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In response to the global trend of carbon reduction over the last few years, various
industries, including the aviation and automobile industries, have gradually begun
research, design, and production of carbon fiber composite materials. These have
excellent mechanical properties, such as being lightweight, high strength, and of
high rigidity, which provide weight reduction and energy savings in applications
across many fields. When used as a load-beam structure, the weave pattern
determines the primary mechanical properties of the composite material.
Therefore, the production of diverse products and components can be carried
out using different patterns of weaving and manufacturing according to an
application’s requirements. The mechanical properties of woven fiber
composites can be obtained by using simulation analysis software, which can
reduce unnecessary waste during design andmanufacturing. However, difficulties
arise in the simulation analysis due to the complexity of the weaving method. With
the continuous improvement of computer technology in recent years and the
enormous amount of training data available, many research teams have begun to
implement artificial intelligence (AI) technology, which has been widely used to
overcome long-standing obstacles in many different fields. For example, the
problems involved in the prediction of protein folding sequences and the
prediction of the physics of structural materials have all been resolved by AI.
We implement a convolutional neural network (CNN), a deep learning method, to
establish a model that utilizes a representative volume element for the prediction
of the mechanical properties of a woven fiber composite material. The predictive
model significantly streamlines the computational complexity involved in
analyzing woven composite materials, resulting in a substantial reduction in
processing time compared to conventional methods. Unlike traditional finite
element simulations, which necessitate intricate boundary conditions and
interactions on a case-by-case basis, our research simplifies these complex
procedures and accommodates a wide range of scenarios. This research offers
substantial advantages for industrial manufacturing, particularly in the design and
mass production of woven fiber composite materials.
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1 Introduction

Composite materials that possess multiple excellent mechanical
properties, such as high-strength and lightweight, have been
implemented in numerous fields, for example, in aerospace
engineering, civil engineering, the military, motorsports, and
other competitive sports products, etc., (Booysen, 2002; Tsai and
Hahn, 2018). They can provide the advantages of multiple materials
while overcoming the drawbacks of a single material. This has
expanded their field of application, allowing them to play an
important role in many domains and replace many conventional
materials.

There are many kinds of composite materials, including
fiber-reinforced composites, sandwich-structured composites,
hybrid composites, etc., (Sheehan et al., 1994). Fiber-reinforced
composites have led to the development and application of
many new products due to their excellent material properties.
They are composed of a matrix and fiber reinforcements. There
are two matrix categories: thermoplastic and thermoset. The
fabric dominates the mechanical properties of the composite
material and common fabrics include glass fiber, carbon fiber,
Kevlar, etc. (Savage, 1993; Dresselhaus and Avouris, 2007;
Zhang et al., 2012; Edwards et al., 2013), but there are also
other forms such as staple fibers, filament fibers, and yarn fiber.
Different processing methods use different arrangements and
weaving methods. Different characteristics of a composite
material also result in different mechanical properties.
However, due to the large amount of design and mass
production required in the industry, the complexity of the
composition of the fabric reinforcements and the matrix
requires a huge consumption of time and computational
resources.

Conventional material development is a slow and arduous process,
especially for composite materials. To search for ideal material
characteristics, researchers typically must test thousands of
combinations of materials, which is too costly for most industries.
Furthermore, many problems must be considered during their design
and production. For example, the composition ratio between thematrix
and the reinforcements has to overcome the drawbacks of using a single
material and the enormous consumption of time and computational
resources required for industrial application during the design and
production stages also have to be considered. The development of
woven fiber composites is an example of the intractable problems of this
process. The outer layer of this complex model is a “wrapped-around”
resin matrix and the fabric reinforcements are woven together in the
interior. The composite material is formed from the combination of
these two materials.

There are different weavingmethods for the fabrics (Nosrat Nezami
et al., 2016), such as the plain weave, twill weave, harness satin weave,
etc. Different weaving methods give different mechanical performance
distributions. If the analysis of the mechanical properties of woven fiber
composite materials could be carried out in advance through finite
element analysis, repetitive designs and production waste could be
avoided. However, dealing with the complex geometric models and
contact boundary conditions of FEM is very computationally expensive
and time-consuming.

