AUTHOR=Gul Waheed , Akbar Shah Syed Riaz , Khan Afzal , Ahmad Naveed , Ahmed Sheraz , Ain Noor , Mehmood Arshad , Salah Bashir , Ullah Syed Sajid , Khan Razaullah TITLE=Synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) and their application as nano-fillers to improve the physical and mechanical properties of medium density fiberboard JOURNAL=Frontiers in Materials VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/materials/articles/10.3389/fmats.2023.1206918 DOI=10.3389/fmats.2023.1206918 ISSN=2296-8016 ABSTRACT=

Graphene is an advanced material in the carbon group and offers greater mechanical, electrical, structural, and optical properties. Graphene oxide (GO) and reduced graphene oxide (rGO) nanoparticles were synthesized and characterized and their special effects on enhancing the physio-mechanical characteristics of medium density fiberboard (MDF) were assessed. GO and rGO nanoparticles were added to urea formaldehyde (UF) resin at different weight percentages (1.0, 2.0, and 3.0 wt%) during the dosing process. To manufacture the MDF, nanofillers were created by sonication and combination with natural wood fibers. To observe the behavior of nanoparticles in the nanofillers, microstructure characterizations were conducted. The manufactured nano MDF samples underwent physical and mechanical testing. The incorporation of GO and rGO nanoparticles into UF resin led to significant improvements in the physical and mechanical properties of the MDF. The addition of GO and rGO nanoparticles at different weight percentages (1.0, 2.0, and 3.0 wt%) resulted in a range of improvements in thickness swelling (up to 53.3% and 35.2% for GO and rGO nanoparticles, respectively), water absorption (up to 23.3% and 63.15%, respectively), and thermal conductivity (up to 42.16% and 27.7%, respectively). Additionally, the internal bond and rupture modulus of the MDF was enhanced by 59.0% and 70.0%, respectively, for GO and 41.4% and 48.5% for rGO. The highest value of the modulus of rupture (MoR) was observed at a concentration of 3.0% of rGO nanoparticles (44.7 MPa). The findings also showed that thickness swelling (Ts) and water absorption (WA) exhibited directly proportional relationships for 3.0% GO and rGO. These results suggested that incorporating GO and rGO nanoparticles into UF resin can significantly improve the physical and mechanical properties of nano MDF.