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High-strength concrete (HSC) is vulnerable to strength loss when exposed to high
temperatures or fire, risking the structural integrity of buildings and critical
infrastructures. Predicting the compressive strength of HSC under high-
temperature conditions is crucial for safety. Machine learning (ML) techniques
have emerged as a powerful tool for predicting concrete properties. Accurate
prediction of the compressive strength of HSC is important as HSC can experience
strength losses of up to 80% after exposure to temperatures of 800°C–1000°C.
This study evaluates the efficacy of ML techniques such as Extreme Gradient
Boosting, Random Forest (RF), and Adaptive Boosting for predicting the
compressive strength of HSC. The results of this study demonstrate that the RF
model is the most efficient for predicting the compressive strength of HSC,
exhibiting the R2 value of 0.98 and lower mean absolute error and root mean
square error values than the other applied models. Furthermore, Shapley Additive
Explanations analysis highlights temperature as the most significant factor
influencing the compressive strength of HSC. This article provides valuable
insights into the timely and effective determination of the compressive
strength of HSC under high-temperature conditions, benefiting both the
construction industry and academia. By leveraging ML techniques and
considering the critical factors that influence the compressive strength of HSC,
it is possible to optimize the design and construction process of HSC and enhance
its resilience to high-temperature exposure.
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1 Introduction

In recent years, the construction sector has developed
considerable interest in using high-strength concrete (HSC) for
applications like high-rise buildings, offshore structures, and
bridges. The primary utilization of HSC in buildings is structural
framing, including columns and beams that are major load-bearers.
Therefore, adequate measures against fire safety are vital safety
prerequisites in building design. With enhanced applications of
HSC, there is rising concern about HSC’s behavior in fire, which
can damage structures (Figure 1). The phenomenon of spalling at
higher temperatures is the primary reason for this concern (Khaliq
and Kodur, 2018; Xiong and Liew, 2020; Kushnir et al., 2021; Lalu
et al., 2021; Li et al., 2021). Usually, the structural elements of
normal-strength concrete show considerable performance under
exposure to fire. However, a distinct difference is reported in the
literature betweenHSC and normal-strength concrete after exposure
to fire (Bilodeau et al., 2004; Laneyrie et al., 2016; Ozawa et al., 2017;
Cao et al., 2018). Moreover, the explosive spalling that occurs in
HSC under exposure to rapid fire is also of significant concern
(Alfahdawi et al., 2019; Xiong and Liew, 2020; Afzal and Khushnood,
2021; Li et al., 2021; Khan et al., 2022c). The HSC’s fire response
tracing demands the application of precise modeling which can
adequately account for the HSC’s structural response and material
properties like spalling on exposure to real fire scenarios. This rising
concern about the HSC’s behavior in fire requires adequate fire
safety measures and the application of precise modeling that can
account for the HSC’s structural response and material properties
upon exposure to real fire scenarios.

The development of HSC in the cementitious material field
occurred between the 1950s and 1960s, and its compressive strength
was designated over 40 MPa (Carrasquillo et al., 1981). HSC has very
little impermeability, high density, and high durability, making for
wide application in the construction sector in skyscrapers, long-span
bridges, and piers. The designmethod of HSC is comparatively more
complex than standard strength concrete, demanding in-depth
knowledge of the mechanical and chemical characteristics of its
ingredients, more experience, and multiple trials to attain concrete
of the required properties. One of the key factors in the design of

HSC structures is the compressive strength (Duan et al., 2013).
Deficiency in the compressive strength of HSC may result in severe
structural failures and difficult repairs, as HSC is primarily designed
to bear excessive compressive forces (Al-Shamiri et al., 2019).
Incorporation of different materials such as fibers (Xie et al.,
2021; Shi et al., 2022; Sun et al., 2023), hinges (Huang et al.,
2022; Huang et al., 2023a), and special cements (Wang et al.,
2022) has also been reported to enhance the properties of
cementitious composites. Moreover, researchers are more
attentive nowadays to sustainable supplementary cementitious
materials for sustainable development (Cao et al., 2019; Arshad
et al., 2020; Khan et al., 2021; Ahmad et al., 2023; Lao et al., 2023a;
Lao et al., 2023b; Qian et al., 2023; Riaz Ahmad et al., 2023). The
timely and precise determination of the compressive strength of
HSC can save costs and time, as it is the requirement of various
design standards and codes. The complexity of HSC structures
requires significant expertise, and accurate determination of the
compressive strength is crucial to prevent structural failure.

