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Several types of meandering channels and their mathematical simulation have
been proposed and discussed widely in the open literature. In the present study,
the impact of a novel meandering tube geometry on streamwise vortices and
pressure losses have been determined. Using a simplified Poiseuille flow
simulation approach with a sinusoidal wavy meandering tube of non-uniform
radius, the onset flow separation, vertex formation, and the impact of Reynolds
number on field variables and stream function has been analyzed. Moreover, the
linear stability theory has been implemented to trace the vertex formation. A
decrease in wavelength leads to flow separation near the tube’s surface, but the
flow becomes rectilinear with a sudden disturbance caused by the meander,
becoming independent of vertex generating centrifugal forces. Novel insights are
provided on the impact of meandering tube geometry on fluid flow and potential
applications for enhancing flow conditions are suggested.
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1 Introduction

The escalation process of heat and species transport in different flow phases with practical
significance is an interesting and important subject in thermodynamics and fluid mechanics.
Both the formation of fluidmixtures and changes in the functional thermophysical characteristics
of the fluids fall within the category of escalation processes (Bergles andWebb, 1985; Jensen et al.,
1997; Ligrani et al., 2003). Integrated heat exchangers that operate at low Reynolds numbers in
case of laminar flows are treated specially for improved mixing (Webb and Bergles, 1981). It is
often accepted that improved mixing may be achieved by driving a laminar-turbulent
transformation under difficult conditions or by inserting vortex generators, which are
efficient but have a substantial drag cost (Fiebig, 1995a; Fiebig, 1995b; Jacobi and Shah,
1995; Fiebig, 1998; Fiebig and Chen, 1999). In most cases, the hydrodynamic stabilities have
been used for the transition of laminar flow to turbulent flow and, therefore, transverse grooves
are used. However, a novel model has been demonstrated with the most accurate simulations,
i.e., to shift laminar states without transiting to turbulent ones by using hydrodynamic
instabilities. In this novel model, separating local flow is demonstrated well; the flow is
driven by a slight oscillatory component and enters the resonant and stable separated shear
layer (Patera and Mikic, 1986) Another type of bifurcation, i.e., centrifugal instability, has been
taken into account and it produces simple vortices without suffering from the maximum drag
cost associated with conventional vortex generators. Instability can improve vortex generators in
limiting vortices decay, which decreases the minimum number of such generators even when the
flow is only locally asymptotically stable. Both directly (by establishing a transverse transition)
and indirectly (by creating a bypass transition), streamwise vortices can boost heat transfer. In
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most cases, a three-dimensional flow field has been developed at the end
and transverse shear layers with inflection points and rapidly expanding
secondary instability are formed (Floryan, 1991). Recent investigations
have reported an alternate approach being taken into account of a fluid
of higher thermal conductivity used with properly shaped channels
while, at the same time, flow pressure being reduced immediately
(Mohammadi and Floryan, 2013). This technique has provided an
alternative solution to the most common development programs used
on macro channels (Xu et al., 2016).

It has been known for nearly 100 years that the rotating shear layers
are subjected to centrifugal instabilities. This instability has been taken
into account for the situation of simple geometry and canonical flow,
providing an example where it is possible to forecast the curvature of
lines with ease. Using the flow state between rotating cylinders, Rayleigh
introduced the inviscid technique in 1920 and determined the necessary
stabilization condition through circulating distribution (Rayleigh,
1917). In 1923, Taylor included the full viscous problem and
identified the crucial conditions that emerge as a result of the
secondary flow (Taylor, 1923). Similar instability in curved channels
was examined by Dean (Dean, 1928). The occurrence of centrifugal
instability in the context of boundary layers on concave surfaces was
proved byGörtler (Görtler, 1941). If the streamwise velocity distribution
is not monotonic (Floryan, 1986), demonstrated that the instability is
active in flows over concave as well as convex surfaces. A clear
relationship between the streamline curvature and the wall curvature
was provided by all of these investigations where the wall curvature was
either constant or had been approximated as a constant. As a result, the
critical stability conditionmight be expressed in terms of one parameter.