With the continuous improvement in computer technologies,
the increase in computing power, and the vast training data

available, AI technology has gradually come to be adopted by
different research teams in many different fields, solving
problems that were previously too hard to solve (Hamet and
Tremblay, 2017; Salehi and Burgueño, 2018; Yu and Buehler,
2020; Zhao et al., 2021). By processing the features of an image,
AI can solve image recognition problems. For example, with the
continuous convolution of kernels, the Convolutional Neural
Network (CNN) can collect an image’s features (O’Shea and
Nash, 2015; Albawi et al., 2018; Yu and Buehler, 2020). It has
produced notable results in object detection and classification
problems. AI can also solve time series sequential data. The rise
of AI has shed new light on many difficult problems that were
previously unsolvable (Hamet and Tremblay, 2017; Salehi and
Burgueño, 2018; Bullock et al., 2020). Researchers can now make
breakthroughs on long-standing difficulties in many different fields
by using AI. For example, the folding sequence of proteins (Yu et al.,
2022a), the prediction of graphene crack propagation (Yu et al.,
2022b), and the design of multifunctional structural materials (Yang
et al., 2021) are problems that have been solved by using AI.

With the utilization of deep learning for the feature
extraction of two-dimensional structures, the mechanical
properties of woven fiber composite materials can be
predicted (Foss et al., 2014). Information regarding woven
fiber composite materials is obtained through finite element
analysis, covering details such as fiber angles, resin material
parameters, and the effective modulus of the woven fiber
composite material. This kind of data is ideally suited for
deep learning models that utilize regression analysis.
However, the mechanical properties of woven fibers depend
on both material properties and geometry, which cannot be
addressed by solely employing a CNN model.

Here we developed a hybrid network which combined CNN
model and a multilayered perceptron to learn the mechanical
behavior for the given training dataset. The long-standing
difficulties of using finite element analysis on the computation of
woven fiber composites can be solved using this model and the
complicated setup required for the mass design and production of
woven fiber composites can also be simplified. The model can
analyze and predict the mechanical properties of different woven
fiber composite materials. In addition, we implement this model in
the resin transfer molding module of the mold flow software
Moldex3D (Tseng et al., 2017; Tseng, 2018; Shi et al., 2019).
Figure 1 demonstrates its benefits to simulation and analysis and
also to the mass design and production of the industrial woven fiber
composite material process.

2 Materials and methods

2.1 Framework

This research implemented finite element analysis, AI
algorithms, and Representative Volume Element (RVE) to predict
the mechanical properties of a woven fiber composite material, and
the flowchart our proposed method is shown in Figure 2. We
established the carbon fiber woven composite model through
Moldex3D by adjusting the geometric parameters, such as the
arrangement of the fiber and the woven angle between the fibers,
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and also the material parameters of the fabric and resin. Next, we
simulated this model using the finite element analysis software
ABAQUS. From the results of the analysis, we obtained the
effective modulus of its mechanical properties, namely, of its
Young’s modulus, shear modulus, Poisson’s ratio, and coefficient
of thermal expansion. The effective modulus represents the material
characteristics of the corresponding carbon fiber composite. The
weaving method of the fabric, the material parameters of the fabric
and resin, and the weaving angle, etc., Were taken as inputs, whereas
the effective modulus obtained through simulation was taken as
ground truth. We have built a dual-input CNN model, for the first
input channel architecture, by first inputting the image information
of the woven fiber composites, followed by 4 convolutional layers,
1 pooling layer and 4 fully connected layers. For the second input
channel, the information of material parameters is input first,
followed by 4 fully connected layers. These two inputs are
combined in the middle of the overall CNN model, followed by
3 convolutional layers, 5 fully connected layers, and finally the
output prediction result. The dual input channel ensures that we
can learn the relation between the wovenmethods of the woven fiber
composite, which are represented as 5*5 grids, and the material
parameters. With these datasets provided for the training of the deep
learning algorithm and CNN as the predictive model, we aimed to
reach the goal of directly predicting the effective modulus of a
carbon fiber composite.

2.2 Input model generation

The first step of the finite element simulation was to establish the
geometric model of the woven fiber composite, which we created
using the specialized open source software TexGen (Lin et al., 2011;
Long and Brown, 2011). The woven fiber composite model was
composed entirely of unit cells, with five horizontal fibers and five
vertical fibers. When we created the model of the woven fiber
composite, the geometric parameters were assigned randomly,
including the material of the fibers and resin, the weaving
method between the fibers, the cross-section of the fiber, the
spacing between the fibers, and the angle between the fibers, to
ensure randomness and diversity. Specifically, the yarn fiber and
resin material can be chosen from the materials shown in Table.1
and Table.2 respectively; the weaving method of the model can be
randomly generated on a grid to represent the weaving conditions;
the width of the section of fibers can be randomly generated in the
range between 0.2 mm and 1 mm; the height of the section of fibers
can be randomly generated in the range between 0.1 mm and
0.4 mm, and the angle between fibers can be randomly chosen
from 5 different angles, 90, 75, 60, 45, and 30. The weaving
method of the fiber is represented as a 5*5 grid, where the black
represents the horizontal fiber that weaves above, and the white
represents the horizontal fiber that weaves below. A simplified
representation of the weaving method is shown in Figure 3B.

