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In this paper, a Wav2Vec2.0 neural network based on an attention mechanism is
proposed to locate defects in array ultrasonic testing signals. This method does
not require knowledge of the a priori condition of the sample sound velocity or the
feature extraction of ultrasonic scattering signals. First, an array piezoelectric
ultrasonic testing system is used to detect a signal through hole defects at different
positions in the plate structure. Then, three different neural networks—1D-CNN,
Muti-Transformer, and Wav2Vec2.0—are used to locate the defects in the
collected ultrasonic testing data. The performance of the network is verified
with the data set collected through finite element simulation and the
experimental system, and the identification accuracy and the calculation
efficiency of different networks are compared and analyzed. To provide a
solution for the poor balance of the experimental data set and the weak noise
resistance of the simulation data set, a data set expansion method based on time
domain transformation technology is proposed. The research results show that,
the positioning accuracy of the Wav2Vec2.0 neural network proposed in this
article is 98.46%, and the positioning accuracy is superior to Muti Transformer and
ID-CNN.
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1 Introduction

With the sustained and rapid development of the national economy, industries such as
aerospace, petrochemical, and transportation have made significant progress. Thin plates, as
a special structure, are widely used in various industries (Lu et al., 2016). As an active
monitoring technology, structural health monitoring (SHM) based on Lamb waves can be
used to realize the rapid and large-scale nondestructive testing of plates (Li et al., 2019). SHM
often uses piezoelectric ceramics as an exciter to excite Lamb waves on the surface of a
monitored structure and uses piezoelectric ceramics as sensors to detect and receive defect
response signals (Stepinski and Ambrozinski, 2013). In recent years, array imaging methods
based on ultrasound guided waves have been widely applied in the field of Structural Health
Monitoring (SHM)/Non-Destructive Testing (NDT), and various array imaging algorithms
have been developed; Ma et al. (2020), (2022) analyzed the time-reversal (TR) mirrors in
acoustic focusing and imaging. However, existing array imaging methods are difficult to
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effectively extract weak scattering information of damage from array
sensing data, and cannot accurately characterize the location, degree,
and type of damage.

With the development of artificial intelligence, deep learning
provides a new tool in piezoelectric ultrasonic guided wave sensing
signal characterization, feature extraction, and anomaly detection
(Rizvi and Abbas, 2021; Rautela et al., 2021; Sikdar and Pal, 2021).
Since the 1970s, researchers have been using neural networks to
identify defects in ultrasonic testing data, and this research mainly
focuses on two aspects. On the one hand, the method of feature
extraction and shallow neural network is used to classify the
detection data. On the other hand, deep learning methods are
directly used, and the input data is mainly manually extracted
feature values. In recent years, deep learning algorithms have
gradually developed to automatically extract features. Shi et al.
(2016) used a wavelet transform to extract the feature information
from an ultrasonic A-scan signal and classified and identified the
defect through a deep neural network (DNN), with an increased
accuracy of 21.66%. Shao et al. (2020) proposed a defect-type
recognition method based on a VGG16 convolution neural
network to directly identify the original signal of array
ultrasonic testing and proved that a two-dimensional
convolution neural network had higher recognition accuracy.
Meng et al., (2017) proposed the use of a convolutional neural
network (CNN) to classify and train the wavelet features of
different layers through hierarchical wavelet transform to
achieve the defect classification of carbon fiber materials, with
an accuracy rate of 98.15%. He et al. (2014) used the electro-
mechanical impedance (EMI) technology of a PZT unit to measure
impedance spectrum and used a backpropagation (BP) neural
network to quantify the health status of a truss structure. The
results showed that the developed neural network model can not
only determine the position of a loose rod but can also quantify the
looseness level (He et al., 2014). Munir et al., (2020) used a CNN
model to classify ultrasonic signals after denoising through
variational autoencoders (VAEs). Drai et al., (2002) extracted
the eigenvalues of the echo signals of welding defects through
the time domain, frequency domain and discrete wavelet, and used
K-nearest neighbor (KNN) clustering and artificial neural
networks (ANNs) for classification and recognition. Khumaidi
et al., (2017) proposed the use of ultrasonic inspection images of
welding surface defects as input and used a CNN to classify
different types of welding defects, with an accuracy rate of
95.83%. Caputo et al., (2021) and others used finite elements
and experimental methods to generate ultrasonic guided wave
scattering signals at different positions in an aluminum plate, and
they obtained the complex mapping relationship between guided
wave scattering signals and damage locations through an artificial
neural network. This achieved the accurate location of damage in
the aluminum plate and achieved good results in the location of
damage in a carbon fiber-reinforced polymer composite plate.
Ewald et al., (2021) and others simulated ultrasonic Lamb wave
signals in aviation composite materials collected by multiple
piezoelectric sensors using the finite element method and
combined the signals collected by multiple sensors into a group
of mixed time-frequency maps through a normalized short-time
Fourier transform. A convolutional neural network was used to
extract the abstract features of the mixed time-frequency image,