There are very few theoretical investigations that can pinpoint the
starting conditions for flows in complex geometries where the wall
curvature varies spatially. However, there are large number of
numerical models and experimental studies that offer qualitative
data (Gschwind et al., 1995). used a meandering amplitude of the
same order of magnitude as the channel height, and (Nishimura et al.,
1990; Tatsuo et al., 1990) used a large amplitude compared to the
channel height to demonstrate the existence of streamwise vortices
attributed to the centrifugal instability in sinusoidal channels. Rush
et al. (Rush et al., 1999) has qualitatively identified the additional types
of instability for corresponding geometries. Theoretical investigations
which employed two-dimensional models were able to identify the
effect of flow separation on heat transfer (Metwally and Manglik,
2004; Zhang et al., 2004) and identify the conditions that led to either
single or double Hopf bifurcations or self-sustained oscillations
(Guzmán et al., 2009). These models failed to identify the
formation of the vortices. In their 2012 study, (Sui et al., 2012),
took into account a three-dimensional rectangular channel with a very
large meandering amplitude and applied numerical simulations to
find a complex pattern of Dean’s vortices that changed over time and
space. In the case of turbulent flow, consistent structures were found
by (Pham et al., 2008). Other types of geometries, such as boundary
layer flows over wavy surfaces (Saric and Ali, 1991) and Couette flows
over wavy walls (Floryan, 2002), have also been found to demonstrate
centrifugal instability. According to recent findings, streamwise
vortices may be created by the placement of different triangular
surface obstacles (Floryan and Asai, 2011) The transport of heat
and fluid flow in various mediums and the studies considered the
impact of magnetic fields, chemical reactions, porous media on fluid
flow and thermal transport. The studies considered the impact of

magnetic fields, chemical reactions, and porous media on fluid flow
and thermal transport The results suggest that the addition of tri-
hybrid nanoparticles and magnetic dipoles can enhance thermal
transportation in Carreau Yasuda liquid, but may decrease the
flow profile. This study also investigated the effects of different
parameters on the peristaltic motion of hyperbolic tangent fluid in
a curved compliant channel, which has potential applications in
explaining blood transport dynamics. Numerical solutions and
perturbation techniques were used to analyze and evaluate the
results (Javed et al., 2021; Naseem et al., 2021; Wang et al., 2022).
Different approaches related to the studies of fluid flow inmicrofluidic
systems for biomedical engineering. This study analyzed the behavior
of different types of fluids in different channel geometries by taking
into account, convective conditions, thermal deposition effect, and
chemical reactions. They investigated the impact of various
parameters on flow quantities such as velocity, temperature, and
concentration. This study also suggest the viability of electro-osmotic
pumps for fluid flow in large osteoarticular implants (Hayat et al.,
2015; Yasmin et al., 2020a; Yasmin et al., 2020b;Mehmood et al., 2020;
Yasmin and Iqbal, 2021; Alyousef et al., 2023).

The main objective of the current analysis is to investigate the
three-dimensional structure of the meandering geometries that
cause the centrifugal force mechanism to produce streamwise
vortices at the lowest possible cost as measured by pressure
losses and without the interference of the traveling wave
instability. This is the first comprehensive analysis of three-
dimensional flow in a meandering tube that takes all potential
instabilities into consideration. The new information would
provide an accurate mathematical simulation for engineers and
be a reasonable foundation upon which they may construct small
heat exchangers that operate in the laminar flow domain. The study
is divided into three main parts, specifically: i) mathematical
modeling of flow in the meandering tube; ii) calculating the flow
losses related to the meandering tube; and iii) identifying the
geometric and flow characteristics that cause the centrifugal
instability to predominate. The source in engineering procedures
might be a mechanical pressure gradient. In this study, we look at the
pressure gradient-driven (Poiseuille flow) flow of viscous fluid in a
meandering tube with waves that is made up of fixed walls. A lot of
interest has been shown in the flow of viscous fluid in a wavy
meandering tube due to its applications in engineering and
biological sciences, including regarding the development of
muddy waves in river channels, the generation of wind waves on
water and sandbanks in deserts, the movement of melting slides,
rocket boosters, and the evaporation of film in burning chambers.
Furthermore, physiologists and technicians have often attempted to
create and explain blood and urine flow in terms of meandering
channels (tubes).

