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The degradation of infrastructures such as bridges, highways, buildings, and
dams has been accelerated due to environmental and loading consequences.
The most popular method for inspecting existing concrete structures has been
visual inspection. Inspectors assess defects visually based on their engineering
expertise, competence, and experience. This method, however, is subjective,
tiresome, inefficient, and constrained by the requirement for access to multiple
components of complex structures. The angle, width, and length of the crack
allow us to figure out the cause of the propagation and extent of the damage,
and rehabilitation can be suggested based on them. This research proposes an
algorithm based on a pre-trained convolutional neural network (CNN) and
image processing (IP) to obtain the crack angle, width, endpoint length, and
actual path length in a concrete structure. The results show low relative errors
of 2.19%, 14.88%, and 1.11%, respectively for the crack angle, width, and
endpoint length from the CNN and IP methods developed in this research.
The actual path length is found to be 14.69% greater than the crack endpoint
length. When calculating the crack length, it is crucial to consider its irregular
shape and the likelihood that its actual path length will be greater than the
direct distance between the endpoints. This study suggests measurement
methods that precisely consider the crack shape to estimate its actual path
length.
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1 Introduction

Infrastructures such as bridges, highways, buildings, and dams have been degraded
increasingly owing to environmental and loading consequences. Many bridges in Japan and
the United States have been used for over 50 years (Dung and Anh, 2019). The level of
urbanization in a nation is influenced by the growth of civil structures. As the world’s
population raises, so does the application for higher infrastructures. Nevertheless, the failure
of even a single bridge might have a devastating effect on the entire transportation network
and cause various fatalities. Moreover, the influence of natural catastrophes like earthquakes,
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hurricanes, and floods on infrastructures leads to shoddy building
designs that pose a serious threat to civilization. Skyscrapers are also
vulnerable to structural damage brought on by wind, which over
time could jeopardize the integrity of the structures. Infrastructures
must be subjected to thorough and frequent inspections in order
to periodically assess their conditions. It is customary to have a
group of experts physically check structures before compiling a
report on their findings. However, owing to the intricate nature of
structural design and heights, it becomes unsafe for human
workers/inspectors to carry out structural health inspections
when sophisticated structures are developed. Because of this,
an autonomous solution may be essential in fixing this issue by
performing structural health monitoring (SHM) more precisely
and consistently while avoiding endangering human examiners.

SHM is the practice of continually monitoring the state of a
structure, such as a building or bridge, with sensors and other
measurement equipment to identify and diagnose any damage or
degradation that may occur over time. The purpose of SHM is to
detect and diagnose issues before they become serious,
preventing failure and ensuring the structure’s and its users’
safety. SHM employs various methods, including vibration
analysis, strain and deformation measurement, and non-
destructive testing. With the help of implanted piezoceramic
transducers, Song et al. (2007) detected deterioration to a
6.1 m long reinforced concrete bridge bent cap. Their research
confirmed that cracks might be detected and assessed using a
damage index derived from wavelet packet investigation in
conjunction with piezoceramic transducers. Antunes et al.
(2012) showed that optical technology, optical fiber Bragg
grating accelerometers, may be utilized for dynamic SHM of
tall slender buildings. The findings of active monitoring of an
elevated water reservoir were used to determine its longitudinal
and transverse dynamic parameters. While taking optical sensor
readings of the reservoir, they also employed a seismograph to
determine the reservoir’s natural frequencies with an error of not
more than 0.06%.

Yu et al. (2007) developed a system to objectively quantify and
inspect cracks in concrete structures for safety evaluations. The
setup comprised of a mobile robot and a crack recognition system.
The mobile robot had been engineered to keep the same distance
from the walls, while a CCD camera captured images. Through
image processing (IP) techniques, the crack detection system
extracted information related to cracks that were specific to
each image. Akbar et al. (2019) explored an autonomous SHM
system that used unmanned aerial vehicles (UAVs) to capture
images of the structure. UAV captured images of the entire
structure, which were then merged to create a comprehensive
view. The process of stitching the images together utilized a widely
used technique called speeded-up robust features (SURF), which
identifies key features in the images.