and the mapping relationship between the abstract features and the
damage location was established to achieve accurate damage
identification. Su et al. (2019) collected the ultrasonic Lamb
wave scattering signals of different types of defects in composite
materials through experiments, obtained the amplitude frequency
characteristics of the scattering signal using a fast Fourier
transform, and established a complex mapping relationship
between the amplitude frequency characteristics of the
scattering signal and the damage location through the depth
neural network to achieve accurate defect identification.

In summary, in recent years, intelligent structural damage
assessment methods based on deep learning algorithms have
been able to achieve damage location determination (Chen and
Liu, 2018; Li, 2019), but their feature extractor structure only focuses
on local features and ignores the global features of the signal, failing
to fully utilize the correlation information between channels of
multi-channel piezoelectric array signals. In response to the
above issues, this article applies the Wav2Vec2.0 neural network
to the raw ultrasound signal data collected by array probes. The
array data is used as the input of the Wav2Vec2.0 network, and the
Transformer and product quantization structural components are
used to extract general features of the ultrasound detection data. The
extracted general features are applied to downstream defect
localization tasks, achieving an improvement in recognition
accuracy on larger datasets.

2 Damage location method based on
Wav2Vec2.0 neural network

2.1 Wav2Vec2.0 neural network

Wav2vec 2.0 is discussed in a paper published by the Facebook
AI Lab in 2020 (Alexei et al., 2020). Through unsupervised training,
this model can enable the network to map the original voice samples
to a feature space more representative of data features. The use of the
calculated feature vector to replace traditional features such as Mel-
scaleFrequency Cepstral Coefficients (MFCC) can improve
subsequent tasks such as speech recognition or voice event
detection. The network structure of the Wav2Vec2.0 pre-training
model is shown in Figure 1.

The Wav2Vec2.0 pre-training model includes a convolutional
neural network for coding and a context network based on
Transformer (Sadhu et al., 2021). The convolution neural
network maps the original input audio signal to the hidden space
to obtain the hidden variable Z. The hidden variable Z is mapped to
the quantized hidden variable Q through the quantization module
and then some positions of the random mask are input to the
Transformers network to obtain the context feature vector C.
Wav2Vec2.0 uses the comparative learning method to calculate
the loss for the masked positions to carry out self-supervised pre-
training. For the context feature vector ct generated by each masked
position of the model, the positive example is the quantization
hidden variable qt generated by the quantization module at the same
position, and the negative example is the quantization hidden
variable q̂ generated by the quantization module at other masked
positions in the current sentence. The formula of the loss function of
comparative learning is as follows:
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The formula of the loss function of comparative learning is as follows:

Lm � −log exp sim ct, qt/k( )( )
∑q̂∈Qt

exp sim ct, qt/k( )( ), (1)

where sim uses cosine similarity.
In addition to the loss function of comparative learning Lm,

Wav2vec 2.0 uses the diversity loss function.