2 Geometry of the problem

The flow of a viscous fluid in a meandering tube, whose
geometry is shown in Figure 1, is the main focus of this paper.

The tube of variable radius is taken, whose radius is determined
by R* � r*m(1 + α sin δ). The polar coordinate system (r, θ, z) is
connected to the Cartesian coordinate system (x, y, z) for this
particular problem in such a way that x � η (1 + α sin δ) cos θ, y �
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η (1 + α sin δ) sin θ, z � z where δ � βθ + kz and � r
R . Note that

x, y, z, and η are dimensionless variables.

3 Governing equations

In order to express the current problem in proper coordinates, it is
appropriate to choose a suitable coordinate system for the simulated
problem. The well-established relationship between the Cartesian
coordinates (x*, y*, z*) and cylindrical ones (r*, θ, z*) has been
presented above. For the meandering, we took the following
transformation to define a tube of non-uniform radius (R*) as:

R* � r*m 1 + α Sin δ( ) where δ � βθ + k*z*

where r*m is the mean radius of the tube while “α” represents the
dimensionless amplitude, “β” represents the number of helixes starts,
and “k*” represents the wave number in the axial direction of the wall of
the tube.

The governing equations are non-dimensionalized by
introducing dimensionless variables and the length is non-
dimensionalized by r*m (mean radius), the velocity components
(u*, v*, w*) by υ*/r*m, the static pressure by ρ*(υ*/r*m)2, ∇*2 by
1/r* 2m , and (V* · ∇*) by υ*/r* 2

m .
Note that the asterisk “*” represents the dimensional

quantities and υ* and ρ* are kinematic viscosity and density of
the fluid, respectively. The governing equations in cylindrical
coordinates (r*, θ, z*) are:

Continuity equation, r*, θ, and z*- components of Navier-
Stokes equations in cylindrical coordinates (r*, θ, z*) are given as:

z

zr*
r*u*( ) + z

zθ
v* + r*

z

zz*
w* � 0 (1)

V* · ∇*( )u* − v*2

r*
� − 1

ρ*
zP*
zr*

+ υ* ∇*2u* − u*
r*2

− 2
r*2

zv*
zθ

( ) (2)

V* · ∇*( )v* − u*v*
r*

� − 1
ρ*r*

zP*
zθ

+ υ* ∇*2v* − v*
r*2

− 2
r*2

zu*
zθ

( ) (3)

V* · ∇*( )w* � − 1
ρ*

zP*
zz*

+ υ*∇*2w* (4)

V* · ∇* � u*
z

zr*
+ 1
r*
v*

z

zθ
+w* z

zz*
(5)

∇p2 � 1
r*

z

zr*
r*

z

zr*
( ) + 1

r*2
z2

zθ2
+ z2

zz*2
(6)

The no slip boundary conditions at the wall and the symmetry
conditions at the center of the meandering tube are given as:

u* � v* � w* � 0 at r* � R* and u* � v* � 0, w* � U* at r* � 0

(7)
whereU* represents stream velocity at the center of themeandering tube.