Applying machine learning (ML) approaches can effectively
solve complex issues in different engineering fields (Dong et al.,
2023b; Huang et al., 2023b). ML approaches can predict the output
depending on the input variable dataset (Huang et al., 2021; Wang
et al., 2022; Zhang et al., 2023). Both individual and ensemble ML
approaches are employed. The Decision Tree (DT) is classified as an
individual approach, whereas the Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and Adaptive Boosting (AdaBoost)
are categorized as ensemble ML techniques. It has been frequently
reported in the literature that ensemble ML approaches tend to
perform better than individual ones, possibly due to the ability of
ensembles to reduce the variance and bias of individual models,
capture a broader range of patterns and relationships within the
data, and improve generalization to new and unseen examples.
Ensembles can also be useful in cases where individual models
are prone to overfitting or have limitations in their predictive
capacity. Overall, ensemble approaches have become increasingly
popular in ML due to their potential to increase prediction accuracy
and robustness and their versatility for use across different
application domains (Wang et al., 2022). ML techniques are used
to investigate the mechanical properties of concrete (Chaabene et al.,
2020; Khan et al., 2022d). Additionally, research works were
conducted on multiple types of concrete, such as phase change
material-integrated concrete (Marani and Nehdi, 2020), high-
performance concrete (HPC) (Castelli et al., 2013), recycled
aggregate concrete (RAC) (Zhang et al., 2020), and self-healing
concrete (Ramadan Suleiman and Nehdi, 2017), to estimate their
characteristics. Han et al. (2019) utilized ML techniques to predict
the compressive strength of HPC by considering various parameters
such as cement, aggregates, sand, water, ground granulated blast-
furnace slag, and age. Their algorithm achieved high accuracy in the
HPC’s strength estimation. ML approaches, especially ensemble
techniques, have been increasingly applied to solve complex
issues and improve prediction accuracy and robustness in various
engineering fields, including the investigation of mechanical
properties of different types of concrete; further research is
needed to explore the effects of fire exposure on the HSC’s
performance and its interactions with various parameters.

The mechanical characteristics of HSC have been extensively
evaluated in numerous studies. However, the laboratory processes

FIGURE 1
Fire consequences (Wróblewski and Stawiski, 2020).
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for casting, curing, and testing specimens require considerable
effort, time, and cost. Hence, applying ML, such as advanced
approaches, for assessing the characteristics of HSC may solve
these issues and decrease experimentation costs (Dong et al.,
2023a; Asghari et al., 2023; Sami et al., 2023). Accordingly, this
research applies three different ensemble ML
approaches—XGBoost, Adaboost, and RF—for the compressive
strength prediction of HSC. These ensemble algorithms are better
than individual algorithms for predicting the compressive strength
of HSC at high temperatures (Ahmad et al., 2021). For predicting the
compressive strength of HSC via the application of ML algorithms,
the considered input parameters include cement (kg/m3), fly ash
(kg/m3), nano-silica (kg/m3), water (kg/m3), super plasticizer (kg/
m3), fine and coarse aggregates (kg/m3), silica fume (kg/m3), and
temperature (°C). These parameters are taken as predictor variables
for the compressive strength of HSC. Moreover, the employed
algorithms’ performance is also evaluated with the help of
comparison and statistical analysis. Depending on the evaluated
performance, a better algorithm is recommended to determine the
strength of HSC. Furthermore, the basic constituents’ influence on
the strength of HSC is yet to be explored. Thus, the influence of
HSC’s raw ingredients—the input parameters—on the strength
under compressive loading—its output parameter—is evaluated
and explained in detail by Shapley Additive Explanations (SHAP)
analysis. The integration of SHAP with the utilized ML models
will gain detailed information on HSC mix design with
respect to its strength parameters through complex non-linear
behavior. It will aid in developing sustainable and fire-resistant
HSC mixes.