Ld � 1
GV

∑G

g�1 −H �pg( ), (2)

By maximizing the entropy value of the probability distribution
of the selecting code in each codebook group in the quantization
module, the model can select each vector in the codebook more
evenly to avoid the problem of pattern collapse. The final loss
function is L = Lm + αLd.

After building the model of wav2vec 2.0, this paper uses wav2vec
2.0 as a feature extractor, applies Transformer and quantization
module components to extract the general features of ultrasonic
testing data, and then adds a layer of randomly initialized linear

FIGURE 1
Wav2Vec2.0 network structure.

FIGURE 2
Flowchart of macroscopic damage location system of the thin plate structure.

Frontiers in Materials frontiersin.org03

Qian et al. 10.3389/fmats.2023.1212909

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1212909


layer in the network structure as a Linear classifier to achieve
accurate damage identification.

2.2 Damage location method based on
Wav2Vec2.0

The flowchart of a macroscopic damage location system for a
thin plate structure proposed in this paper is shown in Figure 2. The
deep network feature extractionmethod combining convolution and
the attention mechanism used to determine the macroscopic
damage location of the thin plate structure through the
Wave2Vec2 model. The specific process is as follows:

Step 1. The Lamb wave response signal is collected.

Step 2. Signal filtering removes the noise signals and
normalizes them.

Step 3. The Wave2Vec2 model is trained, and the trained model is
obtained.

Step 4. The test data are processed, including filtering and
normalization; Steps 5 and 6: The test data are put
back into the training model, and the damage results
are obtained and analyzed.

3 Experiment setup

3.1 Datasets

In this study, due to the lack of a publicly available database on
ultrasonic non-destructive testing data and the difficulty in
obtaining a large amount of measured data in experiments,
numerical simulations and experiments were conducted to collect
data on aluminum plates with single circular through-hole damage.

3.1.1 Collection of simulation datasets
In order to understand the interaction between Lamb waves and

damage, a numerical analysis model for ultrasonic guided wave
excitation/sensing in aluminum plate structures with typical damage
was established based on commercial finite element software PZflex.
The sound field of ultrasonic guided waves was simulated, as shown
in Figure 3. The simulated test sample is an isotropic aluminum
plate, and its model parameters are shown in Table 1. In order to
excite a single S0 mode ultrasonic guided wave, this article uses a
customized 5-cycle sine wave with Gaussian Hanning window in
MATLAB as the excitation signal, and the excitation frequency is
selected as 200 kHz (Zhu et al., 2023). By analyzing the excitation
signal using MATLAB, the normalized time-domain and frequency
signals are shown in Figure 4.

This article divides the aluminum plate into 64 areas, each
with a size of 5 cm × 5 cm, as shown in Figure 5. Simulate

FIGURE 3
Finite element model and process simulation of ultrasonic signal propagation in the model. (A) The finite element model; (B) Ultrasonic signal
propagation.

FIGURE 4
Ultrasonic excitation signal: (A) Time domain signal; (B) Spectrum.
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symmetrical open cracks at different locations by drilling
through holes with a diameter of 1 cm in different areas
(Zhang et al., 2019). Similarly, the aluminum plate can be
divided into 441 areas, each with a size of 2 cm × 2 cm and
collect ultrasonic sensor signals through simulation. The sensor
positions are shown in Table 2.