By using the dimensionless variables as defined above, the
continuity Eq. 1 is transformed as:

z

r*mz
r*
r*m

r*m
r*
r*m

( ) υ*
r*m

( ) u*

υ*
r*m

( ) + z

zθ

υ*
r*m

( ) v*

υ*
r*m

( )
+r*m

r*
r*m

( ) z

r*mz
z*
r*m

υ*
r*m

( ) w*

υ*
r*m

( ) � 0 (8)

From above definitions of dimensionless variables, we have:

u*

υ*
r*m

( ) � vr,
v*

υ*
r*m

( ) � vθ ,
w*

υ*
r*m

( ) � vz, r � r*
r*m
, z � z*

r*m
(9)

where vr, vθ , and vz represent the dimensionless velocity
components in r, θ, and z directions, respectively:

z

zr
r vr( ) + z

zθ
vθ + r

z

zz
vz � 0 (10)

FIGURE 1
Geometry of the meandering tube under consideration and flow regime with coordinatex-axis.
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V · ∇( )vr − 1
r
v2θ � −zP

zr
+ ∇2vr − vr

r2
− 2
r2

zvθ
zθ

(11)

V · ∇( )vθ + vrvθ
r

� −1
r

zP

zθ
+ ∇2vθ − vθ

r2
+ 2
r2

zvr
zθ

(12)

V · ∇( )vz � −zP
zz

+ ∇2vz (13)

V · ∇ � rp2m
υ*

V* · ∇*( ) (14)
∇2 � rp2m∇

p2 (15)
Where Eqs. 10–13 represent the dimensionless form of

continuity and components of Navier-Stokes equations,
respectively.

The dimensionless form of no slip boundary conditions at the
wall and the symmetry conditions at the center of the meandering
tube are obtained as:

vr � vθ � vz � 0 at r � R and vr � vθ � 0, vz � Re at r � 0

where Re � ρ*U* r*m
υ* represents the Reynolds number.

4 Modal problem

The velocity vector Vb for the modeled problem is
decomposed as Vb � V0 + V1 where the velocity V0, pressure
P0, the total volume flow rate Q0, the stream function ψ0, and the
vorticity function ξ0 for the fully developed flow in a straight
duct (circular pipe) becomes purely radial in a pipe. The
solution is obtained from the continuity equation, η, θ, and z
momentum equations. Note that the fluid flow is directed in the
direction along positive z-axis. The velocity field and other field
quantities for fluid motion in the meandering tube are
approximated as:

Vb � V0 + V1 � 0, 0, w0 η( )[ ] + u1 η, θ, z( ), v1 η, θ, z( ), w1 η, θ, z( )[ ]
Pb � P0 η( ) + P1 η, θ, z( )
ψb � ψ0 η( ) + ψ1 η, θ, z( )
Qb � Q0 η( ) + Q1 η, θ, z( )
ξb � ξ0 η( ) + ξ1 η, θ, z( )
V0 η, θ, z( ) � u0 η, θ, z( ), v0 η, θ, z( ), w0 η, θ, z( )[ ]

� 0, 0, Re 1 − η2( )[ ], P0 � −4Rez + c0, Q0 � πRe

2
,

ψ0 � −η
2

2
Re 1 − η2

2
( ) + c1 and ξ0 � 2 ηRe

Further, the velocity vector Vb � [ub, vb, wb] needs to be
determined; therefore, an appropriate approximation technique is
used to get this part of velocity Vb.

5 Solution of the problem

Next, our aim is to determine the solution of dimensionless
Eqs. (10 - 16). As these equations have a parameter αwhich may be
a small quantity in many practical problems, we therefore consider

the case of small amplitude waviness, i.e.; α → 0 and the flow
domain has been regularized for the radial coordinate of the form
when η � r

R where R � 1 + α sin(δ) where δ � βθ + kz (the tube or
its wall is located at η � 1 for this new variable), and the
dimensionless governing equations are transformed from
(r, θ, z) to (η, θ, z) such that the dimensionless continuity and
Navier-Stokes Eqs. (10-13) in cylindrical coordinates (r, θ, z) take
the form below:

