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Heat-resistantmagneticmicrowave absorption coatings are vital important for the
stealth safety of apparatus working at elevated temperature or electromagnetic
compatibility of high density/power electronic devices. In this work, we proposed
a heat-resistant coating with nanocrystalline FeCoCr micropowders as the
absorbents and silicone resin as the matrix. The evolution of microstructure,
absorption and adhesion of FeCoCr/silicone resin coatings were investigated after
heat treatment at 400°C. The results show that the roughness of FeCoCr powders
slightly increased due to the formation of nanoparticles, while their crystalline
phase maintained body-centered cubic structure with grain size increasing from
10.8 nm to 18.1 nm after heat treatment. The saturated magnetization and
coercivity of FeCoCr powders also increased after heat treatment. The
adhesion of FeCoCr/silicone resin coatings exhibited sharp increase with the
extension of heat treatment time, i.e., from 7.59 MPa at room temperature to
11.78 MPa after heat treatment at 400°C for 10 h; this phenomenon occurred due
to the condense of FeCoCr-resin interfaces. The complex permittivity of the
coating was reduced after heat treatment, while the complex permeability
increased; this gave rise to enhancement of microwave absorption and
showed the working potential of the FeCoCr/silicone resin coatings at elevated
temperature.
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1 Introduction

Microwave absorption materials have attracted tremendous attention in recent years
either for stealth of military objects or for reduction of electromagnetic in civilian devices (Xu
et al., 2021), by applying of novel materials with various compositions (Xu et al., 2020) and
microstructures (Quan et al., 2019). Heat-resistant high performance microwave absorbing
materials are crucial for improving the stealth ability of aircraft against radar detection and
suppressing electromagnetic interference of high-precision and high-power electronic
equipments which radiate heat at working (Qin and Brosseau, 2012; Peng et al., 2014).
They can maintain stable structure, mechanical and electromagnetic properties at high
temperature without cracking or falling off, which is vital important to ensure the thermal
service safety of equipments (Jia et al., 2018).
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At present, heat-resistant microwave absorbing materials mainly
involve ceramics, carbon materials, magnetic metallic materials.
Ceramic materials have attracted wide attention due to their
excellent chemical and thermal stability. A variety of ceramic
microwave absorbing materials including SiO2 (Ma et al., 2019),
Al2O3 (Wang et al., 2015), BaTiO3 (Qing et al., 2014), SiC (Yang
et al., 2013) and Si3N4 (Li et al., 2015) have been developed. Those
materials showed low density, high hardness, high strength, good
oxidation resistance, high thermal stability. However, improving
their dielectric properties and wide-band absorption remains a great
challenge. Carbon materials have the advantages of light weight,
good corrosion resistance and high electrical conductivity. They
have attracted much attention in the field of heat-resistant absorbing
materials in recent years, such as carbon nanotubes (Song et al.,
2009), graphene (Cao et al., 2015) and carbon black (Xu et al., 2018).
However, carbon materials generally can work at temperature lower
than 400°C, and the regulation of their permittivity is complex,
leading to large thickness and narrow absorption bandwidth.
Magnetic metallic absorbents have great potential in preparation
of thin-layer, lightweight, wide-band and strong absorbing
microwave materials since they possess both dielectric and
magnetic loss mechanisms (Magisetty et al., 2018; Fu et al.,
2022). However, when they are used at elevated temperature,
many challenges appear, such as growth of grain, oxidation and
mechanical deterioration when combining with polymeric matrix.
Therefore, new heat-resistant materials based on magnetic metallic
absorbents are ought to be developed, and the evolution of their
properties are to be investigated.

In terms of heat-resistantmatrix, silicone resin has organic-inorganic
skeleton with Si-O-Si main chain structure and shows excellent heat
resistance and processability (Robeyns et al., 2018). The structure and
molecular weight of silicone resin are closely related to its properties.
Some researchers have shown that silicone resin with higher crosslinking
degree and molecular weight and better heat resistance can be obtained
by silane addition reaction (Pagliaro et al., 2013), which is an important
matrix for the preparation of magnetic microwave absorption materials
in low and medium temperature regions. Heat-resistant microwave
absorption materials based on silicone resin and carbonyl iron
powders have been studied (Zhou et al., 2015; Zhang et al., 2018).
However, Fe/silicone resin coating can be used at low temperature, due to
the easy oxidation of Fe. Moreover, the adhesion of the coating, one of
the most important property for practical applications, are rarely
concerned. Therefore, developing novel magnetic metallic absorbents
with thermal stability and their robust composite coatings with silicone
resin is vital important.