3.1.2 Experimental data collection
The size of the aluminum plate is 600 mm × 600 mm × 2 mm.

This article pasted 8 piezoelectric elements on an aluminum plate
to form a linear array (Liu et al., 2016). The 8 piezoelectric
elements in the linear array were PZT-5 piezoelectric sheets
produced by Wuxi Haiying Company, with a diameter of
10 mm and a thickness of 0.3 mm. The center distance between
adjacent two piezoelectric elements was 45 mm. The excitation
signal with a center frequency of 200 kHz is generated by the JPR-
600C ultrasonic generator. The excitation signal is loaded onto the
designated channel piezoelectric plate through the MUX-16 multi-
channel conversion switch, and the ultrasonic guided wave data
propagated in the aluminum plate is received through the
piezoelectric plate. The sampling frequency of the system is
2 MHz.The specific hardware models are shown in Table 3. The
experimental device and the photos of the ultrasonic array data
acquisition system are shown in Figure 6. The sensor and damage
location of the experimental system are consistent with the
simulation system and will not be repeated here.

3.2 Preprocessing and database settings

In the experiment, due to the internal noise and environmental
interference of the system, noise is inevitably introduced. The noise
type is white noise. “Db5” wavelets and four-scale decompositions
are used to eliminate noise (Tiwari et al., 2017). Figure 7 shows the
results of wavelet decomposition denoising for the received
ultrasonic guided wave signal. During the excitation signal
triggering process, each piezoelectric element in the piezoelectric
array takes turns as a driver. When one of the piezoelectric elements
acts as a driver, the other piezoelectric elements act as sensors.
Figure 8 shows signals received by all sensors when the first sensor is
the excitation source.

To eliminate the false signal generated by the boundary
reflection wave, the filtered signal needs to be windowed (Lu and
LiSong, 2016). The signal after adding the boundary reflection
coefficient to the signal is expressed as:

SwTSib t( ) � wi t( )SjTSib t( ) or SwTSib t( ) � wi t( )SjTSi t( ) (3)

It can be seen from the above formula that when the
boundary reflection coefficient is added to the signal received
by the sensor, all signals before the first boundary reflection wave
reaches the ith sensor are completely retained, and the
amplitudes of all signals after the first boundary reflection
wave reaches the ith sensor are attenuated in exponential

TABLE 1 Finite element Model parameters.

Model
size (mm3)

Density
(kg/m3)

Poisson’s
ratio

Young
modulus (GPa)

600 × 600 × 2 2690 0.35 69

FIGURE 5
Schematic diagram of sensor and damage location.

TABLE 2 Sensor positions.

Sensor number Positions (Unit: mm)

1 (145,75)

2 (190,75)

3 (235,75)

4 (280,75)

5 (325,75)

6 (370,75)

7 (415,75)

8 (460,75)

TABLE 3 Main hardware parameters.

Serial number Name Model Number

1 PZT-5 200 kHz 8

2 BNC Cable General Cable 8

3 Ultrasonic
signal

generator

JPR-600C 1

4 Channel
conversion
switch

MUX-16 1

5 Industrial
notebook

CF-54G 1
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mode. Figure 9 shows that the boundary-reflected wave signal
attenuates the original signal.

The good training of neural networks requires a large amount
of data as support, and the array ultrasound guided wave signal
data required in this article can be obtained through numerical
simulation or experiments. The signal obtained from numerical
simulation has high accuracy, but it takes a long time; The
efficiency of experimental methods is relatively higher, but they
require many experimental samples, have high costs, and are prone
to environmental noise interference, resulting in relatively poor
results.

There are two ways to enhance a data set. The first way is to
collect the ultrasonic nondestructive testing data by changing the
size of the finite element divided by the program in the finite element
simulation process for the finite element simulation data set, as
shown in Figure 10. A certain amount of 3 dB and −3 dB Gaussian
white noise is added to the collected simulation data set, as shown in
Figure 11. The second method involves translating the signal up and
down for the experimental data set and doubling the number of
samples, as shown in Figure 12.