Digital technology has proven to be helpful in facilitating
effective organization of monitoring and inspection activities for
owners. Convolutional neural networks (CNNs) are a form of
deep learning (DL) neural networks that have gained widespread
adoption for their effectiveness in recognizing images and videos.
Thanks to their capabilities, CNNs have found extensive usage in
detecting and classifying cracks. One major advantage of CNNs is
their ability to automatically learn spatial hierarchies of features

from input images in an adaptive manner. CNNs are commonly
utilized in various applications, including but not limited to
image sorting, semantic segmentation, object recognition,
image generation and restoration, and face recognition.
Researchers have been inspired by these benefits and have
employed CNNs to detect and classify cracks in various studies.

Abdel-Qader et al. (2003) used four methods, including
Canny, Fast Haar Transform (FHT), Sobel, and Fast Fourier
Transform (FFT), to identify cracks and found that FFT
performed the best compared with the other methods.
Prasanna et al. (2012) employed the Support Vector Machine
technique with a linear kernel function to identify cracks,
achieving a 76% accuracy in classifying 118 images as either
cracked or uncracked. Munawar et al. (2021) presented an
innovative approach named CycleGAN, which employed a
cycle generative adversarial network along with sixteen
convolutional layers to identify cracks in buildings in Sydney,
Australia. The method used UAVs and publicly available images
from the year 2000. The suggested CNN architecture is heavily
reliant on the integration of guided image filtering and
discriminative random fields to enhance its accuracy. A real-
world damage dataset from buildings in Sydney was utilized to
evaluate the proposed framework, and the outcomes
demonstrated that the deep hierarchical CNN architecture
achieved the highest global accuracy (99.9%) in comparison
with the other models, including Guided Filtering (GF),
Baseline (BN), Deep-Crack GF, and SegNet. Furthermore, the
proposed architecture yielded an average accuracy of 93.9% for
each class, with mean intersection of all union classes (IoU) at
88.1%, precision at 89.5%, recall at 85.7%, and F1-score
at 85.7%.

For the crack detection, Liu et al. (2019) conducted a
comparative study between U-Net and Deep CNN (DCNN).
Their findings revealed that U-Net was a more advanced and
effective approach than DCNN, resulting in superior accuracy and
performance. Ali et al. (2022) employed the CNN architecture to
find and categorize building cracks. Superior fine crack
segmentation may be achieved using encoder and decoder
designs like fully convolutional network, SegNet, and U-Net.
U-Net and DeepLabV3+ enabled by the vision transformer
(ViT) were used by Shamsabadi et al. (2022) to create a method
for identifying fractures in concrete and asphalt surfaces. The
identification of concrete cracks is only one use of DL. Yin et al.
(2020) utilized a CNN-based object identification method called
YOLO-V3 to identify drainage system faults such as holes, cracks,
roots, and deposits. For this model’s training, a total of
4,056 images were used. The overall accuracy of the framework
was 85.37%. The investigation resulted in closed-circuit television
(CCTV) footage with fault types and descriptions listed in each
frame. There was a proposal for a CNN-based fault classification
system by Hassan et al. (2019). The main goal was to include the
CCTV footage in the categorization process. Out of the CCTV
footage, they could compile a dataset of 4,702 images representing
six types of damages: debris silty, longitudinal, joint defective, joint
open, lateral, and damaged surface. A maximum of 96.33%
accuracy was measured. Gehri et al. (2022) proposed certain
modifications for an automatic crack identification and
measurement method called digital image correlation (DIC)
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that enables an evaluation of crack behavior in extensive studies,
including intricate patterns. The improvements made include a
canny-based edge-crack indicator and advancements in crack
kinematic measurement. The improved technique was validated
and proved to be a valuable tool in providing an understanding of
the mechanical behavior of structural concrete. Thériault et al.
(2022) introduced an affordable approach for conducting periodic
visual inspections with quantifiable data using the DIC method.
This method enables monitoring of the fracture development and
deformations over time. The study validated the effectiveness of
the approach by examining the shear fracture kinematics of seven
specimens tested in a laboratory setting. Despite minor
imperfections caused by the camera movement, 98% of the
462 measurements taken during testing were within the
tolerance limit of 0.1 mm compared with the measurements
taken using a stationary camera with a long focal length lens as
a reference. These findings indicated the potential of the DIC
method for improving the infrastructures management through
structural inspections. Ji et al. (2020) developed vision-based
techniques for monitoring deformations in reinforced concrete
structures and defining cracks. They measured the coordinates of
objects of interest using a target tracking method and estimated
deformation components using geometry analysis. In the cyclic
testing of reinforced concrete wall specimens, the methodologies
were verified and provided more efficiency and meaningful
information than the conventional measuring approaches.