Herein, we proposed a heat-resistant coating with nanocrystalline
FeCoCr micropowders as the absorbents and silicone resin as the
matrix. The evolution of microstructure, absorption and adhesion of
FeCoCr/silicone resin coatings were investigated after heat treatment at
400°C for different time. The FeCoCr/silicone resin coatings showed
efficient microwave absorption and robust adhesion after working at
elevated temperature.

2 Materials and methods

Spherical Fe42.5Co42.5Cr15 alloy powders were prepared by melt-
spray method. Flaky FeCoCr powders were produced by milling of

the raw powders with ball milling machine. The morphology of
spherical and flaky FeCoCr powders can be seen in Supplementary
Figure S1, while the elemental composition of the powder can be
seen in Supplementary Figure S2. During the milling process,
ethanol was used as the process-control agent. The milling rate
and time were 200 r/min and 60 min, respectively. The milled
powders were separated from ethanol by magnets, followed by
drying at 60°C for 3 h.

During the preparation of FeCoCr/silicone resin composite
coatings, weight ratio of 4:1 between FeCoCr powder and silicone
resin was used. Firstly, silicone resin was added to a beaker, followed
by the adding of xylene. After stirring at rate of 500 r/min for 20 min,
the silicone resin was considered to be uniformly dispersed in
xylene. Secondly, flaky FeCoCr powders were added to the
dispersion, followed by mechanical stirring at 1,000 r/min for
60 min. After that, FeCoCr/silicone resin coatings were prepared
by spray coating. Titanium cylinders of Φ25 mm were used to
support the coatings for adhesion test. After spray coating, the
FeCoCr/silicone resin coatings were cured at 80°C for 1 h and
subsequent at 180°C for 3 h.

Heat treatment of FeCoCr powders and FeCoCr/silicone resin
coatings in air was performed in a tubular furnace. Microstructures
of FeCoCr absorbent powders and coatings were characterized by
scanning electron microscope (SEM S-4800), while their crystalline
structures were analyzed by X-ray diffraction (XRD, D8 Advance
diffractometer). Adhesion of coatings was measured by a universal
mechanical testing machine (CMT5105, SANS, China) using pull-
off method. Test standard is in accordance with ISO 4624:2016. At
least five samples were tested to obtain average value of adhesion.
Complex permittivity and permeability of coatings were measured
according to coaxial line method by a vector network analyzer
(N5230, Agilent, United States). Coatings were sculptured into
toroidal shape with outer diameter of 7.0 mm and inner diameter
of 3.0 mm to measure complex permittivity and permeability.

3 Results and discussions

3.1 Microstructure, crystalline and magnetic
properties of FeCoCr powders

Figure 1 shows SEM images of FeCoCr absorbent powders at
room temperature and after heat treatment at 400°C for 1 h, 5 h and
10 h. From Figure 1, the surface of FeCoCr powders was neither flat
nor smooth, which was caused during the ball milling process. After
heat treatment for 1 h (Figure 1B), nano-sized particles were
observed on the surface; those nanoparticles may be formed by
slightly oxidation. From Figures 1C, D, with the extension of heat
treatment time, the nanoparticles on the surface were getting more
and more obvious, leading to slight increase in roughness of the
surface. However, the nanoparticles densely distributed on the
surface, and thus the formation of nanoparticles did not change
the overall morphology of the powder. Therefore, FeCoCr powders
can maintain its morphology stability at temperature as high as
400°C.