2 Research significance

The manufacturing and testing of HSC for evaluating its
superior properties involve costly and time-consuming laboratory
procedures such as specimen casting, curing, and testing. Modern
ML techniques have recently been employed to tackle these
challenges in predicting the mechanical behavior of HSC. This
study utilizes ensemble ML approaches—including XGBoost,
Adaboost, and RF—to predict the compressive strength of HSC.
It investigates the effect and interaction of raw ingredients through
the SHAP analysis, using nine input factors as predictor variables.
The models are executed using Python programming language, and
k-fold cross-validation is utilized to verify test data. The SHAP
analysis is used to examine the contribution of each input factor to
the compressive strength of HSC. The study aims to enhance the
efficiency, effectiveness, and cost-effectiveness of designing fire-
resistant structures and can serve as a foundation for future HSC
research at high temperatures.

3 Standard machine learning models

3.1 Extreme Gradient Boosting (XGBoost)
algorithm

An XGBoost model is a reliable tool for scientists in the data
science field because of an efficient ensemble tree-based model

(Chen and Guestrin, 2016). The structure of Adaboost, which
employs various functions for predicting the output by Eq. 1, is
the base of Extreme Adaboost (Friedman, 2001).

�yi � y0i + ɳ∑n

K�1f k Ui( ) (1)

Here, the predicted outcome is demonstrated by �yi having ith
data with Ui, which is a variable vector; n denotes the number of
predictors as per independent tree structures for each fk (k = 1-n); y0i
is the primary hypothesis; η denotes the learning rate to increase the
algorithm’s performance and connect supplementary trees to avoid
overfitting. The main limitation of ML is developing a model with
minimum overfitting. In XGBoost, the complementary evaluation of
the training phase is done.

According to Eq. 1, on the kth level, the kth predictor is linked
with the algorithm and kth y−ki prediction is evaluated by the
estimated outcome y−(k−1)i in the subsequent phase. The
established fk for the kth predictor is given in Eq. 2.

y−ki � y− k−1( )
i + ɳf k (2)

fk denotes the weight of the leaves, established by limiting the
objective function of the kth tree (<i>Eq. 3)</i>.

f obj � γZ +∑Z

a�1 gaωa + 1
2

ha + λ( )ω2
a[ ] (3)

Here, the leaf nodes’ quantum is depicted by Z, the constant
coefficient by λ, the factor of complexity by c, and leaf weight (1—Z)
by ω2

a. c and λ are the governing parameters employed for improving
the model in order to avoid over-fitting; ga and ha are the summed
parameters against the entire database connected with the gradient
leaf of the initial and previous loss function, respectively. To build
the kth tree, a leaf is additionally distributed in various leaves. The
gain factors are utilized to apply this system, provided in Eq. 4.

G � 1
2

O2
L

PL + λ +
O2

R

PR + λ +
OL +OR( )2
PL + PR + λ[ ] (4)

The gain factors are represented with G, left and right leaf, PL
and OL, and PR and OR. The standards for division are usually
supposed during the approximation of the gain factor toward ‘0’. c
and λ are governing parameters indirectly based on gain factors. For
example, the gain factor may be significantly reduced with a greater
regularization factor, ultimately avoiding the convolution process of
a leaf. However, in this case, the model’s performance in selecting
the training data can also be decreased. The XGBoost basic step-wise
structure is presented in Figure 2.