The concept of transfer learning as a strategy for moving
previously acquired expertise from one domain to another has
recently been developed in computer science. The domains of
the training and test data may differ, which is not considered by
typical machine learning or semi-supervised techniques (Lu
et al., 2015). Several pre-trained models are available that are
effectively utilized in transfer learning. Examples of pre-trained
neural networks are Inception-V3 (Szegedy et al., 2016), VGG-
16,19 (Russakovsky et al., 2015; Simonyan and Zisserman,
1409), Dense-Net (Huang et al., 2017), ResNet (Zoph et al.,
2018), Inception-ResNet (Szegedy et al., 2017), Darknet
(Redmon), Xception (Chollet, 2017), EfficientNet (Tan and
Le, 2019), ShuffleNet (Zhang et al., 2018), and SqueezeNet
(Iandola et al., 2017). Based on a comparison of four pre-
trained models for the crack recognition and direction across
four classes, Ehtisham et al. (2022) discovered that the
ResNet50 model achieved an accuracy of 86.22%. In a study
conducted by Ahmed et al. (2022), the ResNet50 CNN model
was employed to detect pavement cracks with a remarkable
accuracy. The proposed method obtained an accuracy of 99.8%
and a precision rate of 100%. Qayyum et al. (2022) utilized three
distinct CNN models including GoogleNet, MobileNet-V2, and
Inception-V3 for identifying cracks in concrete images captured
in various orientations of diagonal, horizontal, and vertical
directions. The findings illustrated that the Inception-V3
model outperformed the other two models, achieving an
accuracy of 97.2% for detecting cracked and uncracked
concrete images, and 92%, 95%, and 96% for detecting
diagonal, horizontal, and vertical cracks images, respectively.
These results highlighted the potential of deep learning-based
techniques for the precise and efficient identification of cracks
in concrete structures. Özgenel and Sorguç (2018) conducted an

evaluation of the performance of pre-trained neural networks
consisting of VGG19, AlexNet, ResNet101, VGG16, GoogleNet,
ResNet50, and ResNet152. They analyzed the depth of
networks, the size of training dataset, the number of training
epochs, and their ability to be applied to different types of
building materials.

Only a few researchers have focused on identifying the
characteristic of cracks, including the crack angle, width, and
length. The combination of these three factors can give a good
indication of the severity of the crack and the potential for failure.
Engineers use this information to determine the appropriate
action, such as repairing or replacing the damaged structure.
Flah et al. (2020) created algorithms that combined the Keras
classifier with IP to assess the crack length, width, and angle with
quantification errors of 1.5%, 5%, and 2%, respectively. Qayyum et
al. (2023) assessed seven pre-trained neural networks, including
GoogLeNet, MobileNet-V2, Inception-V3, ResNet-18, ResNet-50,
ResNet-101, and ShuffleNet for the crack detection and
classification. In terms of accuracy, Inception-V3 outscored all
the other models.

This research has used a pre-trained CNN model and IP to
obtain the width, angle, endpoint length, and actual path length
of cracks in a concrete structure. The CNN model was utilized to
classify the cracks images based on their orientation. Inception-
V3 was employed for classification purposes, and the dataset for
training, validation, and testing remained the same, as suggested
by Qayyum et al. (2023). After the classification step, image
segmentation techniques were used to extract cracks from the
images and achieve their characteristics.

The characteristics of cracks in concrete structures are critical
for ensuring the safety, durability, performance, and cost-
effectiveness of critical infrastructure assets, including buildings,
dams, and bridges. Most of the studies have been based on the
classification of cracks images. Flah et al. (2020) worked on
obtaining cracks length, width, and angle. The actual path length
of cracks was not measured. The current study has classified the
concrete images into four categories, i.e., horizontal, vertical, and
diagonal cracks (HC, VC, and DC, respectively), and un-cracked
(UC) using CNN. Also, this research has proposed a new procedure
based on CNN and IP to achieve the cracks angle, width, and
endpoint length which is the displacement between the ending tips
of the cracks. Moreover, this investigation has proposed a new
method to determine the actual path length of the cracks.