1 + α sin δ( )ub + η 1 + α sin δ( )2zwb

zz
+ zvb

zθ
+ η

zub

zη
+ α sin δ

zvb
zθ

+α η sin δ zub

zη
− α η cos δ β

zvb
zη

+ kη α η cos δ 1 + α sin δ( ) zwb

zz
� 0

(18)
−η 1 + α sin δ( )3vb2 − 1 + α sin δ( )2z

2ub

zθ2
+ η2 1 + α sin δ( )3zPb

zη

− 2α2β2ηcos 2δ
zub

zη
− αβ2η sin δ 1 + α sin δ( ) zub

zη
+ η2 1 + α sin δ( )3ub

zub

zη

+ η2 1 + α sin δ( )3wb 1 + α sin δ( ) zub

zz
− kαη cos δ

zub

zη
( )

+ η 1 + α sin δ( )2vb 1 + α sin δ( ) zub

zθ
− αβη cos δ

zub

zη
( )

+ 2 1 + α sin δ( ) 1 + α sin δ( ) zub

zθ
− αβη cos δ

zub

zη
( )

+ αβη cos δ 1 + α sin δ( ) z
2ub

zηzθ
− η2 1 + α sin δ( )3 zub

zη
+ η

z2ub

zη2
( )

+ αβη cos δ 1 + α sin δ( ) z
2ub

zηzθ
− αβη cos δ

z2ub

zη2
( )

− η + αη sin δ( )2( 1 + α sin δ( )2z
2ub

zz2
+ 1
2
kαη(k 3α + α cos δ + 2 sin δ( ) zub

zη

+ 2 cos δ −2 1 + α sin δ( ) z
2ub

zηzz
+ kαη cos δ

z2ub

zη2
( ))) � 0

(19)

−η 1 + α sin δ( )2vb + η 1 + α sin δ( )3ub vb − 1 + α sin δ( )2z
2vb
zθ2

+ η 1 + α sin δ( )2 1 + α sin δ( ) zPb

zθ
− αβη cos δ

zPb

zη
( )

− 2 1 + α sin δ( ) 1 + α sin δ( ) zub

zθ
− αβη cos δ

zub

zη
( )

− 2α2β2ηcos 2 δ
zvb
zη

− αβ2η sin δ 1 + α sin δ( ) zvb
zη

+ η2 1 + α sin δ( )3ub
zvb
zη

+ η2 1 + α sin δ( )3wb 1 + α sin δ( ) zvb
zz

− kαη cos δ
zvb
zη

( )
+ η 1 + α sin δ( )2vb 1 + α sin δ( ) zvb

zθ
− αβη cos δ

zvb
zη

( )
+ αβη cos δ 1 + α sin δ( ) z

2vb
zηzθ

− η2 1 + α sin δ( )3 zvb
zη

+ η
z2vb
zη2

( )
+ αβη cos δ 1 + α sin δ( ) z

2vb
zηzθ

− αβη cos δ
z2vb
zη2

( )
− η + αη sin δ( )2( 1 + α sin δ( )2z

2vb
zη2

+ 1
2
kαη(k 3α + α cos δ + 2 sin δ( )

zvb
zη

+ 2 cos δ kαη cos δ
z2vb
zη2

− 2 1 + α sin δ( ) z
2vb

zηzz
( ))) � 0

(20)

Frontiers in Materials frontiersin.org04

Ibrahim et al. 10.3389/fmats.2023.1187986

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1187986


− 1 + α sin δ( )2z
2wb

zθ2

+ η2 1 + α sin δ( )3 1 + α sin δ( ) zPb

zz
− kαη cos δ

zpb

zη
( )

− 2α2β2ηcos 2 δ
zwb

zη
− αβ2η sin δ 1 + α sin δ( ) zwb

zη

+ η2 1 + α sin δ( )3ub
zwb

zη

+ η2 1 + α sin δ( )3wb 1 + α sin δ( ) zwb

zz
− kαη cos δ

zwb

zη
( )

