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The flexspline and flexible bearing constitute a critical contact pair in a harmonic
drive system, and their torsional stiffness has a significant impact on the
performance characteristics manifested by the harmonic drive. In this study, a
micro scale three-dimensional fractal model was combined with a macro scale
finite element simulation method to establish an equivalent torsional stiffness
model for the flexspline-flexible bearing contact pair (FS-FB contact pair), which
enables the theoretical prediction of the torsional stiffness of this contact pair. A
torsional stiffness testing platform was constructed for a harmonic drive, and the
consistency between the experimental results of the torsional stiffness curve and
the theoretical predictions validates the effectiveness of the proposed model.
The influences of torque, installation eccentricity, and deformation coefficient
on the torsional stiffness of the FS-FB contact pair were also discussed. The
results indicate that the torsional stiffness of the FS-FB contact pair increases
nonlinearly with an increase in torque. On the other hand, the torsional stiffness
of the FS-FB contact pair decreases with an increase in installation eccentricity,
and increases before subsequently decreasing with an increase in deformation
coefficient. Moreover, as torque increases, the impact of installation eccentricity
and deformation coefficient on the torsional stiffness diminishes. This article
provides a theoretical reference for the optimization design and performance
enhancement of harmonic drives.

KEYWORDS

harmonic drive, contact pair, fractal theory, flexspline-flexible bearing, macromicro
scale modeling, torsional stiffness

1 Introduction

Harmonic drives have been widely used in fields such as robotics, aerospace, and
precision medical equipment due to their unique structure and performance advantages
(Pham and Ahn, 2018; Cai et al., 2019; Li et al., 2020). As the core component of a harmonic
drive, the flexspline-flexible bearing (FS-FB) contact pair features a compact structure and
strong adaptive deformation, which makes it ideal for precision transmission applications
with high accuracy, high load, and high reduction ratio. Due to the nonlinear deformation
characteristics of the flexspline and flexible bearing, the torsional stiffness of the FS-FB
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contact pair exhibits a complex nonlinear variation with increasing
torque. This nonlinear torsional stiffness directly impacts the
transmission accuracy and stability of the harmonic drive (Hu et al.,
2021). The modeling and analyzing the torsional stiffness of the FS-
FB system is crucial for researching the transmission performance
of harmonic drives.

The finite element method (FEM) is a widely used approach to
analyze the contact characteristics of gears (Zeng and Tan, 2013;
Lin et al., 2022; Wang et al., 2022). Cai W. et al. (2019) proposed a
two-stage nutation drive mechanism of double circular arc bevel
gears. They analyzed the dynamic characteristics of the mechanism
employing the FEM and validated the feasibility of the proposed
transmission mechanism through experiments. Li et al. (2011)
conducted finite element contact analysis on rectangular asperities
of rough surfaces, and studied the effects of uneven distribution
of contact stress and local plastic deformation on normal contact
stiffness.They obtained the normal and tangential interfacial contact
stiffness under different loading conditions. Tang and Pu (2011)
constructed a model of a five-teeth spiral bevel gear using the
FEM. By loaded tooth contact analysis, they calculated the normal
contact force and comprehensive elastic deformation, obtained
the single and multiple teeth meshing stiffness, and analyzed the
effect of different loads on the stiffness curve. Lin et al. (2020)
have derived the tooth profile equations of internal and external
spiral bevel gears based on double circular-arc spiral bevel gears,
and established the tooth surface contact trajectory equation
through the meshing equation and coordinate transformation.
They conducted finite element loading contact simulation on
the double circular-arc gears with different potential error
values.

From a macroscopic perspective, the machining surface of a
mechanical part is smooth, while from a microscopic perspective,
the surface is rough with many irregularities, meaning that the
surface morphology of the mechanical part is rough. The contact
between rough surfaces is characterized by the interaction of
asperities (Zhai et al., 2016; Xiao et al., 2019; Chen et al., 2022).
Statistical and fractal contact models have been widely used to solve
contact problems on rough surfaces. Greenwood and Williamson
(1966) proposed a hypothesis that the curvature radius of the
asperities on rough surfaces is the same and the height follows
a Gaussian distribution, and based on this, they constructed
the statistical rough surface GW contact model. However, the
GW model only considers the elastic deformation stage of the
asperities. Zhao et al. (2000) established an elastic-plastic asperity
microcontact model, namely, the Z-MC contact model. The ZMC
model incorporates the transitional regime from elastic deformation
to fully plastic flow of the asperity into consideration. Kogut
and Etsion. (2002); Kogut and Etsion. (2003) solved the elastic-
plastic contact problem of a rigid flat pressing against a sphere
through finite element simulation and constructed the KE elastic-
plastic model, which extends the classical Hertz solution to a fully
plastic contact area. However, contact models based on statistical
parameters do not provide unique characterization and analysis
results for the given rough surfaces. Based on the fractal theory and
the Weierstrass-Mandelbrot function (Majumdar and Tien, 1990)
characterizing the two-dimensional profile features of isotropic
rough surfaces, Majumdar and Bhushan (1991) developed the MB
fractal contact model for rough surfaces. It is noteworthy that the