FIGURE 1
Flowchart of the collaboration process between our team and Moldex3D. Moldex3D provided data related to the woven fiber composite. For
instance, the parameters of the fiber and the resin material, the diameter of the fabric, the mechanical properties, etc. We further utilized this model to
establish the deep learning CNN and adjusted the predictionmodel’s parameter by comparing the simulation results with ground truth. Finally, the trained
neural network model was integrated with Moldex3D to optimize the computational speed and resources of the original simulation module.
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The parameters of the fibers and the resin materials were then fed
into TexGen. We also took the weaving method, the angle between
the fibers (as shown in Figure 3C), and the parameters of fibers and

resins of the woven fiber composite as features of the data. Finally,
the whole woven fiber composite was exported in a format
compatible with ABAQUS in order to perform finite element
simulation of the mechanical properties of the woven fiber
composite.

2.3 Data labeling

The mechanical properties of the woven fiber composite
were obtained through finite element simulation. Then finite
element simulations were performed using the geometric model
of the woven fiber composite that was established using
ABAQUS (Giner et al., 2009). The force was considered as
concentrated on a fixed point for the boundary condition. The
concentrated force was exerted on different axes at different
time steps in order to analyze the effective modulus of the
different axes. The magnitude of the concentrated force varied
depending on the size of the model and Eq(Li and Wongsto,
2004). was used to determine the corresponding deformation
and strain. When a force Fx is exerted on a unit cell causing a
strain ε0x with all other degrees of freedom unconstrained, the
work applied can be expressed as:

W � 1
2
Fxε

0
x

FIGURE 2
Flowchart of the procedure. First, we created the woven fiber composite model and analyzed it using finite element simulation to obtain the
effective modulus of its mechanical properties for the simplification process. Next, we arranged the data of the woven fiber composite material into
training datasets with features and labels. Finally, the deep learning model for the prediction of the effective modulus of the woven composite material
was established.

TABLE 1 Fiber material parameters.

Material properties T300(carbon) E-glass

Fiber density (kg/m̂3) 1780 2550

Fiber diameter (mm) 0.007 0.017

Young’s modulus X (MPa) 2.30 E+05 7.20 E+04

Young’s modulus Y (MPa) 2.30 E+04 7.20 E+04

Young’s modulus Z (MPa) 2.30 E+04 7.20 E+04

Shear modulus XY (MPa) 9.00 E+03 3.00 E+04

Shear modulus XZ (MPa) 9.00 E+03 3.00 E+04

Shear modulus YZ (MPa) 9.00 E+03 3.00 E+04

Poisson’s ratio X 0.26 0.2

Poisson’s ratio Y 0.26 0.2

Poisson’s ratio Z 0.26 0.2

Coefficient of Thermal Expansion X (1/K) 1.50E-06 5.00E-06

Coefficient of Thermal Expansion Y (1/K) 1.00E-05 5.00E-06

Coefficient of Thermal Expansion Z (1/K) 1.00E-05 5.00E-06
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The strain energy stored in the unit cell can be expressed by the
macro stress and strain:

E � 1
2
∫

V
σ0xε

0
xdV � 1

2
Vσ0xε

0
x

By equalizing the equation of workW and the equation of strain
energy E, the relation between the concentrated force Fx and the
macro stress σ0x. Applying the procedure to each extra degrees of
freedom can be obtained as follows:

σ0x �
Fx

V
, τ0xy � Fxy

V

With the relationship between the concentrated force and the
macro scale stress obtained, we were able to obtain the effective
modulus of the unit cell on the axis of interest. The equation of the
effective modulus is:

when Fy � Fz � Fxy � Fyz � Fxz � ΔT � 0,

E0
x �

σ0x
ε0x

� Fx

Vε0x

υ0xy � −ε
0
y

ε0x
, υ0xz � −ε

0
z

ε0x
when Fx � Fy � Fz � Fyz � Fzx � ΔT � 0,

G0
xy � τ0xy

γ0xy
� Fxy

Vγ0xy

when Fx � Fy � Fz � Fyz � Fzx � Fxy � 0,

α0x �
ε0x
ΔT

The simulation setup for the woven composite material consists
of the following steps. The resin envelops the fibers to form the
entire model, and a master node is established at the resin material’s

TABLE 2 Resin material parameters.

