) y-, and (C) z-directions approximates the
corresponding experimental values indicated by the dashed red lines.
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normal to the x-, y-, and z-, directions converges to the
corresponding experimental values. The evolutions of the first
three averaged PC scores are depicted in Figure 14 for each
direction. It is seen that, after convergence, the synthetic 3D
microstructure in Figure 13A accurately describes the
experimental system in terms of physical parameters including
volume fraction (here: 15% austenite) and phase shapes (here:
aspect ratio of 20:4:3 for austenite regions). Hence, the presented
approach ensures that the 3D reconstructed sample and the
associated 2D experimental EBSD maps are statistically equivalent.

4 Conclusion

In this paper, we propose a workflow to reconstruct synthetic
3D two-phase microstructures that are statistically equivalent
representations of a real microstructure using only 2D surface
maps from three orthogonal surfaces of the real material. To
demonstrate the applicability of the method, metastable
austenitic steels are characterized and reconstructed. Using
EBSD microscopy, three maps from orthogonal surfaces of the
microstructure of this two-phase steel are produced. The
reconstruction method is based on an inverse procedure to first
generate synthetic 3D microstructures using initial parameters,
and then to compare the resulting artificial surface maps to the
corresponding real ones. In an iterative procedure using
differential evolution optimization approach, the parameters of
this microstructure generator are optimized until the best possible
agreement between the surface maps of synthetic and real
microstructures is obtained. As a side product, the physical or
geometrical descriptors of the real microstructure, as represented
by the converged input parameters of the microstructure
generator, are determined. The primary challenge in
minimizing discrepancies between real and synthetic surface
maps lies in defining a proper loss function that quantifies
differences between surface maps in a physically sound, yet
numerically efficient way. In this study, we introduce a new
method to uniquely describe 2D microstructure maps using a
minimal number of descriptors derived from 2-point statistics and
principal component analysis. These descriptors can be seen as
fingerprints of the microstructure and are used to compare the real
and synthetic surface maps in a quantitative way resulting in a loss
function that is sensitive to changes in the statistical description of
microstructural features. It is worth noting that the presented
workflow is also applicable for reconstructing other multiphase
materials, using 2-point statistics for microstructure quantification

and principal component analysis for the low-dimensional
representation.
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