MB model indicates that smaller contact spots tend to undergo
plastic deformation, while larger contact spots undergo elastic
deformation. This prediction is in stark contrast to the classical
theories of contact mechanics, which predicts the opposite. In the
MB model, the deformation of a single asperity is a complete
deformation that is independent of the applied load, and the
asperity peak curvature radius is a parameter related to the contact
area rather than a constant value. Later, Morag and Etsion (2006)
demonstrated that the deformation process of a single asperity on
a fractal surface always starts from an elastic state and eventually
undergoes an elastic-plastic transition. Liou and Lin (2010) believed
that the behaves of a fractal asperity conforms to classical contact
mechanics. By combining the generalized Weierstrass-Mandelbrot
function with the radius-vector function method, the formulas
for the fractal surface profiles of sphere-based and cylinder-based
particles were derived. A microcontact model, considering sphere-
based and cylinder-based fractal bodies in contact with a smooth
rigid flat surface was established, and the real contact area and the
contact load were obtained. Research on contact stiffness of joint
surfaces has also been developed. Jiang et al. (2010) introduced a
contact stiffness model for investigating rough surface contacts in
machined plane joints, utilizing fractal geometry and accounting for
elastic-plastic deformation and size-dependent contact stiffness.The
model was validated through theoretical analysis and experimental
testing and found to be accurate on cast iron specimens. Tian et al.
(2017) modeled the normal contact stiffness of the slow sliding
surface in machine tool ground foot, and discussed the influence of
surface parameters on the surface dynamic characteristics. Liao et al.
(2017) put forward a method for identifying the contact stiffness
and contact force of shrink-fit tool-holder joint based on Hertz
theory and fractal theory, considering the friction factor. They
analyzed the effects of radial interference, tool insertion length, and
rotation speed on the contact behaviors between the shrink-fit tool-
holder connection. Li et al. (2020); Li et al. (2021) considered the
influence of bulk substrate deformation caused by the interaction
between the asperity and the bulk substrate, and established a
contact stiffness model of the joint surface with continuous and
smooth characteristics by using Hermite polynomial interpolation
functions.

Previous researchers have made valuable contributions to the
modeling and analysis of mechanical part contact, providing deeper
insights into the performance of mechanical surfaces. However,
there is currently a lack of research on macro-microscale combined
modeling of mechanical surfaces. The amalgamation of these
techniques holds promise in revealing the underlying characteristics
of mechanical surface properties more accurately.

This article is centered on the investigation of the torsional
stiffness of the FS-FB contact pair in a harmonic drive. The process
flowchart is shown in Figure 1. The rest of this article is organized
as follows. In Section 2, a torsional stiffness model of the FS-FB
contact pair is established based on the combination of fractal theory
and FEM. In Section 3, the effectiveness of the proposed model is
verified through the torsional stiffness test of the harmonic drive.
The effects of torque, installation eccentricity, and deformation
coefficient on the torsional stiffness of the FS-FB contact pair
are discussed. Finally, the main conclusions are summarized in
Section 4. The torsional stiffness modeling and prediction method
of the FS-FB contact pair proposed in this article provides an
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FIGURE 1
Flowchart of the article.

FIGURE 2
Structure diagram of a CD-14–100 model harmonic drive.

important reference for optimizing the design of harmonic drives
and improving transmission stiffness and accuracy.

2 Modeling of torsional stiffness of
flexspline-flexible bearing contact

The torsional stiffness of the FS-FB contact pair is of paramount
importance to the overall performance of the harmonic drivesystem.

The structural diagram of the CD-14–100 harmonic drive prototype
is presented in Figure 2, which exhibits an outer diameter of 50 mm
and has a rated torque output of 5Nm. The flexspline is a flexible
thin-walled cylindrical part with external teeth, and its inner wall
is connected to the wave generator through a flexible bearing.
The wave generator, equipped with the flexible bearing on the
outside, is a camwith an elliptical cross-section that causes the outer
ring of the flexible bearing to be supported and deformed into a
concentric ellipse. In the working state, the contact surface between
the flexspline and the flexible bearing is an annular ellipticalcone
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surface. The contact status between the inner wall of the flexspline
and the outer ring of the flexible bearing directly affects the torsional
stiffness of the contact pair. However, the torsional stiffness of
the FS-FB contact pair can also be influenced by various factors
such as operating conditions (e.g., load torque), design parameters
(e.g., deformation coefficient), assembly errors (e.g., installation
eccentricity), and exhibits nonlinear characteristics. It is essential
to create the torsional stiffness model for the FS-FB contact pair to
improve the overall torsional stiffness of the harmonic drive.