2 Methodology

The methodology of this research is demonstrated in Figure 1,
which displays the overall process. The first step was to gather a
substantial dataset of representative images for the classes that
needed classification. This dataset was considered in three sets:
training, validation, and testing. Transfer learning, a well-known
technique in deep learning, was utilized to start training a new
model using a pre-trained model. In this case, the pre-trained
Inception-V3 model was employed as the starting point to train a
new model on the crack images dataset. The model’s performance
was assessed by evaluating it in the testing sets, utilizing accuracy,
precision, recall, and F1-score as the evaluation metrics. The
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subsequent stage involved implementing the IP techniques to
identify cracks in the image. Otsu’s method was employed, a
prevalent IP method that uses thresholding to divide the
image’s foreground and background by detecting a threshold
value. In the final step, various array operations were utilized
on the binary image to determine the crack angle, width, endpoint
length, and actual path length.

2.1 Image dataset

In total, 32,000 images have been taken from online sources,
such as SDNET (Maguire et al., 2018) and collected from the
site. These site images include images of concrete buildings at
the University of Engineering and Technology (UET) and in the
Taxila region. Images were put into one of four groups of DC,
HC, VC, and UC based on what the category of cracks was. In
Figure 2, each category is represented by a single image. The

training and validation of the models used 8,000 images for
each class, with a 70:30 ratio for the training and validation,
respectively. There were 100 images in each category in a
separate image database utilized for testing the model, which
was not part of the training or validation datasets.

2.2 Pre-trained CNN model

The pre-trained CNN model employed to classify the crack
image was Inception-V3. It is a CNN architecture for image
classification developed by Google. It was published in 2015 as
part of the Inception series of models, including Inception-V1
and Inception-V2. The key feature of Inception-V3 is the use of
“Inception modules”, which are blocks of layers that perform
multiple types of convolutions and pooling in parallel. This
enables the network to learn local and global information
from the input image, hence enhancing its accuracy. ImageNet

FIGURE 1
Overall methodology.

Frontiers in Materials frontiersin.org04

Qayyum et al. 10.3389/fmats.2023.1210543

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1210543


was used to train Inception-V3, which at the time of its release
reached state-of-the-art performance. Figure 3 depicts the
Inception-V3 architecture.

2.3 Different techniques of IP

After the classification of the image, if the image were from class
DC, VC, and HC, it would be forwarded for the implementation of
the IP techniques. These functions used for IP are summarized in
Table 1.

rgb2gray (RGB): With this function, RGB images were
converted to grayscale. It removes information about shades and
saturation while preserving brightness. Graythresh: Using the Otsu’s
method, graythresh was used to calculate a global threshold from a

grayscale image. The Otsu’s method thresholding technique reduces
the intraclass alteration of black and white pixels. Imbinarize: This
function was utilized to convert the grayscale image into the binary
form. All the values above the threshold value received from the
graythresh function are replaced by 0’s, and the values below are
replaced by 1’s. Imfill: This function was employed with a
parameter of “holes”, which fills the holes in the binary image.
Bwconncomp: This function was applied to count the number
of connected components. The structure contains parameters
including Connectivity, ImagSize, NumObjects, and PixelIdxList.
Connectivity by default is equal to 8 for 2D image and 26 for 3D
image, ImageSize receives the size of the image in pixel, NumObjects
receives a total number of connected components, and PixelIdxList
has the vector containing the linear indices of the object.
NumObjects and PixelIdxList were used to obtain the size of

FIGURE 2
Images (Qayyum et al., 2023): (A) DC, (B) HC, (C) UC, (D) VC.

FIGURE 3
Inception-V3 architecture.
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the connected object in the binary image. Bwareaopen: This
function was utilized to eliminate all the objects except one
with the largest size. Figure 4 indicates the crack image before
and after IP.