Evolution in crystalline structure of FeCoCr absorbent powders
after heat treatment was studied by XRD. Figure 2 shows the XRD
spectra of FeCoCr absorbent powders at room temperature and after
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heat treatment at 400°C for 1 h, 5 h, and 10 h. It can be seen that
under each heat treatment condition, there were three obvious
diffraction peaks locating at 44.54°, 64.88° and 82.20°,
corresponding to (110) (200) and (211) crystal planes of bcc
phase, respectively. However, compared to the bcc structure of
CoFe (PDF#44-1433) and Cr (PDF#85-1335), the position
between CoFe and Cr indicates the presence of bcc-FeCoCr alloy
(Kumar et al., 2020). After heat treatment at 400°C, the shape of
diffraction peak did not change significantly, whereas the diffraction
peaks became sharper with the increase of heat treatment time,

giving rise to narrower half-peak width. The reason may be that the
grain size increased while the internal strain decreased after heat
treatment; reduction of internal defects promoted better
arrangement of atoms in the lattice. Table 1 shows the grain size
and internal strain of FeCoCr absorbent powders calculated
according to Hall-Williamson formula (Takaki et al., 2018). The
relationship between average grain size (D) and internal strain (ε)
can be expressed by

β cos θ � 2ε sin θ + kλ/D (1)
where β is width of half maximum of diffraction peaks, k is Scherer
constant of 0.89, λ is X-ray wavelength of 0.154 nm and θ is
diffraction angle. The XRD spectra of FeCoCr powders at room
temperature and after heat treatment at 400°C for 1 h, 5 h and 10 h
indicate that heat treatment has little effect on the composition, but
the grain size increased gradually with the increase of heat treatment
time. From Table 1, the grain size increased relatively slowly at 1 h
and 5 h, but it accelerated after 5 h. The grain size increased from
10.8 nm at room temperature to 18.1 nm at 400°C for 10 h,
i.e., increased by 67.59%.

FIGURE 1
SEM images of FeCoCr powders after heat treatment at 400°C for different time: (A) raw, (B) 1 h, (C) 5 h, (D) 10 h.

FIGURE 2
XRD spectra of FeCoCr powders after heat treatment at 400°C
for different time.

TABLE 1 Grain size and internal strain of FeCoCr powders after heat treatment
at 400°C.

Heat treatment time h) Grain size (nm) Internal strain (%)

0 10.8 ± 0.2 0.793 ± 0.016

1 12.7 ± 0.4 0.628 ± 0.020

5 13.4 ± 0.5 0.602 ± 0.021

10 18.1 ± 0.8 0.369 ± 0.017
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The static magnetic properties of FeCoCr powders after heat
treatment were also investigated. Figure 3 shows the hysteresis loop,
saturation magnetization and coercivity of FeCoCr absorbent
powders after heat treatment at room temperature and 400°C for
1 h, 5 h and 10 h. It can be seen from Figure 3A that FeCoCr
powders showed good soft magnetic properties before and after heat
treatment. The hysteresis loop is smooth without obvious hysteresis
phenomenon. Figure 3B shows the enlarged hysteresis loop near the
magnetic field intensity close to 0. It can be seen that the slope
gradually increases with the extension of heat treatment time,
indicating the increase of initial magnetic susceptibility. It can be
seen from Figures 3C, D that with the extension of heat treatment
time, the saturated magnetization (Ms) of FeCoCr powders
gradually increased. Compared with Ms of 65.12 emu/g at room
temperature, the Ms after 10 h heat treatment at 400°C increased to
78.64 emu/g and increased by 20.76%. The increase of Ms is closely
related to the release of internal stress in nanocrystalline grains. It
has been reported that (He et al., 2012) when the internal structure
of the grain is improved with the reduction of the defects such as
dislocations or impurities, the specific surface area of the grain
length decreases. Hence, the internal strain preventing the rotation
of the magnetic domains in the material would be significantly
reduced, thus leading to increase ofMs. However, it can be seen from
Figure 3C thatMs increased relatively large after 1 h and 5 h of heat
treatment, but relatively small after 10 h of heat treatment. Contrary
to the variation trend of internal strain, internal strain decreased
relatively small after 1 h and 5 h of heat treatment, but decreased
largely after 10 h of heat treatment. The phenomenon of Ms

variation may be the result of the internal strain reduction and

the slow oxidation of a small amount of absorbent powder during
heat treatment. As is seen in Figure 3D, the coercivity (Hc) increased
initially but decreased subsequently with the extension of heat
treatment time. Hc increased from 204.02 Oe at room
temperature to 227.34 Oe after 1 h treatment at 400°C, and then
it decreased to 219.4 Oe and 205.96 Oe after 5 h and 10 h treatment
at 400°C. The change of Hc may be the balance results among Cr
oxidation, segregation of Cr elements, increase of internal strain and
increase of grain size, etc. During heat treatment, irreversible slow
oxidation occurred, the composition and structure of the powder
changed slightly, causing slight deterioration of the static magnetic
properties. In addition, Cr atoms tended to segregate from internal
of grains to grain boundaries, resulting in pining effect of grain
boundaries and reduction of antiferromagnetic elements in the
crystal. Moreover, with the decrease of internal strain, the
magnetic domain is easier to rotate, caused the increase of Hc.
Therefore, the variation of Hc did not follow single trend under the
contradictory effect of slight oxidation of powder and interference of
Cr element.