2.1 Three-dimensional fractal modeling of
joint surface

The mechanical joint surfaces demonstrate continuous, non-
differentiable, and self-affine fractal characteristics (Yan and
Komvopoulos, 1998). These features conform to the three-
dimensional Weierstrass-Mandelbrot (W-M) function (Ji et al.,
2013), which is defined as follows:

z(x,y) = L(G
L
)
D−2
(
lnγ
M
)
0.5

M

∑
m=1

nmax

∑
n=0

γ(D−3)n ×{cosφm,n − cos[
2πγn(x2 + y2)0.5

L

×cos(arctan(
y
x
)− πm

M
)+φm,n]} (1)

Where, z (x, y) is the height of the surface profile; x, y
are the displacement coordinates, respectively; G is the fractal
roughness parameter; D is the three-dimensional fractal dimension
(2 < D < 3); γ is the spatial frequency parameter; L is the sampling
length; Ls is theminimum cut-off length;M is the number of surface
overlapping protrusions; m is the mth overlapping protrusion; φm,n
is random phase angle; n is the spatial frequency index with the
upper limit of n given by nmax = int[ln(L/Ls)/lnγ].

By settingM = 1,m = 1, Eq. 1 can be simplified as:

z(x) = L(G
L
)
D−2
(lnγ)0.5

nmax

∑
n=0

γ(D−3)n ×[cosφ1,n − cos(
2πγnx
L
−φ1,n)]

(2)

The contact between two rough surfaces can be replaced by an
equivalent rough surface contacting a rigid flat surface. Assuming
that the single asperity is semi-spherical, where 2rm represents the
base length, 2r′ represents the truncated length, and 2r represents
the actual contact length. The profile curve of the single asperity
before deformation shown in Figure 3 can be expressed as (Liou and
Lin, 2010):

z0(x) = GD−2(lnγ)0.5(2rm)
3−D cos(πx

rm
) (3)

by setting Ls = 2rm, n = n0 = ln(L/2rm)/lnγ, φ1,n = 0, and L = 2rmγ
n

in Eq. 2.
The asperity height η is given by:

η = GD−2(lnγ)0.5(2rm)
3−D (4)

and the curvature radius R, at the peak of the asperity, has the
expression as (Zhang et al., 2021):

FIGURE 3
Contact deformation model of a single asperity.

R = |

|

(1+ z′2)3/2

z″
|

|x=0
=

rm
D−1

23−Dπ2GD−2(lnγ)0.5
(5)

When the truncated length is 2r′, the actual deformation of the
asperity ε can be written as:

ε = η− z0(r′) = GD−2(lnγ)0.5(2rm)
3−D[1− cos(πr

′

rm
)] (6)

In general, asperities on one surface are squeezed by asperities
on another surface, causing the asperities to undergo elastic,
elastoplastic, or plastic deformation. According to the classical Hertz
elastic contact theory, the critical normal deformation εec that
separates the completely elastic state from the elastoplastic state for
a single asperity can be expressed as:

εec = (
πkH
2E
)
2
R (7)

Where, k is the hardness coefficient related to the Poisson’s ratio
ν of the material, and can be written as k = 0.454+ 0.41v; H is the
hardness of the softer material, and its relationship with the yield
strength σ s can be expressed as H = 2.8σs; E is the reduced elastic
modulus of the joint surface, which can be calculated by the elastic
modulus (E1, E2) and Poisson’s ratio (v1, v2) of each contact surface
as E = [(1− v21)/E1 + (1− v

2
2)/E2]

−1.
For ε ≤ εec, the asperity undergoes complete elastic deformation.

According to the Hertz theory, the contact area se and the
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normal contact load f e of the asperity subject to complete elastic
deformation can be obtained as:

se = πRε (8)

fe =
4
3
ER0.5ε1.5 =

25−DEπ0.5GD−2(lnγ)0.5

3rmD−1 se
1.5 (9)

When ε = εec, the asperity deformation belongs to elastic
deformation. The elastic critical contact area can be expressed as:

sec = πRεec (10)

For εec < ε ≤ 110εec, the asperity is in the state of elastoplastic
deformation. The deformation can be divided into two stages (Kout
and Etsion, 2002):

sep1
sec
= 0.93( ε

εec
)
1.136
,

fep1
fec
= 1.03( ε

εec
)
1.425
, forεec < ε ≤ 6εec

(11)

sep2
sec
= 0.94( ε

εec
)
1.146
,

fep2
fec
= 1.40( ε

εec
)
1.263
, for6εec < ε ≤ 110εec

(12)

Where, sep1 and sep2 mean the contact areas in the first and
second phases of elastoplastic deformation, respectively; f ep1 and
f ep2 mean the normal contact loads in the first and second phases
of elastoplastic deformation, respectively; f ec means the contact load
for ε = εec.

It is defined that sepc1 is the first elastoplastic critical contact
area and sepc2 is the second elastoplastic critical contact area. By
substituting Eq. 9 and Eq. 10 into Eq. 11 and Eq. 12, the equations
for the normal contact loads during the elastoplastic stage are
generated as follows:

fep1 =
2
3
kH× 1.1282sec−0.2544 sep11.2544,

sepc1 = 7.1197sec, for sec < sep1 < sepc1 (13)

fep2 =
2
3
kH× 1.4988sec

−0.1021 sep2
1.1021,

sepc2 = 205.3827sec, for sepc1 < sep2 ≤ sepc2 (14)

For ε > 110εec, the asperity enters the stage of full plastic
deformation. The relationship between the normal contact load f p
and the contact area sp at this stage can be expressed as:

sp = 2πRε (15)

fp =Hsp (16)

2.1.1 Total real contact area and total normal
contact load of joint surface

Assuming that the morphology of the joint surface is isotropic,
the three-dimensional fractal dimension can be expressed as
D = Ds + 1 (where Ds represents the two-dimensional fractal
dimension of the cross-sectional profile) (Mandelbrot, 1985).