Material properties ELER-8-130 Plaskon SMT-B-1F CEL-400

Young’s modulus (MPa) 2.5 E+04 1.52 E+04 2.0 E+04

Poisson’s ratio 0.2 0.4 0.4

Coefficient of Thermal Expansion (1/K) 8.0E-06 1.3E-05 6.0E-05

FIGURE 3
(A)Different types of weaving methods: plain weave, twill weave, and satin weave. (B) Simplification process. The black (0) represents the horizontal
fiber that weaves above and the white (1) represents the horizontal fiber that weaves below. (C) Representation of the angle between the fibers of the
woven fiber composite from the top view.

Frontiers in Materials frontiersin.org05

Hsu et al. 10.3389/fmats.2023.1179710

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1179710


corner as a reference point. Constraint nodes are positioned based
on the fibers’ locations, which means each model’s constraint node
will be set at different positions according to the specific model. We

apply a fixed boundary condition to the master node and assign
varying concentrated forces to the constraint node based on each
model’s volume. The concentrated forces’ value is calculated as the

FIGURE 4
Distribution of the effective modulus for the woven fiber composite obtained from the simulation analysis. (A)Young’s modulus along the x-axis. (B)
Young’s modulus along the y-axis. (C)Young’s modulus along the z-axis. (D) Shear modulus on the xy-plane. (E) Shear modulus on the yz-plane. (F) Shear
modulus on the xz-plane.

FIGURE 5
Distribution of the effective modulus for the woven fiber composite obtained from the simulation analysis. (A) Coefficient of heat conduction along
the x-axis. (B) Coefficient of heat conduction along the y-axis. (C) Coefficient of heat conduction along the z-axis. (D) Poisson’s ratio on the xy-plane. (E)
Poisson’s ratio on the yz-plane. (F) Poisson’s ratio on the yz-plane.
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product of the model’s width, height, and thickness. A schematic
diagram depicting the simulated loading of the relevant effective
modulus equation can be found in the Supplementary Material,
specifically in Supplementary Figure S1. With the equation of the
effective modulus above, we were able to apply different
concentrated forces according to the different volumes of the
woven fiber composites when configuring the simulation settings
of the boundary conditions. After the strain magnitude of the
composite on the desired axis was obtained from the analysis, the
effective modulus was acquired by taking the reciprocal of the value.

The mechanical properties of the woven fiber composite
obtained from the simulation analysis were also labelled,
including the Young’s modulus, shear modulus, Poisson’s
ratio, and the coefficient of heat conduction. In Figure 4 and
Figure 5, we calculated the effective modulus equation to obtain
the values. The figures reveal that the 3,000 data points tend to
be randomly distributed, with the distribution being influenced
by several factors. One such factor is the geometric parameters
set during the creation of the woven fiber composite, with the
angle between the fibers having a significant impact. Another
influence is the material parameters in the simulation setup. We
have three resin materials and two fiber materials, and each
combination also affects the results of the woven fiber
composite. We assign random geometric parameters and
various material parameter combinations for the woven fiber
composite within a reasonable range. While these are case-by-
case and time-consuming for finite element simulations, our
research simplifies these problems and delivers rapid results.
Figure 4 and Figure 5 also shows the distributions of the
mechanical properties and it can be seen that the labelled
data of the neural network training dataset is scattered
evenly. This means that our training dataset possessed
randomness and interpretability, providing great benefit for
the learning of the neurons of the neural network.

2.4 Deep learning model

A convolution neural network (CNN) was chosen as the
predictive model out of all the available deep learning models
based on the features of the training dataset. CNN consists of
one or many convolution layers, pooling layers, and fully
connected layers. This structure enables it to extract features
from the two-dimensional structure of the input data(Fred
Agarap, 2017). CNN is capable of obtaining better prediction
results than other deep learning structures in the field of image
and speed recognition (Yamashita et al., 2018) and it performs well
at finding the complex relationships between woven fibers.
However, for models using the same weaving method,
combinations of different fiber and resin materials may be
produced. To prevent this, we adopted the dual input CNN
model. The weaving method of the fiber, represented using a
checkerboard, is the first input as an image together with the
geometric parameters, the parameters of the fiber and resin, etc.,
is the second input. We provide detailed input and output
information for our deep learning models in Supplementary
Table S1 of the Supplementary Material. With our task being
data regression analysis, we choose the classical Mean Square

Error (MSE) as the loss function to train the model. The CNN
created using this bi-directional structure is shown in Figure 6.