+ η 1 + α sin δ( )2vb 1 + α sin δ( ) zwb

zθ
− αβη cos δ

zwb

zη
( )

+ αβη cos δ 1 + α sin δ( ) z
2wb

zηzθ
− η 1 + α sin δ( )2 zwb

zη
+ η

z2wb

zη2
( )

+ αβη cos δ 1 + α sin δ( ) z
2wb

zηzθ
− αβη cos δ

z2wb

zη2
( )

− η + αη sin δ( )2( 1 + α sin δ( )2z
2wb

zz2

+ 1
2
kαη(k 3α + α cos 2δ + 2 sin δ( ) zwb

zη

+ 2 cos δ kαη cos δ
z2wb

zη2
− 2 1 + α sin δ( ) z

2wb

zηzz
( ))) � 0

(21)

Similarly, the dimensionless Eq. 16 has transformed (by
introducing η � r

R; R � 1 + α sin δ where δ � βθ + kz) into the
following form:

ub � vb � wb � 0 at η � 1 and ub � vb � 0, wb � Re at η � 0 (22)
In the case of small amplitude waviness, i.e., α → 0, the velocity

components, i.e., ub, vb, and wb in η, θ, and z-directions,
respectively, and the pressure term Pb are expanded in a series
of α as:

ub � ̂0 + α ̂1 + O α2( ), vb � v̂0 + α v̂1 + O(α2),
wb � ŵ0 + α ŵ1 + O(α2) and Pb � P̂0 + αP̂1 + O α2( ) (23)

where u0 � û0, v0 � v̂0, w0 � ŵ0, and P0 � P̂0 and they are
determined previously for the fully developed flow in
straight duct.

The values of ub, vb, wb, and Pb are substituted from Eq.
23 into the equations of continuity, motion, and the relevant
boundary conditions, i.e., Eqs. 18–21 which are described by
means of (η,θ, z), and terms of the same order of α are collected
on each side of these equations.

6 Results and discussion

The solution of the zeroth-order system, which is obtained by
putting value from Eq. 23 into Eqs 18–21 and equating like powers of
α0 on both sides of them, is given below:

û0 � v̂0 � 0, ŵ0 � Re 1 − η2( ), P̂0 � −4Rez + c0, Q̂1 � πRe

2
,

ψ0 � ψ̂0 � −η
2

2
Re 1 − η2

2
( ) + c1 and ξ̂0 � 2 ηRe (24)

Note that the solution in Eq. 24 for the fully developed flow in a
straight duct has been reported in F.M. White (White and Majdalani,
2006) and Schlichting (Schlichting and Kestin, 1961).

Similarly, the first-order system is obtained by equating like
powers of α1 on both sides of Eqs 18–21 and then by substituting Eq.
24 into them. The unknowns in this system are further expressed by
the following series:

ψ̂1 � fa η( ) sin δ + fb η( ) cos δ, ŵ1 � fc η( ) sin δ + fd η( ) cos δ,
û1 � 1

η

zψ̂1

zθ
− 1
2
kReη4 cos δ( ), v̂1 � −zψ̂1

zη
− 1
β
kη ŵ1,

fa η( ) � ∑∞
p�0

apη
p, fb η( ) � ∑∞

p�0
bpη

p, fc η( ) � ∑∞
p�0

cpη
p and

fd η( ) � ∑∞
p�0

dpη
p

where the functions fa,fb,fc, and fd depend only on η and the
coefficients ap, bp, cp, and dp are obtained by substituting the
series into the first-order system. The coefficients of the above series are:

a0 � 0, a1 � 0, a2 � 0, a3 � 0, a4 � 12kRe + 5kReβ2

2β 12 + β2( ) ,

a5 � 54kReβ

12 + β2( ) 15 + 2β2( ), a6 � −2Reβ −576k + 15k3 + 2k3β2( )
6 + β2( ) 12 + β2( ) 15 + 2β2( ) ,

a7 � − 2kReβ −72000 + k2 2523 + 358β2( )( )
6 + β2( ) 12 + β2( ) 15 + 2β2( ) 21 + 4β2( ),

a8 � 1

6 + β2( ) 12 + β2( ) 15 + 2β2( ) 21 + 4β2( ) 24 + 5β2( )
2kReβ 15552000 + 5k4 315 + 102β2 + 8β4( )({