Then, the size distribution function of contact area in the three-
dimensional mode can be given by (Chen et al., 2018):

n(s) = D− 1
2

ψ1.5−0.5Dsl
0.5D−0.5s−0.5D−0.5 (17)

Where, sl represents the largest contact area of the asperity
under the contact load; ψ represents the fractal region
expansion coefficient, which satisfies the following equation
ψ = 5.454exp( 1−D

0.628
) + 1.499 (Ding et al., 2014).

Then, the real contact area of elastic deformation region of the
joint surface can be written as:

Sre = ∫
sec

0
sn(s)ds = D− 1

3−D
ψ1.5−0.5Dsl

0.5D−0.5sec
1.5−0.5D (18)

The real contact area of the first elastoplastic deformation region
can be written as:

Srep1 = ∫
sepc1

sec
sn(s)ds = D− 1

3−D
ψ1.5−0.5Dsl

0.5D−0.5(sepc11.5−0.5D − sec1.5−0.5D)

(19)

The real contact area of the second elastoplastic deformation
region can be written as:

Srep2 = ∫
sepc2

sepc1
sn(s)ds

= D− 1
3−D

ψ1.5−0.5Dsl
0.5D−0.5(sepc21.5−0.5D − sepc11.5−0.5D) (20)

The real contact area of the plastic deformation region can be
written as:

Srp = ∫
sl

sepc2
sn(s)ds = D− 1

3−D
ψ1.5−0.5Dsl

0.5D−0.5(sl1.5−0.5D − sepc21.5−0.5D)

(21)

The total real contact area of the joint surface can be given as:

Sr = Sre + Srep1 + Srep2 + Srp (22)

Based on the normal contact load expressions of a single asperity
in the elastic, elastoplastic, and plastic deformation stages, the
normal contact load on the elastic deformation region of the joint
surface can be written as:

Fre = ∫
sec

0
fen(s)ds

=
25−DEπ0.5GD−2(lnγ)0.5

3rmD−1
D− 1
4−D

ψ1.5−0.5Dsl
0.5D−0.5sec

2−0.5D
(23)

The normal contact load on the first elastoplastic deformation
region can be written as:

Frep1 = ∫
sepc1

sec
fep1n(s)ds

=
1.1282(D− 1)
5.2632− 1.5D

kHψ1.5−0.5Dsl
0.5D−0.5sec

−0.2544

× (sepc11.7544−0.5D − sec1.7544−0.5D) (24)

Thenormal contact load on the second elastoplastic deformation
region can be written as:

Frep2 = ∫
sepc2

sepc1
fep2n(s)ds

=
0.4996(D− 1)
1.6021− 0.5D

kHψ1.5−0.5Dsl
0.5D−0.5sec

−0.1021

× (sepc21.6021−0.5D − sepc11.6021−0.5D)

(25)
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The normal contact load on the plastic deformation region can
be written as:

Frp = ∫
sl

sepc2
fpn(s)ds =

D− 1
3−D

Hψ1.5−0.5Dsl
0.5D−0.5(sl1.5−0.5D − sepc21.5−0.5D)

(26)

The total normal contact load of the joint surface can be given
as:

Fr = Fre + Frep1 + Frep2 + Frp (27)

Then, the normal contact stress on the joint surface can be
expressed as:

P =
Fr
Sr

(28)

2.1.2 Normal contact stiffness modeling of joint
surface

When two rough surfaces come into contact with each
other, the asperities undergo elastic, elastoplastic, or plastic
deformation, where the normal contact stiffness during the plastic
deformation stage should be calculated as zero. According to the
definition of stiffness, the normal contact stiffness of an individual
asperity undergoing completely elastic deformation can be
written as:

ke =
d fe
dε
= 2ER0.5ε0.5 = 2Eπ−0.5s0.5e (29)

By integrating over the elastic deformation region (0 < s < sec),
the elastic contact stiffness of the joint surface can be obtained as:

Kre = ∫
sec

0
ken(s)ds =

D− 1
1− 0.5D

Eπ−0.5ψ1.5−0.5Dsl
0.5D−0.5sec

1−0.5D (30)

Similarly, the relationship between the normal contact stiffness
and the contact area for an individual asperity undergoing
the first and second stages of elastoplastic deformation can be
obtained as:

kep1 =
2
3
kH× 1.5082ε−1ec s0.6259ec s0.3741ep1 , sec < sep1 ≤ sepc1 (31)

kep2 =
2
3
kH× 1.7935ε−1ec s0.7705ec s0.2295ep2 , sepc1 < sep2 ≤ sepc2 (32)