3.2 Adaptive Boosting (Adaboost) algorithm

One of the supervised ML approaches is the AdaBoost
Regressor, which utilizes an ensemble technique. This approach
involves reallocation of weights for each instance, where higher
weights are assigned to those that have been incorrectly identified.
These techniques are typically employed in supervised learning to
reduce bias and variance and improve the performance of weak
learners. Furthermore, this approach uses bulk quantities of DTs
during data training. The mistakenly characterized recorded data
are assigned a high priority weight for developing the initial model/
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DT. These data entries are selected as input for the other
algorithms. This process is repeated until the desired quantity
of basic learners is fulfilled. In terms of binary classification issues,

AdaBoost is better at enhancing the performance of DT and may
be applied to boost the efficacy of ML techniques. The Adaboost
basic step-wise structure is shown in Figure 3.

FIGURE 2
Structure of the XGBoost algorithm (Amjad et al., 2022).

FIGURE 3
Structure of the Adaboost algorithm (Wang et al., 2021).
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3.3 Random Forest (RF) algorithm

The RF algorithm has been extensively investigated by
numerous researchers as a technique for classification and
regression (Han et al., 2019; Zhang et al., 2019). The concrete
compressive strength is predicted by using RF (Shaqadan, 2016).
The key distinction between DT and RF lies in the number of trees.
While DT builds a single independent tree, RF creates multiple
trees, referred to as “forests”. Unrelated data are randomly selected
and assigned to these trees. Each of these trees comprises columns
and rows with data, determining the column and row dimensions.
Discrete steps are taken for each tree’s growth. This data frame
includes two-thirds of randomly selected data for every tree: RF.
The prediction variables are selected randomly, and the fine
splitting of these variables performs node splitting. In the case
of all trees, the lingering data are used to predict the outlier error.
Consequently, the ultimate out-of-bag error rate is evaluated by
merging errors out of each tree. Every tree offers regression, and
the forest with the most votes is adopted from the entire forest. The
value of the vote may be 0’s and 1’s. The attained proportion of 1’s
stipulates the probability of prediction. RF is an efficient ensemble
model, comprising necessary variable importance measures
(VIMs) with vigorous resistance against rarer model variables
and overfitting. DT is utilized for RF as a base estimator.
Satisfactory outcomes may be attained by RF algorithms having
variable settings (Xu et al., 2021). RF permits base predictor
amalgamations and variable settings to be decreased to 1. The
RF step-wise structure is shown in Figure 4.

3.4 Shapley Additive Explanations (SHAP)

This study also uses the SHAP analysis (Lundberg, 2021) to
assess the global feature influences and corresponding
dependencies/interactions of all selected features on the
compressive strength of HSC, thus expanding the model’s
description. In this technique, the description in the case of
estimation for every instance is explained with the help of
contribution computations by selected features through SHAP
values. The value involvement for each feature against all the
probable combinations is averaged to attain the SHAP values.
The features with more influence have more definite the SHAP
values. The average is taken for the SHAP values of every
feature from the dataset to accomplish global feature
influences. These values are then sorted in descending order
of importance; the plotting is carried out afterward. A unique
point in the aforesaid plot shows the SHAP value for individual
features and instances. X-axis depicts the SHAP values,
whereas feature importance is shown on the y-axis. A higher
y-axis value displays a greater feature influence. Furthermore,
their significance is illustrated by color scale. SHAP plots of
feature dependence demonstrate the feature’s interaction and
respective effect on the compressive strength of HSC. It can
yield improved data compared to partial dependence
traditional graphs (Lundberg et al., 2020). In this SHAP
analysis, particularly the feature importance “j” against the
algorithm’s output f; ϕj(f) is allocated weight to sum the
involvement of features for the model output, f(xi), to attain

FIGURE 4
Structure of the Random Forest algorithm (Amjad et al., 2022).
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the possible combinations of overall features (Molnar, 2020).
ϕj(f) is devised by Eq. 5.