2.5 Smart representative volume element
method

We obtained the mechanical properties of the woven fiber
composite through simulation, including the stress, strain,
displacement, temperature, etc. Furthermore, the effective
modulus was computed through the aforementioned formula,
which uses the Young’s modulus, shear modulus, Poisson’s ratio,
and the coefficient of heat expansion. The effective modulus of the
woven fiber composite was treated as the material parameters of
models of the same size. Through simplifying the complex
conditions of the model, such as the boundary conditions,
mechanical conditions, interaction on contact, etc., together with
the utilization of a cube to represent the RVE model of the woven
fiber composite, analysis results of the same high level of accuracy
could be obtained with much less time required. On this basis, we
implemented AI technology to learn the process of determining the
mechanical properties of the woven composite material through
training deep learning, aiming to directly predict the equivalent
moduli. The predicted equivalent moduli were then used as the
material parameters of the representative element in combination
with RVE. The goal was to obtain results of the same high level of
accuracy in much reduced time, hence we named this method
“Smart RVE”.

2.6 Material properties

Woven fiber composites are composed using fiber as
reinforcement and resin as the matrix, and the mechanical
properties are mainly determined by the fiber. A material
database was provided by Moldex3D. The RTM module of its
mold flow software contains a rich database of fibers and resins,
with modelling parameters available for research purposes. When
creating the model of the woven fiber composite, two types of fiber
materials and three types of resin materials were chosen. The
diameter, Young’s modulus, shear modulus, and Poisson’s ratio
values are listed in Table.1 and Table.2. The chosen materials were
all anisotropic materials. Woven fiber composite material is
composed of the resin material as the outer layer and the fiber
material as the inner layer. The combination of all materials could
generate a total number of 500 woven fiber composite models with
random geometric parameters. The dataset with a total of
3,000 woven fiber composites with randomness and
interpretability was generated and used as the training dataset for
the deep learning model.

3 Results

The geometric modelling of the woven fiber composite,
conditions for the finite element simulation, distribution of the
analysis results, methodology of specifying the material parameters
of the fiber and resin, creation of the deep learning model, and the
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application of the Smart RVE predictive model were introduced in
the previous sections. The effect of the variation of the geometric
parameters of the woven fiber composite and the astonishing
predictive performance of the dual input CNN deep learning

model are exhibited in the following sections. The differences
between the implementation of our Smart RVE method and
conventional finite element simulation for several types of woven
fiber composites are also presented.

FIGURE 6
Dual input CNN structure. The input of the fiber and resin material parameters and the geometric parameters, together with the top view of the
weaving method treated as an input image. The equivalent moduli were predicted through the hidden layer, convolution layer, flatten layer, and the
combination of the data through the fully connected layer.

FIGURE 7
(A)Comparison of the effect of the weaving angle on the Young’smodulus of the woven fiber composite. (B) Top view of the woven fiber composite
with various weaving angles. (C) Continuous iteration of the loss functions during the training process. (D)Continuous iteration of the accuracy functions
during the training process.
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3.1 Data statistics

The dataset utilized for training the deep learning network was
generated by introducing a wide range of parameter variations to the
simulation model of the woven fiber. These variations included: 1) the
yarn fiber material, 2) the resinmaterial, 3) the weaving conditions, and
4) the weaving angle between the fibers. Among these parameters, we
focused on examining the effects of the angle between fibers, as its
influence on the overall properties is less intuitive. The Young’s
modulus is taken into account when comparing the impact of
different weaving angles on the woven fiber composite, as depicted
in Figure 7A. It is evident that the variation in weaving angle
significantly affects the Young’s modulus of the model. Due to its
special crystal structure of carbon fibers, it has a higher strength in the
direction of the fiber, making it a brittle material that is capable of
enduring a relatively high axial load. With the decrease of the angle
between the fibers, the fiber that was originally oriented along the y-axis
is increasingly rotated towards the x-axis (see Figure 7B), resulting in the
increase of the Young’s modulus in the x-direction increases, and the
increases axial load it can endure along the x-axis increases. Therefore,
the Young’s modulus on the x-axis increases with the decrease in the
weaving angle between the fibers. On the contrary, when the weaving
angle between the fibers decreases, the carbon fiber, which has a low
radial load capacity, becomes more brittle. Thus, the load bearing
capacity along the y-axis decreases. Due to the relatively low
thickness of our woven fiber composite model, the adjustment of
the weaving angle is performed only on the xy-plane, thus, the
Young’s modulus on the z-axis is not greatly affected. To validate
our data generation approach, we have presented the distributions of
the resulting effective modulus in Figures 4, 5. Figure 4 displays the
distribution of Young’s modulus and shear modulus, while Figure 5
illustrates the distribution of the coefficient of heat conduction and
Poisson’s ratio. As depicted in these distributions, our data generation
method effectively produces a dataset with evenly distributed properties,
which in turn provides the deep learning model with diverse
information concerning the relationship between parameter
variations and the associated mechanical properties.