By integrating in the first elastoplastic deformation zone
(sec < s < sepc1) and the second elastoplastic deformation zone
(sepc1 < s < sepc2), the first elastoplastic stiffness and the second
elastoplastic contact stiffness of the joint surface can be obtained,
respectively:

Krep1 = ∫
sepc1

sec
kep1n(s)ds

=
1.5082(D− 1)
2.6223− 1.5D

kHψ1.5−0.5Dε−1ec s
0.6259
ec sl

0.5D−0.5

× (sepc1
0.8741−0.5D − sec

0.8741−0.5D)

(33)

Krep2 = ∫
sepc2

sepc1
kep2n(s)ds

=
1.7935(D− 1)
2.1885− 1.5D

kHψ1.5−0.5Dε−1ec sl
0.5D−0.5s0.7705ec

× (sepc20.7295−0.5D − sepc10.7295−0.5D)

(34)

The total normal contact stiffness of the joint surface can be
expressed as:

KNr = Kre +Krep1 +Krep2 (35)

2.1.3 Tangential contact stiffness modeling of
joint surface

Based on the results of researchers, the tangential deformation
of a single asperity can be expressed as (Zhang et al., 2013):

δ =
3μ f
16G′r
[1−(1− t

μ f
)
2/3
] (36)

Where μ represents the static friction coefficient; G′

represents the equivalent shear modulus, which can be written
as 1/G′ = (2− v1)/G1 + (2− v2)/G2 (G1 and G2 represent the shear
moduli of the two contact surfaces); r represents the radius of the real
contact area for a single asperity, which can be written as r = √s/π;
t represents the tangential contact load acting on a single asperity,
which can be written as t = τbs (τb represents the shear strength);
f represents the normal contact load applied to a single asperity,
which can be written as:

f =

{{{{{{{
{{{{{{{
{

fe 0 < sl ≤ sec
fep1 sec < sl ≤ sepc1
fep2 sepc1 < sl ≤ spc
fp sl > spc

(37)

According to Eq. 36, the tangential contact load of a single
asperity can be expressed as:

t = μ f[1−(1− 16G
′δs0.5

3μ fπ0.5
)
3/2
] (38)

The tangential contact stiffness of a single asperity can be
expressed as:

kt =
dt
dδ
= 8G
′s0.5

π0.5
(1− 1

μ
t
f
)
1/3

(39)

Unlike previous researchers who assumed that the ratio of t to
f is a constant value (Zhang et al., 2013; Pan et al., 2017), the ratio
of t and f has a significant impact on the tangential contact stiffness.
According to Eq. 37 and Eq. 38, the ratio of t to f for a single asperity
is different in the elastic, first elastoplastic, and second elastoplastic
stages is as follows:

t
f
=

{{{{{{{{
{{{{{{{{
{

3τb
25−DEπ0.5GD−2(lnγ)0.5

rm
D−1se
−0.5 0 < sl ≤ sec

3τb
2.2564kH

sec
0.2544 sep1

−0.2544 sec < sl ≤ sepc1
3τb

2.9976kH
sec

0.1021 sep2
−0.1021 sepc1 < sl ≤ spc

(40)

Then, the elastic tangential contact stiffness, first elastoplastic
tangential contact stiffness, and second elastoplastic tangential
contact stiffness of the joint surface can be expressed respectively
as:

Krte = ∫
sec

0
kten(s)ds

=
4(D− 1)
π0.5

G′ψ1.5−0.5Dsl
0.5D−0.5∫

sec

0
(1−Ht1rm

D−1s−0.5)1/3s−0.5Dds

(41)
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FIGURE 4
Torsional stiffness diagram of the FS-FB contact pair.

Krtep1 = ∫
sepc1

sec
ktep1n(s)ds

=
4(D− 1)
π0.5

G′ψ1.5−0.5Dsl
0.5D−0.5

×∫
sepc1

sec
(1−Ht2sec

0.2544 s−0.2544)1/3s−0.5Dds

(42)

Krtep2 = ∫
sepc2

sepc1
ktep2n(s)ds

=
4(D− 1)
π0.5

G′ψ1.5−0.5Dsl
0.5D−0.5

×∫
sepc2

sepc1
(1−Ht3sec

0.1021 s−0.1021)1/3s−0.5Dds

(43)

Where Ht1, Ht2, and Ht3 are the coefficients related to material
properties and fractal parameters of the contact surfaces, which
can be written as Ht1 =

3τb
25−DEπ0.5GD−2(lnγ)0.5μ

, Ht2 =
3τb

2.2564kHμ
, and

Ht3 =
3τb

2.9976kHμ
.