3.2 Microstructure and adhesion of FeCoCr/
silicone resin coating

The long-term application of heat-resistant microwave
absorbing materials cannot be achieved without excellent
mechanical properties. When the microwave absorbing composite
material is used as a coating, it needs to have good adhesion with the
substrate. Therefore, the adhesion of FeCoCr/silicone resin coatings

FIGURE 3
Static magnetic properties of FeCoCr powders after heat treatment at 400°C: (A) hysteresis loop, (B) enlargement of magnetization at lowmagnetic
field, (C) enlargement of magnetization at high magnetic field, (D) changes in saturation magnetization and coercivity with heat treatment time.
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at room temperature and after heat treatment at 400°C were tested.
From Figure 4A, it can be seen that after heat treatment at 400°C,
adhesion of the coating increased. Before heat treatment, the
adhesion was 7.59 MPa, whereas the adhesion increased to
11.78 MPa after 10 h heat treatment, giving an increase of
55.20% and indicating the excellent heat resistance of FeCoCr/
silicone resin coating. Figures 4B, C are the photos of adhesion
test samples using the pulling method before and after heat
treatment for 10 h. It can be seen that before heat treatment, the
coating fractured at the weak layer on the surface of the coating.
After heat treatment, the coating exhibited none uniform fracture
surface in the middle of the testing cylinders. The crystal phase of
FeCoCr/silicone resin coating was also revealed by XRD (see
Supplementary Figure S3), showing stable crystalline structure
after heat treatment. Therefore, it can be concluded that heat
treatment can be helpful to enhance the interface adhesion
between the absorbent powders and silicone resin.

The change of mechanical properties is closely related to the
internal interfaces of composite materials. Figure 5 shows SEM
images of the fracture coating after pulling test. In Figure 5, flaky
powders evenly dispersed in silicone resin and mainly arranged in

parallel. Figure 5A shows the microstructure of fracture surface of
FeCoCr/silicone resin coating without heat treatment. Flaky FeCoCr
powders densely embedded in the coating, but showed obvious
microscale gaps away from the matrix. Therefore, it is reasonable to
conclude that the powder-resin interfaces were weak and
generated cracks upon the applying of external pulling force.
Figures 5B–D show the microstructure of fracture surface of the
FeCoCr/silicone coatings after heat treatment at 400°C for 1 h, 5 h
and 10 h, respectively. To clearly show the distribution of FeCoCr
particles in silicon resin, element mapping of the coating was
carried out and included in Supplementary Figure S4. Compared
with the coating without heat treatment, the coating after heat
treatment for 1 h was much dense with few microscale gaps at
powder-resin interfaces. After heat treatment for 5 and 10 h, the
fracture mechanism had changed, i.e., the powder-resin interfaces
were tight and the cracks generated in the matrix rather than at
the interfaces. The deep holes or inwards propagating of large
cracks were observed in the samples after heat treatment for 5 h
and 10 h. Therefore, after heat treatment, the powder-resin
interfaces were tight and robust, leading to the change of crack
location from the interfaces to the matrix upon external pulling
force during adhesion tests.