ϕj f( ) � ∑
S⊆ x1 ,.....,xp{ }/ xj{ }

S| |! p − S| | − 1( )!
p!

f Sk xj{ }( ) − f S( )( )
(5)

where xj = feature j, p = feature number in model, and S =
feature subset. The SHAP method employed in this study
determines the feature importance by quantifying estimation
errors when a particular value of the feature is perturbed. The
weight allocation to a feature during the value dispersion is
based on the sensitivity of the prediction error. The
performance of trained ML algorithms is described through
the SHAP analysis. It applies a supplementary feature
attribution approach (linear input parameter summation) to
illustrate an interpretable algorithm. An algorithm with input
variables xi; i ranges between 1−k; k shows input variables
quantity and h (xs) depicts a descriptive algorithm having xs in
the form of simple input. Eq. 6 is proposed for depicting a
unique algorithm f(x).

f x( ) � h xs( ) � ∅0 +∑p

i�1∅ix
i
s (6)

where ∅0 = constant with no information (means no input); p =
the number of input features; x � mx(xs) indicates a connection
between both x and xs input variables. Lundberg and Lee (2017)
proposed Eq. 6, where the prediction value h () was increased by
∅0,∅1, and∅3 relations along with decreased ∅4 in the form of
h () value, which were also reported in Figure 5. The solution to
Eq. 6, which is a single value, incorporates three essential
characteristics: missingness, consistency, and local accuracy.
The attribution is confirmed by consistency without decrement,
assigned to the particular feature having more influence. In the
case of missingness, this certifies that there is no importance
value which is allocated to missing features—represented by
∅i � 0 applied through xi

s � 0. Regarding local accuracy, the
feature attribution summation is verified as an output function.
This necessitates the use of an algorithm for a similar outcome f

for xs, which serves as a simplified input. x � mxxs signifies the
local accuracy attainment.

4 Dataset description

The database is developed from the literature (Fu et al., 2005;
Cülfik and Özturan, 2010; Ergün et al., 2013; Bastami et al., 2014;
Chen et al., 2015; Xiong et al., 2016; Mousa, 2017). For predicting
the compressive strength of HSC, the considered input dataset is
presented in Figure 6. The available literature was used to obtain
data on the compressive strength of HSC, which were then
compiled into a database. The input parameters are cement (kg/
m3), fly ash (kg/m3), nano-silica (kg/m3), water (kg/m3), super
plasticizer (kg/m3), fine aggregates (kg/m3), coarse aggregates (kg/
m3), silica fume (kg/m3), and temperature (°C) (Figure 6); these
parameters are taken as predictor variables for the compressive
strength of HSC. This strength is predicted by applying Anaconda
Software’s Python and Spyder Scripting. Figure 7 illustrates the
relative frequency dispersion of the output parameter, i.e., the
compressive strength.

5 Results and analysis

5.1 Extreme Gradient Boosting (XGBoost)

Figure 8 displays a comparison between the experimental
and predicted values of the compressive strength of HSC using
XGBoost, which depicts the highly precise prediction of the
compressive strength of HSC. The R2 value of 0.94 is within a
reasonable range, indicating the adequacy of XGBoost. Figure 9
shows the error distribution for the compressive strength of HSC
utilizing XGBoost between the estimated and experimental
values. The error of the compressive strength of HSC is
4.65 MPa on average. Around 61.2% of the values are below
5 MPa, while there is a 35.48% range from 5 to 10 MPa, with only
3.22% exceeding 10 MPa.

FIGURE 5
Attributes of SHAP (Shen et al., 2022).
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FIGURE 6
Input data parameter description.

FIGURE 7
Distribution of the compressive strength of HSC.

FIGURE 8
XGBoost predicted and experimental results.
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Moreover, further statistics such as highest, mean, median,
lowest, first, and third quartile values in the case of experimental
and predicted results from the test database are demonstrated in
Figure 10. It can be seen in the graphical data that there is a difference
between predicted and actual outcomes. Based on the box plot, it
appears that the median of the actual values is 51.34 MPa, while the
median of the predicted values is 50.86 MPa. The fact that these two
values are close suggests that themodel can predict the target variable
relatively accurately.