The total tangential contact stiffness of the joint surface can be
expressed as:

KTr = Krte +Krtep1 +Krtep2 (44)

2.2 Equivalent torsional stiffness of FS-FB
contact pair

The joint surface of the FS-FB contact pair is a spatial elliptical
cone surface, characterized by a non-uniform stress distribution
and varying contact stiffness at different positions. The elliptical
cone surface is divided into nT meshes, with varying sizes of
asperities present within each mesh. Following the application of
force, these asperities exhibit four deformation states based on the

magnitude of deformation: elastic deformation, first-stage elastic-
plastic deformation, second-stage elastic-plastic deformation, and
plastic deformation. The real contact area and normal contact load
at the ith mesh node C can be calculated using Eq. 22 and Eq. 27.
This article introduces the equivalent torsional stiffness to describe
the stiffness of the FS-FB contact pair, as presented in Figure 4.
The normal contact stiffness KNri and tangential contact stiffness
KTri at the ith mesh node are oriented perpendicular and parallel
to the elliptical cone surface, respectively. The conical angle of the
elliptical cone surface is denoted by α, and the tangential pressure
angle is denoted by β. The phase angle of the elliptical cross-section
is denoted by θi, where zero phase angle located at the position of the
major axis. The equivalent torsional stiffness of the FS-FB contact
pair can be obtained by summing up the normal and tangential
contact stiffness components of the elliptical cone surface, expressed
as follows:

KTS =
nT
∑
i=1
[(KNri sinαcosβ+KTri cosαcosβ)] ⋅Ra (45)

Where, Ra is the polar radius of the elliptical section, which
can be written as Ra = 2√(r+ω)2cos2θi + (r−ω)2sin2θi; r is the
distance between the node in the elliptical cone surface and
the x-axis; ω is the radial deformation coefficient; θi ∈ (0 ∼ 2π);
β = arctan(cotθi + (r+ω)sinθi/(r−ω)sinθi).

2.3 Finite element modeling of torsional
stiffness of FS-FB contact pair

The fractal parameters D and G in this article can be obtained
using the structure function method (SF method) (Wang et al.,
2018). As direct measurement of the elliptical cone surface of
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FIGURE 5
Fractal parameters extraction and reconstruction of the FS-FB contact pair: (A) Collection of the surface profiles, (B) Structure functions.

the FS-FB contact pair is challenging, two test specimens were
manufactured for the determination of the fractal parameters. The
specimens, named Specimen 1 (flexspline specimen) and Specimen
2 (flexible bearing specimen), were cylindrical in shape and had
a diameter of 30 mm. The materials, roughness, and processing
methods of the specimens were the same as those of the FS-FB
contact pair. The confocal laser scanning microscope VK-X1000
was used to collect the surface data from the two specimens,
within a sampling range of a square area of 0.5mm× 0.5mm,
as presented in Figure 5A. The structure function curves of the
specimen surface profiles can be acquired accordingly, as presented
in Figure 5B. Thus, the two-dimensional fractal dimension and the
fractal roughness parameter of the equivalent joint surface can
be obtained as Ds = 1.5304 and G = 2.4248× 10−7m, respectively.
Then, the three-dimensional fractal dimension can be obtained as
D = Ds + 1 = 2.5304.

The establishment of the FEMmodel for the FS-FB contact pair
in a harmonic drive is based on the following simplifications: 1) the
inner wall of the wave generator is considered as an infinitely rigid

body with no deformation; 2) the axial displacement of the shell is
not considered when the flexspline undergoes deformation; 3) the
tooth end of the flexspline is simplified as an equivalent gear, with
a wall thickness that is .√1673 times that of the smooth cylinder; 4)
the load torque is uniformly distributed on the outer circumference
of the flexspline teeth.

The FEM modeling and analysis of the FS-FB contact pair is
illustrated in Figure 6, and the specific steps are as follows.

Step 1: Modeling and parameters settings. A simplified three-
dimensional model of the harmonic drive was created using the
Solidworks software, and then imported into theANSYSWorkbench
software. The flexspline material was set to 40CrNiMoA, with a
density of 7.83 × 103 kg/m3, an elastic modulus of 2.09 × 105MPa,
and a Poisson’s ratio of 0.295. The flexible bearing material was set
to GCR15, with a density of 7.83 × 103 kg/m3, an elastic modulus of
2.19 × 105MPa, and a Poisson’s ratio of 0.3.
Step 2: Definition of contact surfaces and conditions. The inner
wall of the flexspline and the outer ring of the flexspline bearing
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FIGURE 6
FEM modeling and analysis of the FS-FB contact pair.

were defined as “Frictional” and the coefficient of friction was set as
0.15.
Step 3: Mesh Generation. The “Sweep” and “Face sizing” methods
were combined to ensure that the mesh of the contact region was
hexahedral. The mesh size was set to 0.001 mm and the mesh
number was nT = 1290.
Step 4: Application of load and constraints. The inner ring of the
flexspline bearing was fixed and a torque of 0-5Nm was applied to
the outer circumference of the flexspline.
Step 5: Analysis and stress extraction.The position of the flexspline
cup opening was set to Position I, 5 mm away from the cup opening
was Position II, and 10 mm away from the cup opening was Position
III. The normal contact stress and tangential contact stress of each
node on the elliptical cone surface were extracted under a rated
torque of 5Nm, as shown inFigures 7A, B.
Step 6: Torsional stiffness calculation. The equivalent torsional
stiffness of the FS-FB contact pair was calculated according to
Eq. 28 and Eq. 35, Eq. 44, and Eq. 45 in Section 2.1, as shown in
Figure 7C.