To summarize, 192 and 1,323 groups of data are collected for
simulation defects by changing the size of the finite element and
expanding to 384 and 2,646 groups through the above method,
totaling 576 and 3,969 groups of data. For the experimental data, six
experiments are carried out at each defect location. Overall,
384 groups of experimental data are collected from 64 groups of
defect locations and are amplified to 768 groups by the amplification
method, a total of 896 groups of experimental data. The number of
samples after amplification is shown in Table 4. The dataset names
and sample sizes used in this experiment are shown in Table 5. The
dataset used in each experimental scheme is allocated to the neural
network for experimentation, with 70% of the dataset being the
training set, 20% being the testing set, and 10% being the
validation set.

3.3 Models and schemes for comparison
with this article

In order to compare and analyze the performance of the
proposed model, this article compares the training effects with
the following two models. The experimental environment used in
this study is the Ubuntu 18.04 system, which uses a GPU NVIDIA

FIGURE 6
Experimental device of ultrasonic array data acquisition system.

FIGURE 7
Schematic diagram of wavelet reconstruction signals: (A)
Original signals; (B) Signals after wavelet reconstruction.
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GeForce RTX 3090. Its graphics cardmemory is 24 GB, and the CPU
model is Intel (R) Xeon (R) Platinum 8157 CPU @ 2.30 GHz. The
programming language is Python 3.8, and the in-depth learning
model is built using Python 1.10.

3.3.1 1D-CNN
The 1D-CNN model used for comparing experimental results is

consistent with the convolutional neural network used for encoding
in the Wave2vec2.0 model proposed in this paper. In the
experiment, the 1D-CNN model is set with a seven-layer CNN,
the step size is (5,2,2,2,2,2,2,2), the convolution kernel width is
(10,3,3,3,3,2,2), the parameters of the feedforward neural network
are set to 512, and the weight attenuation is 0.0001. The model uses
the Adam optimizer, as shown in Figure 13.

3.3.2 Muti-Transformer
Following the approach of reference (Sun et al., 2021), the context

network based on Transformer in the Wave2Vec2.0 neural network

proposed in this paper is transformed into aMuti-Transformermodel
that adapts tomulti-channel signals. In the experiment, the number of
attention modules in the Muti-Transformer is set to three layers, the
number of attention heads in each layer is eight, the dropout is set to
0.3, the parameter of the feedforward neural network is set to 512, and
the weight attenuation is 0.0001. The model uses the Adam optimizer.
The size of pooled cores is 32 × 32 and 8 × 8. The size of the
convolution core is 64 × 64, as shown in Figure 14.

4 Results and analysis

4.1 Wav2Vec2.0 neural network training and
result analysis

Considering the experimental requirements of the defect guided
wave positioning model based on the Wav2vec2.0 neural network,
the open-source deep learning framework Pytorch is selected as the

FIGURE 8
Signals received by all sensors when the first sensor is the excitation source: (A) Original signals; (B) Scattering signals.

FIGURE 9
Effect of boundary reflection coefficient on the original signals: (A) No reflection coefficient is added; (B) The reflection coefficient is added.
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main framework when conducting experiments related to s deep
learning. The specific experimental environment and computer
configuration are shown in Table 6 below:

In this paper, relative entropy is chosen as the optimized loss
function. Relative entropy (KL divergence), also known as cross
entropy, is used to represent the difference between two probability
distributions. When two random distributions are the same, their

relative entropy is zero. When the difference between two random
distributions increases, their relative entropy also increases.

D p ‖ q( ) � ∑n
i�1
p x( )logp x( )

q x( ) (4)

Expanding relative entropy yields Eq. 5:

FIGURE 10
Ultrasonic NDT data in simulation model: (A) [0: 1,500]; (B) [900: 1,500].

FIGURE 11
Simulation data plus noise.
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DKL p ‖ q( ) � ∑n
i�1
p xi( )log q xi( )( ) −∑n

i�1
p xi( )log q xi( )( )

� −∑n
i�1
p xi( )log q xi( )( )⎡⎣ ⎤⎦ − −∑n

i�1
p xi( )log q xi( )( )⎡⎣ ⎤⎦

� H p, q( ) −H p( ) (5)

In order to evaluate the model, this article uses the E-Defect64-
enhance dataset provided in Section 3.2 as deep learning
experimental data and calculates the accuracy and loss values of
the model. From Figures 15A, B, it can be seen that in the training
set, when epochs reach the 600th time, the accuracy rate is the
highest, and the accuracy rate of the training samples reaches 100%.