5.2 Adaptive Boosting (Adaboost)

Figure 11 provides the predicted and actual values for the
compressive strength of HSC utilizing the Adaboost algorithm, in
which the R2 value of 0.90 depicts results with comparatively more
precision than XGBoost. The error distribution for experimental
and Adaboost-predicted values in the case of the compressive
strength of HSC is presented in Figure 12. Here, 59.67% of values
lie below 5 MPa, 17.74% lie in the range 5–10 MPa, and 22.58% are

above 10 MPa; the lesser R2 and greater error value represent the
poorer accuracy of Adaboost than that of XGBoost.

The box plot (Figure 13) shows the statistical evaluation, such as
minimum, mean, maximum, median, and first and third quartile
values, for estimated and experimental outcomes from the test
database. The box plot indicates that the median value of the
actual data is 51.34 MPa, whereas the predicted data have a
median of 49.44 MPa. The close proximity of these two median
values implies that the model makes relatively accurate predictions
of the target variable. One can observe the variance between the
anticipated and factual outcomes by examining the numerical values
on the graph. It may be noted from the graph data that there is more
difference between predicted and actual outcomes than in XGBoost.

5.3 Random Forest (RF)

Figure 14 illustrates the experimental and RF-estimated values
regarding the compressive strength of HSC. The R2 value of 0.98 for
RF depicts comparatively more accurate outcomes than the other
models considered. Furthermore, the predicted results for the
compressive strength of HSC for RF are precise out of the
ensemble models employed. Figure 15 presents the dispersal
among RF-estimated and experimental outcomes and error
values for the compressive strength of HSC. Notably, 95.16% of
the entire error values are below 5 MPa, and 4.83% of remaining
values are from 5–10 MPa; notably, no value is above 10 MPa. The
higher R2 values of the RF algorithm for the compressive strength of
HSC demonstrates better accuracy. Thus, more accurate prediction
results can be achieved by utilizing RF than the other models.

In addition, Figure 16 displays the statistical analysis in the form
of a box plot, which exhibits the minimum, mean, median,
maximum, first quartile, and third quartile values for both the
actual and RF-predicted values. According to the box plot, the
median value for the actual dataset is 51.34 MPa, while the
median value for the predicted dataset is 51.89 MPa. This
suggests that the model performs reasonably well in predicting
the target variable, as the difference between the two median
values is small. The output for the RF model in the case of
predicted and actual values is closer, unlike XGBoost and Adaboost.

FIGURE 9
XGBoost estimated and experimental values distribution with
errors.

FIGURE 10
Box plot for actual and XGBoost predicted results.

FIGURE 11
Adaboost predicted and experimental results.
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FIGURE 12
Adaboost estimated and experimental values distribution with errors.

FIGURE 13

Box plot for Adaboost predicted and actual results.

FIGURE 14
RF predicted and experimental results.

FIGURE 16
Box plot for actual and RF predicted results.

FIGURE 15
RF estimated and experimental values distribution with errors.
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5.4 Comparison of models

This study employs the k-fold approach to validate the
implemented algorithm. In the literature (Amin et al., 2022a;
Khan et al., 2022a; 2022b; Zou et al., 2022), the statistical
analysis is reported to assess the model’s performance. Usually,
data splitting into ten subgroups is carried out for the random
dispersion to perform the k-fold process for cross-validation; this
approach is repeated ten times to achieve outcomes in a satisfactory
range, as shown in Figure 17. Table 1 presents the statistical checks
of all the used algorithms. For RF, the R2 value is 0.98; in Adaboost,
the R2 value is 0.90; for XGBoost, it is 0.94 (Figures 18A–C). The R2

value for the RF model is higher with lower error values compared to
the other considered algorithms to estimate the compressive
strength of HSC.