2.4 Array operation on binary image

Binary images are digital images containing only two values,
typically black and white, representing a foreground object and
the background. To perform operations on the binary image, the
image is usually represented as a 2D array where each element
corresponds to a pixel in the image, and its value represents the
pixel’s intensity.

3 Features of concrete cracks

3.1 Finding tips of cracks

The position of the cracks tips was located to obtain the
endpoint length and angle. Two types of searches were used.

3.1.1 Horizontal search
Figure 5 shows how horizontal searching works. The search

for the upper tip begins from the first row and ends at the last
row, with the first white pixel being searched in each column
within each row. However, for the lower tip, the search begins
from the last row and ends at the first row, with the first white
pixel being searched in each column within each row.

3.1.2 Vertical search
Figure 6 displays the process of vertical searching. To detect the

left tip, the search begins from the first column and ends at the last
column. Within each column, the algorithm looks for the first white
pixel in every row. To identify the right tip, the search starts from the
last column and ends at the first column, and for each column, the
algorithm searches for the first white pixel in every row.

Horizontal searching was used for the VC images, and vertical
searching was employed for the HC images. For the DC images,
either of two searches can be utilized. For this research, horizontal
searching was applied for the DC images. The positions of the first
tip, i.e., i1 (row), j1 (column), and second tip, i.e., i2, j2, were used to
obtain the angle and endpoint length.

3.2 Angle of cracks

Eqs. 1 and 2 were utilized to achieve the angle of the cracks.

Slope � j2 − j1
i2 − i1

(1)
Angle � tan−1 Slope( ) (2)

3.3 Endpoint length of cracks

Eq. 3 was employed to determine the length between the points.

FIGURE 4
Crack image: (A) before IP, (B) after IP.

TABLE 1 Sequence of IP techniques used for extracting cracks.

No. IP functions

1 rgb2gray

2 graythresh

3 imbinarize

4 imfill

5 bwconncomp

6 bwareaopen
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Endpoint length �
������������������
j2 − j1( )2 + i2 − i1( )2

√
(3)

3.4 Width of cracks

To measure the width of the cracks, the number of white pixels in
each row of the VC and DC binary images was counted. Similarly, for
HC, the width was measured by counting the number of white pixels in

each column. These values were then stored in an array, and the highest
value in the array was considered as the width of the crack. Figure 7
depicts the width of the crack obtained using this method.

3.5 Actual path length of cracks

It is important to accurately determine the length of a concrete
crack as it can impact the strength and stability of the structure.
Engineers can determine the appropriate repair method based on
the crack length, severity, and location. For VC and DC, the
procedure of averaging the position of the white pixels in each
row of a binary image matrix was adopted, while the HC procedure
of averaging the position of the white pixels in each column of a
binary image matrix was used. For VC and DC, these steps were
done: 1) iteration through each row in the binary image matrix, 2) for
each row, a list to store the column numbers of the white pixels was
created, 3) once all rows were processed, the mean of the column
numbers in the list was calculated and the value was rounded off, 4) row
matrix with corresponding mean column number to represent central
points in a 2D array was combined, 5) “circshift” function was
employed to achieve the distance between those points, and added
up to calculate the actual path length in pixels. Figure 8 demonstrates
the procedure adopted to obtain the actual path length of VC.

A similar procedure was taken for HC, but in this case, for each
column, a list was created to store the row numbers of the white
pixels of the cracks.

3.6 Conversion of pixels to units

The values of the width, endpoint length, and actual path length
were measured in pixels and converted to units using Eq. 4.

FIGURE 5
Horizontal searching for tips of crack.

FIGURE 6
Vertical searching for tips of crack.

FIGURE 7
Crack width.
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D units( ) � D pixels( ) ×
�����
A

n × m

√
(4)

A is the area of the original image resulted by the multiplication
of length and width in the units. n is the length, andm is the width in
the pixel form. D (pixels) is the distance in terms of pixels measured
by the CNN and IP techniques for the width, endpoint length, and
actual path length.

4 Results and discussion

The developed algorithms were tested on images. Cracks images
were taken to measure the cracks endpoint length, width, and angle.
Then, those measurements were compared with the results produced
by this research’s algorithms. The first step was to classify the image
using a trained CNN model. Figure 9 indicates the confusion matrix
plot for Inceprion-V3. The overall accuracy attained by the model
was 88.5%.