3.3 Electromagnetic properties of FeCoCr/
silicone resin coatings

The variation in electromagnetic properties of FeCoCr/silicone
resin microwave absorbing coating at different heat treatment time
were further investigated. Figure 6 shows electromagnetic
parameters of FeCoCr/silicone resin coating before and after heat
treatment at 400°C for 1 h, 5 h and 10 h. It can be seen from Figures
6A, B that at room temperature, the complex permittivity of
FeCoCr/silicone resin coating showed strong dispersion over
different frequency (Moon et al., 2000; Qing et al., 2010); and the
complex permittivity of the composite coating decreased after heat
treatment. The reasons leading to the reduction of permittivity are as
follows. Firstly, a small amount of insulating oxide layer generated
on the surface of the absorbent powders during heat treatment,
which increased the resistivity of the coating. According to the free
electron theory and the interface/electron polarization, the
insulating oxides will lead to the reduction of complex
permittivity (Song et al., 2014; Lv et al., 2017). Secondly, during
heat treatment, impurities or part of silicone resin molecules may
undergo thermal degradation and leave pores. According to the
equivalent medium theory (Wang et al., 2013), introduction of pores
will lead to the reduction of complex permittivity. It can be seen
from Figures 6C, D that the complex permeability of FeCoCr/
silicone resin coating increased with the increase of heat
treatment time. This is due to the substantial release of internal
stress in the absorbent powder, which intensifies the domain wall
motion, thus elevating the domain wall vibration to increase the
imaginary part of permeability. After heat treatment for 1 h, the
imaginary part of permeability of the coating roughly kept stable,
indicating that further heat treatment cannot cause continuous
oxidation in FeCoCr powders. The stability of permeability
shows that FeCoCr/silicone resin coatings are promising for
working at elevated temperature.

FIGURE 4
(A) Adhesion and (B,C) photos for adhesion test samples of
FeCoCr/silicone resin coatings before and after heat treatment at
400°C.
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FIGURE 5
SEM images for fracture surface of FeCoCr/silicone resin coatings after adhesion test for samples heat treated at 400°C for different time: (A) 0 h, (B)
1 h, (C) 5 h and (D) 10 h.

FIGURE 6
Electromagnetic properties of FeCoCr/silicone resin coatings after heat treatment at 400°C for different time: (A) real part of permittivity, (B)
imaginary part of permittivity, (C) real part of permeability, (D) imaginary part of permeability.
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To evaluate the absorption performance of FeCoCr/silicone
resin coatings, the reflection loss of the coating was simulated
with the complex permittivity and permeability according to the
theory of transmission line. Figure 7A shows the simulated reflection
loss of FeCoCr/silicone coating with thickness of 1 mm before and
after heat treatment. It can be seen that the minimum reflection loss
of the composite coating without heat treatment was only −4.75 dB,
and the band width with reflection loss less than −4 dB was only
2.95 GHz (i.e., 7.35–10.30 GHz). After heat treatment, the minimum
reflection loss of the coating decreased, indicating the increase of
absorption. Moreover, the band width also increased. Especially,
after heat treatment at 400°C for 10 h, the minimum reflection loss
reached −6.18 dB, and the band width with reflection loss less
than −4 dB increased to 5.90 GHz (i.e., 4.98–10.88 GHz).
According to the analysis of the electromagnetic parameters, the
improvement of absorption was mainly due to the increase of
magnetic loss with the increase of permeability and due to the
improvement of air-coating impedance matching with the reduction
of permittivity. The simulated reflection loss FeCoCr/silicone resin
coatings with different thickness is presented in Figure 7B. It can be

seen that the coating are promising for working at low frequency
bands.

4 Conclusion

In this work, thermal stability for microstructure, crystal
structure and static magnetic properties of nanocrystalline
FeCoCr powders were studied, followed by investigation in the
evolution of microstructure, adhesion and microwave absorption
of FeCoCr/silicone resin composite coatings at elevated
temperature. Surface roughness of FeCoCr powders slightly
increased due to the formation of oxidation nanoparticles
after heat treatment at 400°C. The crystalline phase of FeCoCr
powders maintained the same after heat treatment, whereas their
grain size increased from 10.8 nm to 18.1 nm. The saturated
magnetization of FeCoCr powders was found to increase from
65.12 emu/g to 78.64 emu/g after heat treatment, which was due
to the reduction of internal strain. The proposed FeCoCr/silicone
resin composite coatings showed robust mechanical properties
after working at 400°C for 10 h, exhibiting an adhesion of
11.78 MPa after heat treatment. The increase of adhesion was
closely related to the interfaces between FeCoCr powders and
silicon resin, i.e., weak interfaces at room temperature was
significantly enhanced and condensed after working at
elevated temperature. After heat treatment, the complex
permittivity of the coating decreased whereas the complex
permeability increased. The peak value of reflection loss of a
1-mm-thick coating decreases from −4.75 dB at room
temperature to 6.18 dB after 10 h of heat treatment, indicating
that the absorption performance of the coating was significantly
enhanced and can remain stable at high temperature.
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