− k2 72 8409 + 1234β2( ) + 5Re2 315 + 102β2 + 8β4( )( ))}
Moreover, the coefficients aI are recursively obtained as:

aI+4 � 1

I + 4( ) β2 + 3( ) − 3β2
{ I + 3( ) I + 1( ) I + 2( ) + 1{ } − 1[ ]aI+3

− kRe I − 1( )bI − k2 I + 1( )aI+2 + kRe I + 1( )bI+2
+ kRe I + 1( )bI+1 − k

β
β2 + 3( )cI+2 + k

β
I + 1( ) I + 3( ) + 1{ }cI+1

− k3

β
cI + k2Re

β
dI − k2Re

β
dI−2}

For I � 5, 6, 7, . . . . . .
Furthermore, the coefficients of the second series in the

expression of ψ̂1 are obtained as:

b0 � 0, b1 � 0, b2 � 0, b3 � 0, b4 � 0, b5 � 0,

b6 � − 2k2Re2β

β2 + 6( ) β2 + 12( ),

b7 � − 2k2Re2β 2523 + 358β2( )
β2 + 6( ) β2 + 12( ) 2β2 + 15( ) 4β2 + 21( ),

b8 � 1

β2 − 36( ) β2 + 6( ) β2 + 12( ) 2β2 + 15( ) 4β2 + 21( ) 5β2 + 24( )
2k2 Re2β 21580668 + 2489292β2 − 105021β4 − 762β6 + 8β8({

+10k2 β − 6( ) β + 6( ) 15 + 2β2( ) 21 + 4β2( ))},
The recursive formula for bI is obtained as:
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bI+4 � 1

β2 + 3( ) I + 4( ) − 3β2
{ − kRe I + 1( )aI+2 + kRe I − 1( )aI

+ I + 3( ) I + 1( ) I + 2( ) + 1{ } − 1[ ]bI+3 − k2 I + 1( )bI+2
− k

β
β2 + 3( )dI+2 + k

β
I + 1( ) I + 3( ) + 1{ }dI+1 + k3

β
dI}

For I � 5, 6, 7, . . . . . .

c0 � 0, c1 � 0, c2 � −2Re, c3 � 0, c4 � 0, c5 � 0, c6 � 0, c7 � 0,

The recursive formula for cI is obtained as:

cI+2 � 1

I + 2( )2 − β2
2ReβbI + k2cI − kRedI + kRedI−2{ }

For I � 6, 7, 8, . . . . . .

FIGURE 2
The stream lines are drawn by using ub and wb (components of
velocity) and the streamcontours are graphed for Re= 10, ß= 1, z = 1, and
k = 10 in the domain 0 ≤ θ ≤ 2, −1 ≤ η ≤ 0 at the lower portion of the tube.

FIGURE 4
The stream lines are drawn by using vb and wb (components of
velocity) and the stream contours are graphed for Re = 100, ß = 1, z = 1,
and k=0.1 in the domain 0≤ θ ≤, 0≤ η≤ 1 at the upper portion of the tube.

FIGURE 3
The stream lines are drawn by using ub and wb (components of
velocity) and the streamcontours are graphed for Re= 10, ß= 1, z = 1, and
k = 10 in the domain 0 ≤ θ ≤ 2, 0 ≤ η ≤ 1 at the upper portion of the tube.