For the test set, place the test set data into the trained model,
and the model testing iteration results are shown in Figures 15C, D

The results obtained from damage localization and quantitative
identification are shown in Figure 16 When epochs reach the end,
the accuracy is the highest and the error is the smallest. At this
point, the accuracy rate of the training sample reaches 98.46%.
From Figure 16, it can be seen that among the 64 types of test
samples, only one damage location was identified incorrectly,
while the other samples were correctly tested with accuracy rate
of 98.46%. The misidentified samples identified the defect at
47 as 40.

4.2 Analysis of deep learning network
models

4.2.1 Network model noise resistance
To verify the noise resistance of the neural network model, using

the S-Defect64-orgin and E-Defect64-orgin datasets respectively,
different network models were used for training, with
1,200 iterations. The positioning accuracy is shown in Table 7.
Among them, the positioning accuracy of 1D-CNN, Muti

FIGURE 12
Expansion of experimental data set: (A) [0: 1,000]; (B) [80: 360].

TABLE 4 Number of samples after amplification.

Data type Simulation Experiment

Defect category 64 441 64

Original collection 192 1,323 384

Original collection 384 2,646 768

Total 576 3,969 896

TABLE 5 Dataset and sample size.

Data set Defect category Number

S-Defect64-orgin Original Simulation 64 types of defects 192

S-Defect441-orgin Original Simulation 441 types of defects 1,323

E-Defect64-orgin Original Experiment 64 types of defects 384

S-Defect64-enhance Enhanced Simulation 64 types of defects 576

S-Defect441-enhance Enhanced Simulation 441 types of defects 3,969

E-Defect64-enhance Enhanced Experiment 441 types of defects 896

FIGURE 13
1D-CNN network structure and parameters.
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Transformer, and Wav2vec2.0 neural network models in the
S-Defect64-orgin dataset is 100%. The positioning accuracy in
the E-Defect64-orgin dataset is 87.5%, 92.78%, and 96.87%,

respectively. It can be seen that the positioning accuracy of the
model in the simulation dataset has significantly improved
compared to the experimental dataset, because the noise of the
ultrasonic guided wave signal collected in the experiment is
significantly higher than that in the simulation dataset. Table 7
shows that the high-precision detection network proposed in this
paper has strong noise resistance and excellent robustness for
datasets with different signal-to-noise ratios.

4.2.2 Accuracy of network model positioning
results

To verify the accuracy of the neural network model in
identifying defect locations, different network models were
trained using the S-Defect64-orgin and S-Defect441-orgin
datasets, with 1,200 iterations. The scale of defects corresponding
to different datasets varies. The defect localization scale of the
S-Defect64-orgin dataset is 5 cm, while the defect localization
scale of the S-Defect441-orgin dataset is 2 cm. The positioning
accuracy of different neural network models is shown in Table 8.
Among them, the positioning accuracy of 1D-CNN, Muti
Transformer, and Wav2vec2.0 neural network models in the
S-Defect64-orgin dataset is 100%. The positioning accuracy in
the S-Defect441-orgin dataset is 89.84%, 96.09%, and 98.46%,
respectively. It can be seen that the positioning accuracy of the
three models in the S-Defect64-orgin dataset is significantly
improved compared to the S-Defect441-org dataset. This is
because the signal category in the S-Defect441-org dataset is
significantly higher than that in the S-Defect64-orgin dataset.
The three models can fit the function well at 1,200 iterations, but
the fitting ability of the model in the S-Defect441-org dataset did
not reach its optimal level. Table 8 also proves that the
Wav2vec2.0 neural network has higher performance in
identifying defect locations with higher accuracy.