The compressive strength of HSC is predicted by applying
ensemble ML techniques in the current work for reliable and

efficient outcomes. The R2 value of RF as 0.98 depicts a more
accurate prediction for the compressive strength of HSC. Figures
19A–C show the RF model’s superiority for predicting the
compressive strength of HSC using a single optimized algorithm
from 20 sub-models. Hence, it is concluded that RF has more
accuracy and less error than all other algorithms.

5.5 Improved machine learning models’
explainability

The current research work indicates an enhanced explanation of
the ML algorithms employed along with the interactions of input

TABLE 1 Statistical analysis for XGBoost, Adaboost, and RF algorithms.

Statistical checks Techniques

XGBoost Adaboost RF

R2 0.94 0.90 0.98

MAE (MPa) 4.7 5.7 2.5

RMSE (MPa) 5.4 7.5 3.0

FIGURE 17
K-fold cross-validation procedure (Zou et al., 2022).

FIGURE 18
Statistical analysis: (A) XGBoost; (B) Adaboost; (C) RF.
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features. The SHAP analysis on the entire dataset presents an
improved feature that influences global representation due to
mergence with local SHAP explanations. The RF algorithm offers
the most accurate prediction for the compressive strength of HSC, so

here the algorithm is demonstrated for the compressive strength of
HSC through the SHAP analysis. The correlation of features with the
SHAP values for the strength of HSC is presented in Figure 20. It is
notable that the temperature feature is extremely higher in terms of
the SHAP values. This depicts that temperature significantly
influences the compressive strength of HSC. Increased
temperature tends to cause a reduction in the compressive
strength. Fine and coarse aggregates also considerably influence
the compressive strength of HSC, followed by temperature. As the
greater quantity of aggregates offers more matrix interface, this loses
its bonding upon heating, resulting in shrinkage cracks and
ultimately reducing the compressive strength. Afterward, there is
a cement feature which positively influences the compressive
strength of HSC. Increasing cement content will thus enhance
the compressive strength of HSC. Water indirectly influences the
compressive strength of HSC. The strength of the composite is
reduced due to a higher water–cement ratio and increased pore
water pressure, resulting in excessive cracking and explosive
spalling. Increased water content would result in decreased
strength of HSC. Fly ash positively influences the strength of
HSC as further hydration is achieved. Similarly, super
plasticizers, silica fume, and nano-silica also have slight but
positive influences on the compressive strength of HSC.

The interaction of the features with the compressive strength of
HSC is illustrated in Figure 21. Figure 21A depicts the cement
feature interaction, which directly influences the strength of HSC.
The negative influence of water is observed for the compressive
strength of HSC (Figure 21B). In this case, the inverse relation with
the compressive strength of HSC is noted. The fine aggregate feature
dependency is shown in Figure 21C: the impact of fine aggregates on
silica fume also demonstrates a negative influence, resulting in
decreased compressive strength of HSC. Thereafter, both positive
and negative influences are witnessed in the coarse aggregate feature
and are dependent on content (Figure 21D). Therefore, up to
optimal content, coarse aggregates would contribute to the
compressive strength of HSC and thence reduce the strength.
The fly ash, super plasticizer, and silica fume interaction plots
are presented in Figures 21E–G. In these three plots, the direct/
positive influence of all said features is depicted for the compressive
strength of HSC. However, in the case of the temperature feature
plot (Figure 21H), an inverse relation of temperature is reported
with the compressive strength of HSC.