A single woven fiber composite model alone requires an
enormous amount of computational time and resources, which is
a serious issue for businesses specializing in the design and
production of woven fabric composites. If the advantages and
disadvantages of a proposed woven fiber composite could be
analyzed and designed at the simulation stage, this would have a
significant impact on their design and manufacture. Therefore, our
team developed a predictive model that is capable of dealing with
various simulated conditions for woven fiber composites. Even using
data that is unseen during the training of the deep learning model,
the effective modulus of a woven composite can still be accurately
predicted. This accelerates the speed of the simulation of woven fiber
composites while reducing the enormous amount of computational
resources that would otherwise be required.

3.2 Training performance

The mechanical properties of the woven fiber composite
obtained from the finite element analysis are represented by the
effective modulus and our deep learning model exhibited superior

predictive capability in predicting the corresponding effective
modulus using model properties. The training process of the loss
function of the neural network is shown in Figure 7C. We adopted
the mean-square error as the loss function in order to evaluate the
accuracy and performance of the neural network. The loss of the
training data, represented by the blue line, dropped from 0.1015 to
0.0018 within the first 10 iterations. When validating the data,
represented by the orange line, the same tendency was exhibited
and the loss dropped from 0.0228 to 0.0014 within the first
10 iterations. When the number of iterations for the training of
the neural network reached 1,000, the loss of the training dataset
converged to a magnitude of 10−4. On the other hand, the loss of the
validating dataset reduced together to the same magnitude of 10−4.
During the training process, it is important that the training dataset
and validating dataset share the same trend. As indicated by the
accuracy curve in Figure 7D, it is evident that the neural network has
successfully learned the features from the training dataset without
any overfitting. Based on the aforementioned results, we also
showcase that the proposed dual-input CNN model is both
feasible and effective for complex simulations of woven fiber
composites.

3.3 Prediction

The comparison between the predicted values obtained using
the deep learning model and the ground truth simulated by
ABAQUS demonstrates that this predictive model possesses a
strong ability to predict the effective modulus of woven fiber
composites. The prediction results shown in Figure 8 include
Young’s modulus and shear modulus, and the prediction results
shown in Figure 9 include the coefficient of heat expansion and
Poisson’s ratio. The x-axis of the distribution graph represents the
ground truth of the effective modulus obtained from finite element
analysis. The y-axis represents the value predicted by the CNN deep
learning model. It can be observed most of the points are
approximately positioned along the diagonal y � x, meaning that
the value of ground truth is quite close to the predicted value. This
proves the capability of our dual input CNNmodel at distinguishing
important information from the features of the material, weaving
method, and weaving angles. For example, different weaving angles
generate very different behavior in the mechanical characteristics of
the woven fiber composite on different axes. It can also be seen that
our dual input CNN model has considerable capability in the
prediction of the effective modulus of the woven fiber
composites. The prediction outcomes demonstrate a high degree
of accuracy when compared to the simulation results. We have
compiled the average error between the predicted values derived
from deep learning and the ground truth obtained from the FEM
simulations, as displayed in Table 3. Our trained model showcases a
robust predictive capability for each effective modulus, with the
calculated average error being less than 5%. It is important to note
that traditional FEM simulations demand significant time and
involve complex steps, from model building to simulation setup
and result analysis. In contrast, our trained model delivers
predictions in just a matter of seconds. The coefficient of
determination, R2, of each distribution graph of the effective
modulus were all calculated as 0.99. Values close to one indicate
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that the relationship between the point produced from the ground
truth and the predicted value is close to a straight line, meaning that
there exists a close numerical relationship between the ground truth
obtained from the finite element analysis and the predicted value
obtained from the CNN model.

4 Discussion

The dual input CNN demonstrated excellent performance in the
prediction of the effective modulus of the woven fiber composite and
this could help us further reduce the model. We thus created a
geometric model that was of the same size as the original woven fiber
composite model and input the homogeneous material parameters
obtained from the prediction of the neural network, producing the
reduced model. Compared to the original complex woven fiber
composite model composed of fiber and resin materials, the
computation time and resources could be reduced for the
simulation analysis while obtaining similar mechanical behavior.
We simulated two kinds of mechanical experiments for the woven
fiber composite and the fiber material, respectively the shear test and
the ball impact test. The material parameters of T300 (Table 1) were
chosen for the reinforcements and of ELER-8-130 (Table 2) for the
matrix of the woven fiber composite. The staggered-weaving plain
weave method was adopted with a 90-degree weaving-angle,
ensuring uniform loading on both axes. The finite element model

of the woven fiber composite was created according to the material
and geometric parameters described above in order to further
develop the finite element analysis simulation.