FIGURE 14
Muti-Transformer network structure and parameters.

FIGURE 15
Model iteration results. (A) Training accuracy curve; (B) Training
loss curve; (C) Test accuracy curve; (D) Test loss curve.

FIGURE 16
Results from damage location and quantitative identification.
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4.2.3 The generalization ability of neural networks
To verify the generalization ability of neural networks for

different datasets, using the S-Defect64-orgin, E-Defect64-orgin
datasets, and the enhanced S-Defect64-enhancer, E-Defect64-
enhancer datasets, different network models were used for
training, with 1,200 iterations. The positioning accuracy results
are shown in Table 9. The positioning accuracy of the 1D-CNN,
Muti Transformer, and Wav2Vec2.0 models in the S-Defect64-
enhance dataset is 100%. The positioning accuracy of the 1D-
CNN, Muti Transformer, and Wav2Vec2.0 models in the
E-Defect64-enhanc dataset is 90.62%, 95.31%, and 98.46%,
respectively. It can be seen that the data augmentation method
has significantly improved the positioning accuracy of various
network structures. Similarly, this also indicates that the
wave2vec2.0 neural network has better generalization ability.

5 Conclusion

In this paper, a method based on the Wav2Vec2.0 neural
network is proposed to directly locate defects in array ultrasonic
testing signals. This method does not require knowledge of the a
priori condition of the sample sound velocity or the feature
extraction of ultrasonic scattering signals. The study draws the
following conclusion:

(1) The positioning accuracy of the Wav2Vec2.0 neural network
proposed in this article is 98.46%, and the positioning accuracy
is superior to Muti-Transformer and ID-CNN.

(2) A metal plate structure piezoelectric array ultrasonic guided wave
data acquisition scheme based on numerical simulation and on-
site experiments was proposed, and the obtained piezoelectric

TABLE 7 Effect of experimental data and simulation data on recognition accuracy.

Data set ID-CNN (%) Muti-transformer (%) Wav2Vec2.0 (%)

S-Defect64-orgin 100 100 100

E-Defect64-orgin 87.50 92.38 96.87

TABLE 8 Impact of dataset size on recognition accuracy.

Data set ID_CNN (%) Muti-transformer (%) Wav2Vec2.0 (%)

S_Defect64_orgin 100 100 100

S_Defect441_orgin 89.84 96.09 98.46

TABLE 9 Effect of data enhancement methods on recognition accuracy.

Data set ID_CNN (%) Muti-transformer (%) Wav2Vec2.0 (%)

S_Defect64_orgin 93.75 100 100

S_Defect64_enhance 100 100 100

E_Defect64_orgin 87.50 92.38 96.87

E_Defect64_enhance 90.62 95.31 98.46

TABLE 6 Configuration of computer deep learning environment used in the experiment.

CPU Intel(R) Xeon(R)Platinum 8260C CPU @ 2.30 GHz

GPU NVIDIA GeForce RTX 3090

Memory capacity 86 GB

Graphics memory capacity 24 GB

Operating system Ubuntu 18.04

CUDA version 11.3

CuDNN version 8

Python version 3.8

Pytorch version 1.10
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array ultrasonic guided wave data processing method was used to
produce a piezoelectric array ultrasonic guided wave dataset.

(3) The analysis of the impact on the positioning accuracy of deep
learning models shows that:
1) The Wav2vec2.0 neural network has stronger fitting ability

than other networks in experimental datasets, indicating that
the method proposed in this paper has stronger robustness

2) The Wav2vec2.0 neural network has stronger fitting ability
in larger datasets, which means it has higher recognition
performance for smaller scale defects.

3) The use of data augmentation methods can improve model
performance. The Wav2vec2.0 neural network has better
recognition performance in enhanced datasets and stronger
generalization ability.
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