3 Verification and analysis of torsional
stiffness of FS-FB contact pair

In this section, a torsional stiffness test scheme was developed
to validate the accuracy of the proposed model, and an analysis
was conducted to investigate the influence of various factors on the
torsional stiffness of the FS-FB contact pair.

3.1 Validation of the proposed model

To validate the effectiveness of the proposed torsional stiffness
model, a torsional stiffness test bench for the harmonic drive
was constructed, as presented in Figure 8. The test object was
a CD-14–100 model harmonic drive prototype. The test bench
loads torque by means of a servo motor, while a torque sensor
and a grating ruler respectively measure torque and angle.
The technical specifications of the test bench can be found in
Table 1.

During the testing process, the brake disc at the input end
was locked, and the torque motor at the output end loaded
from zero to the rated torque of 5Nm with a step of 0.01Nm.
The torque sensor and grating ruler respectively recorded the
torque values and rotation angle values at the output end. Then,
the torque-rotation angle curve was plotted with torque as the
horizontal axis and rotation angle as the vertical axis, as depicted
in Figure 9. The curve reflects the torque response characteristics
of the harmonic drive at different rotation angles. By fitting
the torque-angle curve data to a mathematical function and
performing differentiation on it, the mapping relationship between
torque and torsional stiffness of the harmonic drive can be
obtained.

The torsional stiffness of the harmonic drive can be
expressed as:

KWTS = 1/(1/KFS + 1/KCS + 1/KTS) (46)
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FIGURE 7
Stress extraction and equivalent torsional stiffness synthesis on the elliptical cone surface of the FS-FB contact pair: (A) Normal contact stress
extraction, (B) Tangential contact stress extraction, (C) Equivalent torsional stiffness synthesis.

FIGURE 8
The torsional stiffness test bench for the harmonic drive.
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TABLE 1 Technical specifications of torsional stiffness test bench.

Parameter Value

Maximum loading torque 200Nm

Torque measurement accuracy 0.05Nm

Angle measurement range 0∼2π

Angle measurement accuracy ±2″

FIGURE 9
The torque-rotation angle curve of the harmonic drive.

Where, KFS represents the torsional stiffness of the flexspline
cylinder; KCS represents the meshing stiffness of the circular spline-
flexspline; KTS represents the torsional stiffness of the flexspline-
flexible bearing.

It is defined that the synthetical stiffness of the circular spline
and flexspline is KFTS = 1/(1/KFS + 1/KCS). To obtain the KFTS, a
simplified simulation model of the harmonic drive was established.
In this model, the wave generator was simplified as an elliptical rigid
body and the contact type between the flexible bearing outer ring
and the flexspline inner wall was set to “Bonded” to eliminate the
influence of the torsional stiffness of the flexspline-flexible bearing.
The contact type between the circular spline and flexspline was set
to “Adjust to touch”, and the number of meshing gear pairs was set
to 40. The wave generator and circular spline were fixed, and the
torquewas applied ranging from1Nm to 5Nm in 1Nm increments to
the flexspline cup bottom. Afterwards, a torque-rotation angle curve
was obtained by extracting the rotational angle of the flexspline cup
bottom at different torques, which was then used to derive the KFTS
curve. Based on the KFTS curve and the KTS curve obtained from
the proposed model in this paper, the theoretical KWTS curve of the
harmonic drive can be obtained. Figure 10 illustrates a comparison
between the theoretical KWTS curve and the experimental KWTS
curve.

It can be observed from Figure 10 that the trend of the
theoretical and experimental harmonic drive torsional stiffness
curves with respect to torque variation is extremely consistent.
The maximum error between the experimental and theoretical
values of the harmonic drive torsional stiffness occurs at 0.5Nm,
where the theoretical torsional stiffness is 2524.92Nm/rad and the
experimental torsional stiffness is 2723.75Nm/rad, with a relative

FIGURE 10
Comparison between experimental and theoretical torsional stiffness
of harmonic drive under different torques.

error of 7.30%. This result demonstrates the accuracy of the
proposed model.

3.2 Effect of torque on torsional stiffness

Figure 11A depicts the contact stress distribution of FS-FB
contact pair at Position Ⅰ under different torque conditions. It can
be observed from Figure 11A that, with the increase of torque, the
amplitude of the normal contact stress increases, and when the
torque is 5Nm, the absolute value of maximum normal contact
stress appears at the long axis of the elliptical cone section, which is
96.35 MPa. Overall, the stress curve exhibits approximate symmetry
within the intervals of 0-π and π-2π. Figure 11B depicts the effect of
torque on the torsional stiffness of the FS-FB contact pair. It can be
observed from Figure 11B that the torsional stiffness increases with
the increase of torque, but the growth rate gradually slows down,
and they exhibit a non-linear relationship. When the torque reaches
5Nm, the torsional stiffness is 1820.44Nm/rad.