Figure 10 shows some typical crack images taken from the
site with their measurements. The proposed algorithm was

FIGURE 8
Array operation used to obtain actual path length of cracks.

FIGURE 9
Confusion matrix plot for Inception-V3.
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tested on these examples to ensure its efficiency. A box of
1 foot × 1 foot was drawn to denote the region to be captured
and pre-processed before continuing with the algorithm. Image
1 was taken from a concrete pavement, while images 2 and
3 were taken from a wall.

Figures 11–13 illustrate the process in which the images were
taken from the site, and then, using the CNN and IP methods, the
cracks were extracted, and the angle, width, endpoint length, and
actual path length of the cracks were measured.

The measurements taken from the site were compared with
the values generated by the algorithms, as summarized in

Table 2. Obtaining the actual path length of the cracks was
impossible, but it was achieved by algorithms (Table 2).

Small-scale field testing confirmed the accuracy of the crack
characteristics algorithm, which gave relative errors of 2.19%,
14.88%, and 1.11% for the angle, width, and endpoint length of
the cracks, respectively, as provided in Table 3.

The algorithm tracked the actual path of the cracks and found
their actual path lengths, in which their mean value was 14.69%
greater than the cracks endpoint length. Table 4 displays the
comparison between the endpoint length and the actual path
length of the cracks.

FIGURE 10
Crack images taken from site with measurements: (A) Image 1, (B) Image 2, (C) Image 3.
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FIGURE 11
Image 1 process of extracting characteristics.

FIGURE 12
Image 2 process of extracting characteristics.

FIGURE 13
Image 3 process of extracting characteristics.
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5 Conclusion

This study proposed an automated inspection system for obtaining
the cracks angle, width, endpoint length, and actual path length in a
concrete structure. A CNNmodel, Inception-V3, was trained to classify
concrete images in four classes, i.e., DC, HC, VC, and UC.
32,000 images were used to train the CNN model, which was tested
with 400 images. The accuracy of this model was 88.5%. Different IP
techniques were utilized to extract cracks from the concrete images.
Then, using array operations, the cracks angle, width, and endpoint
length were measured with relative errors of 2.19%, 14.88%, and 1.11%,
respectively. The algorithm tracked the actual path of the cracks and
achieved the actual path length of the cracks with the mean value of
14.69% greater than the cracks endpoint length.

In reality, cracks are not straight lines and typically have a complex,
meanderingpath that follows the contours of the surface. This increases the
length of the crack path compared with the straight-line distance between
the endpoints, making the actual path length of the cracks greater than the
direct distance between the endpoints. Therefore, when measuring the
length of a crack, it is important to consider its irregular shape and the fact
that its actual path length is likely longer than the direct distance between
the endpoints.Our research proposed a crackmeasurement technique that
considered the crack shape to estimate its path length accurately.

With further development, these algorithms can be embedded in
UAVs to provide a fully automated inspection system.
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TABLE 2 Site measurement vs. measurement generated by CNN and IP.

Measurement taken from site Measurement using CNN and IP Measurement of crack
path

S. No. Angle
(degree)

Width
(mm)

Length
(mm)

Angle
(degree)

Width
(mm)

Length
(mm)

Length (mm)

Image 1 6 20 310 5.82 16.67 305.183 351.9

Image 2 88 26 305 89.55 20.24 303.619 347.98

Image 3 23 18 334 23.416 19.05 329.56 376.16

TABLE 3 Errors in angle, width, and endpoint length of cracks.

S. No. Relative error of angle (%) Relative error of width (%) Relative error of endpoint length (%)

Image 1 3 16.65 1.55

Image 2 1.76 22.15 0.45

Image 3 1.81 5.83 1.33

Mean 2.19 14.88 1.11

TABLE 4 Comparison between endpoint length and actual path length of cracks.

S. No. Endpoint length (mm) Crack path length (mm) Increased length (%)

Image 1 305.183 351.9 15.31

Image 2 303.619 347.98 14.61

Image 3 329.56 376.16 14.14

Mean increased length 14.69%
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