The first simulation demonstrated the stress concentration after
the model was subjected to a shear force. A stress concentration will
lead to the model being damaged more easily but finite element
simulation of the woven fiber composite allows us to better
understand the load capacity of the composite material and avoid
this. It also enables us to further optimize the material. We
compared the results of the simplified model obtained from the
prediction of the Smart RVE and the simulation of the woven fiber
composite obtained using the conventional finite element method.
The simulation conditions for both modelling methods were as
follows. The geometric parameter of an inverse L-shape cube was
used, consisting of five unit cells 0.422 mm in height and 7.77 mm in
length and width. The boundary condition was specified such that
the corner of the model was fixed, with the lower plane and left plane
set as rolling contacts. The top of the model was subjected to a
10,000 N shear force. To comprehensively analyze the complex
model of the woven fiber composite, the mesh size of the
conventional finite element simulation was set to
625,000 elements, in contrast to the 150,544 elements of the
homogenous RVE model. The stress concentration on the corner
of both models when subjected to the stress distribution generated
under the application of the shear force on the fiber can be observed
in the results of the analysis. As can be seen in Figure 10B,

FIGURE 8
Distribution graphs of the values predicted by the CNN neural network and the ground truth obtained from the FEM simulation. (A) Young’s modulus
along the x-axis. (B) Young’s modulus along the y-axis. (C) Young’s modulus along the z-axis. (D) Shear modulus on the xy-plane. (E) Shear modulus on
the yz-plane. (F) Shear modulus on the xz-plane.
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deformation to the right side was produced when the model was
subjected to the shear force, and a local stress concentration was
created on the corner of the model with the bending location on the
right. The fibers of the composite were stagger-weaved inside the
resin material. Therefore, distinct local stresses would be expected to
occur at the woven section of the model. Nevertheless, the stress

concentration at the corner and the bending on the right resulted in
an extremely similar distribution to the RVEmodel. Considering the
cross-sectional view at the half position of the z-plane for both
models, it can be observed that the stress distribution is not only
impacted at the corner and the bending on the right, but also by the
orientation of the fibers because of the method of weaving.
Nevertheless, careful observation reveals that the stress
distribution generated on the fibers remains identical to the stress
distribution of the RVE model. Both show concentrations at the
corner and on the right-bending position of the model. The simple
and homogenous RVEmodel represents the stress distribution in an
evenly distributed manner. It can be seen from this analysis that the
stress distribution determined by the RVE model is extremely
similar to the results obtained using the complex woven fiber
composite, while requiring substantially reduced computing time.
The simulation time of the original complex woven fiber composite
was 90 min, whereas the RVE model only required a mere 60 s for it
to produce similar results, as shown in Figure 10.

The second simulation revealed the distribution of stress
and displacement generated in the woven composite material
under the ball impact test. The light weight and high strength of
woven composite materials make them applicable in all sorts of
industries, including those that involve frequent impact by
external forces. For example, to reduce the weight of an
aircraft while ensuring that it remains capable of continuing
flight when subjected to external impact, an aircraft
manufacturer could use woven composites that comply with

FIGURE 9
Distribution graphs of the values predicted by the CNN neural network and the ground truth obtained from the FEM simulation. (A) Coefficient of
heat expansion along the x-axis. (B) Coefficient of heat expansion along the y-axis. (C) Coefficient of heat expansion along the z-axis. (D) Poisson’s ratio
on the xy-plane. (E) Poisson’s ratio on the yz-plane. (F) Poisson’s ratio on the xz-plane.

TABLE 3 The average error of effective modulus in each direction.

Effective modulus Direction Average error

Young’s modulus (MPa) x − axis 2.257%

y − axis 1.506%

z − axis 0.798%

Shear modulus (MPa) xy − plane 1.127%

yz − plane 0.846%

xz − plane 0.951%

Coefficient of heat expansion (1/K) x − axis 2.525%

y − axis 3.142%

z − axis 3.139%

Poisson’s ratio xy − plane 1.491%

yz − plane 1.124%

xz − plane 1.451%

Frontiers in Materials frontiersin.org11

Hsu et al. 10.3389/fmats.2023.1179710

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1179710


the requirements as the material for the fuselage. Therefore,
this scenario was chosen as the condition of our finite element
simulation. We also compared the results obtained from the
simplified model predicted and built by Smart RVE with the
simulation results of the woven fiber composite obtained using
conventional finite element methods. The conditions for the
simulation for both methods were as follows. The model was a
cuboid of 0.422 mm height and 23.33 mm length and width.
The four sides of the model were fixed and the ball was set as a
rigid body in order to observe the deformation of the woven
composite material after an impact. The ball was given 2.54 mm
of displacement. To comprehensively analyze the complex
model of the woven fiber composite, the mesh size of the
conventional finite element simulation was set at
625,000 elements, in contrast to the 150,544 elements of the
homogenous RVE model. When the woven composite material
was subjected to the impact of a ball falling from above, a hole
was produced in the center of the model, which bore the weight
of the ball. The deformation on the surface of the model caused
by the impact of the ball and the stress distribution produced
after the impact on both models can be observed in the cross-
sections of the analysis. The deformation of the model
produced by the impact of the ball can be seen in
Figure 11B, as well as the stress distribution of the fiber
under magnification at the point of impact. It can be that
the deformation is similar in both models subject to the
same force of impact, although the woven fiber composite
material shows a local stress dispersion phenomenon due to