6 Discussion

The use of advanced predictive modeling techniques has become
significantly popular in recent years (Chen et al., 2022; Wang et al.,
2022; Amin et al., 2023; Nazar et al., 2023a; 2023b). Numerous studies
have employedML algorithms such as Gene Expression Programming,
Bagging Regressor, AdaBoost, and RF to predict the compressive,
splitting-tensile, and shear strengths of various composites, including
geopolymer concrete, recycled aggregate concrete, ultra-high-
performance concrete, and rice husk ash concrete. Table 2
summarizes these studies, highlighting the ML algorithms used and
the properties predicted for various cementitious composites. The
comparison allows for an assessment of the efficiency and reliability
of the algorithms employed in this study compared to other literature

FIGURE 19
Results of sub-models: (A) XGBoost; (B) Adaboost; (C) RF.
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studies. The RF model in this study produces the R2 value of 0.98,
indicating a high level of precision in predicting the compressive
strength of HSC. Overall, Table 2 signifies that the RF model
provides relatively accurate predictions, consistent with the literature.
It is worth noting that, after RF, the XGBoost andGB algorithms exhibit
greater precision than the other algorithms. In our study, XGBoost
also performed well after RF, with the R2 value of 0.94, and
AdaBoost demonstrated the acceptable R2 value of 0.90. Thus,
the use of ML algorithms indicates significant potential for
predicting the mechanical properties of various cementitious
composites. The results of this study demonstrate the
effectiveness of the RF, XGBoost, and AdaBoost algorithms in
predicting the compressive strength of HSC, with RF showing
the highest level of precision. These findings suggest that ML
techniques can be a valuable tool in the field of concrete, offering
a reliable and efficient method for predicting the properties
of HSC.

7 Conclusion

In the construction industry, the utilization of ML
methodologies is increasingly recognized as a promising
approach for predicting the concrete’s mechanical characteristics.
The current study’s primary aim is to assess the precision of ML
techniques to estimate the compressive strength of HSC at elevated
temperatures. To predict the compressive strength of HSC using ML
algorithms, various input parameters are considered predictor
variables. The following points are concluded.

• The R2 value of 0.98 for the RF algorithm depicts its
precision in predicting the compressive strength of
HSC. However, in ensemble XGBoost and Adaboost ML
algorithms, the R2 values are 0.94 and 0.90, respectively,
showing lesser accuracy in predicting the compressive
strength of HSC.

• By utilizing 20 sub-algorithms within a range of
10–200 estimates, the optimal compressive strength of
HSC is predicted. The RF ensemble model is
comparatively more accurate in predicting the
compressive strength of HSC than the other algorithms
considered.

• It is revealed from the k-fold test results that the RF and
XGBoost algorithms show lesser RMSE and MAE values
and greater R2 values in case of the compressive strength of
HSC than the other algorithms. At the same time, RF has
the highest prediction accuracy to predict the strength
of HSC.

• The efficiency of the models employed is also assessed
with the help of statistical measures such as MAE and
RMSE. Higher coefficient of determination values and
lower error values indicate that RF is more accurate than
XGBoost and AdaBoost in predicting the compressive
strength of HSC.

• From all the applied ML approaches, RF is the most accurate
approach for precise prediction of the compressive strength
of HSC.

• According to the SHAP analysis, temperature features have
the greatest impact on the strength of HSC, followed by the
contributions of fine and coarse aggregates, cement, water, fly
ash, super plasticizer, and silica fume. However, nano-silica
has the least influence on the prediction of the compressive
strength of HSC.

• The compressive strength of HSC is positively and negatively
affected by cement and temperature, respectively, as extracted
from the feature interaction plot.

• Further investigation is required to examine the load–slip
modeling of HSC, specifically regarding the age of the
matrix and strength.

To improve the effectiveness of HSC modeling with respect
to the age of the matrix and strength, future studies could focus

FIGURE 20
SHAP plot.
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on employing deep learning algorithms due to their ability to
handle complex and non-linear relationships. Additionally, the
use of deep learning in conjunction with metaheuristic

optimization techniques can further increase the accuracy of
predictions and enhance the overall modeling process. It is also
recommended that a larger and more comprehensive dataset be

FIGURE 21
Feature interaction plot: (A) cement, (B) water, (C) fine aggregate, (D) coarse aggregate, (E) fly ash, (F) super plasticizer, (G) silica fume, and (H)
temperature.
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utilized to train and test the deep learning models to achieve
better results.
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