FIGURE 5
The stream lines are drawn by using ub and wb (components of
velocity) and the stream contours are graphed for Re = 10, ß = 1, z = 1,
and k = 10 in the domain 0 ≤ θ ≤ 2, −1 ≤ η ≤ 1 of the whole tube.
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d0 � 0, d1 � 0, d2 � −2Re, d3 � 0, d4 � 0, d5 � 0,

d6 � 4kRe2β2

β2 − 36( ) β2 + 12( ), d7 � 108kRe2β2

β2 − 49( ) β2 + 12( ) 2β2 + 15( ),
And the recursive formula for dI is obtained as:

dI+2 � 1

I + 2( )2 − β2
−2ReβaI + k2cI + kRecI + kRecI−2{ }

For I � 6, 7, 8, . . . . . .
Figure 2, Figure 3, Figure 4, Figure 5 describe the impact of

meanders on the formation and behavior of vortices in the flow,
producing complex patterns of stream contours. Vortices form
near the wall of the tube and interact with the fluid flow. In
Figure 6, fluid flow patterns are affected in several ways with
variation in the number of helixes. As the number of helixes
increases, the amplitude of the meanders increases, leading to
more complex flow patterns with multiple recirculation zones
near the wall of the tube. This also causes an increase in the
pressure drop and the overall mixing in the flow.

7 Conclusion

In a meandering tube, streamwise vortices can improve the
transportation of heat and species mass in a transverse direction. To
create these vortices, a specific meandering wavelength is required,

which can be measured using linear instability theory. Short
wavelengths cause flow separation, while long wavelengths result
in a rectilinear stream resembling a flat plate. Shear-driven
instability also contributes to vortex formation. The effect of a
steady laminar flow in a meandering tube with small amplitude
wavy walls was studied. The governing equations were constructed
using the continuity equation and Navier-Stokes equations with no
slip boundary conditions. Suppositions were made to simplify the
complex non-linear problem, including linear instabilities, uniform
thermal characteristics, and laminar flow conditions. The equations
were further simplified using available dimensionless variables and
new transformations. The perturbation and power series approaches
were used to solve the equations with the help of Mathematica, and
the velocity profiles and stream contours were graphed using
standard codes and definitions.

The flow in a meandering tube becomes unstable due to centrifugal
impact, which results in the formation of streamwise vortices. This
research has focused on identifying the lowest meandering amplitude
that can create these vortices with minimal pressure loss. Two primary
forms of vortex instability have been studied, with the most effective
parameter being better for creating vortex instability than centrifugal
instability. The meandering geometry that is most successful in
producing vortices does not encourage traveling wave instability,
which can delay the onset of laminar-turbulent transition. By using
the reduced geometry model approach, the findings can be applied to
various types of meandering tubes.

FIGURE 6
The stream lines are drawn by using vb andwb (components of velocity) and the stream contours are graphed for Re = 100, θ = 1, k = 5, (A) ß = 2, (B)
ß = 5, and (C) ß = 0.1 in the domain 0 ≤ z ≤ 2, −1 ≤ η ≤ 1 of the whole tube.
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Further investigations can be conducted through experiments,
simulations, and new applications. Experiments can provide
valuable insights into the complex nature of the flow using
advanced techniques like PIV, LDV, and HWA to measure
velocities, turbulence, and vortices. Numerical simulations using
CFD techniques can also be performed to investigate flow behavior,
providing detailed information on velocity, pressure, and vortices,
and help optimize tube design.
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Nomenclature

x, y, z Cartesian coordinates

ρ Density of the fluid

an, bn, cn , dn Coefficient of series

V Velocity vector

∇ Differential operator

v* Kinematic velocity

L Diameter of the pipe

α Amplitude of tube

k Wave number

β Number of helixes Starts

r, θ, z Cylindrical coordinates

Re Reynold number

P Dimensionless pressure

R Radius of the tube

μ Dynamic viscosity

U* Characteristic Velocity

λ Wavelength

r*m Mean Radius of the tube

η Dimensionless Redial length

δ δ � βθ + kz
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