3.3 Effect of installation eccentricity on
torsional stiffness

During the installation process of a harmonic drive, it is
crucial to strictly control the coaxiality between the flexspline
and the flexible bearing. However, due to manufacturing and
assembly errors, it is inevitable that installation eccentricity issues
will occur. The installation eccentricity will cause changes in the
stress distribution of the FS-FB contact pair, thereby affecting
the deformation of the flexspline and the bearing capacity of the
flexible bearing.Therefore, investigating the influence of installation
eccentricity on the performance of the FS-FB contact pair is of
great significance. Figure 12 illustrates the effect of installation
eccentricity on the torsional stiffness of the FS-FB contact pair. As
shown in the figure, the torsional stiffness of the FS-FB contact
pair decreases continuously as the eccentricity value increases. At
a torque of 1Nm, increasing the eccentricity from 0um to 10um
results in a reduction in the torsional stiffness by 9.40%. For torques
of 3Nm and 5Nm, the same increase in the eccentricity leads to
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FIGURE 11
Contact stress distribution and torsional stiffness of FS-FB contact pair under different torques: (A) Contact stress distribution, (B) Torsional stiffness at
different torques.

FIGURE 12
The effect of installation eccentricity on the torsional stiffness of FS-FB
contact pair under different torques.

FIGURE 13
The effect of deformation coefficient on the torsional stiffness of
FS-FB contact pair under different torques.

reductions in the torsional stiffness of 6.61% and 5.02%, respectively.
Additionally, as the torque increases, the degree to which the
installation eccentricity affects the torsional stiffness continues to
decrease.

3.4 Effect of deformation coefficient on
torsional stiffness

Thedeformation coefficient is one of themain design parameters
of a harmonic drive, and it affects the FS-FB contact pair
significantly. Excessive deformation coefficient of thewave generator
may increase the contact stress between the flexspline and flexible
bearing and result in a shorter lifespan of the contact pair. So, when
designing a harmonic drive, it is critical to factor in the impact of
the deformation coefficient on the FS-FB contact pair and use it
to determine suitable material and structural parameters. Figure 13
illustrates how the deformation coefficient affects the torsional
stiffness of the FS-FB contact pair. It indicates that the torsional
stiffness of the FS-FB contact pair increases initially, then decreases
as the deformation coefficient rises.The torsional stiffness reaches its
maximum value when the deformation coefficient is 0.21. At 1Nm
torque, the maximum torsional stiffness increases by 12.65% from
the minimum to 1009.11Nm/rad with the deformation coefficient
growing from 0.195 to 0.215. At 3Nm torque, the maximum
torsional stiffness is 1552.69Nm/rad, an increase of 8.76% compared
to the minimum. At 5Nm torque, maximum torsional stiffness is
1940.49Nm/rad, an increase of 7.12% compared to the minimum.
In addition, as the torque increases, the magnitude of the variation
in the torsional stiffness of the FS-FB contact pair caused by the
deformation coefficient decreases.

4 Conclusion

This article focuses on the FS-FB contact pair in a harmonic
drive.The torsional stiffness of this contact pair has been thoroughly
investigated by means of modeling, verification, and analysis. From
this research, the following conclusions can be drawn:

1) A fractal-based approach combined with finite element
simulation was used to establish an equivalent torsional
stiffness model for the FS-FB contact pair. At the microscale,
the equivalent fractal dimension D and fractal roughness
parameter G of the FS-FB contact pair were determined using
the structure function method to be 2.5304 and 2.4248 ×
10−7 m respectively, and the three-dimensional fractal model
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was applied in calculating the normal and tangential contact
stiffness of the joint surface. At themacroscale, the finite element
method was introduced to obtain the stress distribution on the
elliptical cone surface of the FS-FB contact pair.

2) A test bench was built to measure the torsional stiffness of
a harmonic drive, and a CD-14–100 model was tested. The
experimental torsional stiffness curve was obtained with a
maximum torsional stiffness of 5294Nm/rad. Based on the
synthetical stiffness curve of the circular spline and flexspline
obtained from simulation and the torsional stiffness curve of
the FS-FB contact pair derived using the proposed model, the
theoretical torsional stiffness curve of the harmonic drive was
obtained. The change trend of the theoretical and experimental
torsional stiffness curves is consistent, with a maximum error of
7.3%, which validates the accuracy of the proposed model.

3) An analysis was conducted on the factors influencing the
torsional stiffness of the FS-FB contact pair. The results indicate
that the torsional stiffness of the FS-FB contact pair increases
with torque, reaching a maximum of 1820.44Nm/rad at 5Nm.
Increasing eccentricity leads to decreased torsional stiffness. At
1Nm torque, an increase in eccentricity from 0um to 10um
results in a 9.40% reduction in torsional stiffness. For torques of
3Nm and 5Nm, increasing eccentricity results in reductions in
torsional stiffness of 6.61% and 5.02%, respectively. Increasing
deformation coefficient leads to an increased-then-decreased
torsional stiffness. At 1Nm torque, an increase in deformation
coefficient from 0.195 to 0.215 results in a 12.65% increase in
torsional stiffness. For torques of 3Nm and 5Nm, increasing
deformation coefficient results in increases in torsional stiffness
of 8.76% and 7.12%, respectively. This provides a basis for the
design and optimization of the contact pair to enhance its
performance and reliability.
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