the fiber weaving. Nevertheless, it can still be seen that the
trends of the stress distribution under the ball impact test are
identical. Both the RVE model and the more complex woven
composite material both exhibited very similar simulation
results for the distribution of stress and displacement after
deformation. However, the simulation time to complete the
entire analysis for the RVE model required only 1/600 of the
time required to simulate the woven composite material. This
significant reduction of computing time and computational
resources required for finite element simulation is shown in
Figure 11.

The method of simplifying the model by predicting the
equivalent moduli using the neural network is termed “Smart
RVE”. By implementing this method on the RVE model and the
woven composite materials, significant improvements were
obtained. By replacing the complex woven composite material
in the original simulation with an RVE model of homogeneous
material that had similar characteristics, very similar mechanical
characteristics were exhibited under the identical simulation
conditions. However, the computing time required for the
finite element analysis was significantly reduced. The results
are shown in Figure 12. The simplification of the model
enables us to better predict models and improve integration
with different software modules while significantly reducing
the computing time required compared to the original method
of finite element analysis.

In our current work, our primary focus is on unit elements
of single-layer woven fiber composites, which restricts the

FIGURE 10
(A) Simulation conditions for the examination of local stress concentrations produced under shear stress. The woven composite material was
assembled using five unit cells. The boundary conditions for the simulation were: Point A set as fixed; Face B set with no displacement on the y-axis; Face
C set with no displacement on the x-axis; Face Dwas subjected to a 10,000 N shear force. (B)Woven compositemodel assembled from five unit cells and
the simplified model obtained using RVE.
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direct applicability to multi-layer woven fiber composites.
Nonetheless, integrating additional simulations related to
multi-layer materials into the dataset could potentially
overcome this limitation and enable precise predictions for
multi-layer woven fibers. Another challenge arises from the
material parameters. Our study investigates linearly elastic
materials, making it difficult to predict parameters for
nonlinearly elastic materials. Broadening the material
parameter data to include plasticity cases may allow for
more accurate predictions for such materials. Augmenting

the dataset with nonlinear material data is a viable and
effective strategy to enhance the model’s predictive capabilities.

5 Conclusion

Focusing on woven fiber composites, our team developed a
structural model using a dual input CNN deep learning model to
predict mechanical properties, as shown in Figure 13. We created a
model using this process and integrated it withMoldex3D, obtaining

FIGURE 11
(A) Simulation conditions for the simulation of stress and displacement distributions generated by the impact of a dropping ball. (B) Woven
composite model assembled from nine unit cells.

FIGURE 12
Comparison between Smart RVE modelling and conventional finite element simulation for the woven composite material.
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valid analytical results with an analysis speed that was several times
faster compared to conventional finite element analysis. The first
step of the research was to process the data of the woven composite
material, with Moldex3D providing the relevant material properties
(fiber and resin) for preprocessing. Next, we created a model of the
woven composite material using the opensource software TexGen.
The mechanical properties of the woven composite was further
analyzed by simulation using ABAQUS. It was then used as the
training database for the deep learning algorithm. During the
creation of the deep learning model, the parameters of the neural
network were continuously iterated and updated by comparing the
results with the ground truth obtained through finite element
analysis in order to optimize the prediction capability. After the
neural network model was created, we provided Moldex3D with the
structure and the trained neural network. Through this model, the
corresponding equivalent moduli of the woven composite material
could be obtained directly using only data conforming to the format
of the neural network. By integrating this prediction module into the
original RTM module in Moldex3D, the computation speed of the
finite element analysis was successfully accelerated, while the
analytical results were of a comparably high level of accuracy
with conventional finite element analysis.

We developed a predictive model using deep learning to
solve the computing problem faced by finite element analysis,
i.e., to reduce computing time while also exhibiting excellent
performance when implemented on industrial software,
demonstrating that AI can be feasibly used with simulation
software for finite element analysis. A patent has also been
successfully filed. It is anticipated that this method could be
extended to more and more simulation modules in order to
solve other long-standing problems faced by practitioners of

finite element analysis, especially for the semiconductor and
injection molding industries in which the precision of design is
crucial.
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