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Composite plates are widely used in the aircraft manufacturing industry. The
projectile damage of composite plates is affected by complex factors such as
material, structure, impact velocity, and impact angle. A reliable method is needed
for efficient structural health monitoring. In this paper, a composite plate damage
prediction and evaluation model based on the cloud model and neural network is
proposed; the five types of experimental characteristics are used as input
parameters, and the depth and diameter of the damage area are used as
output parameters to train the neural network–cloud model. This method
transforms the quantitative data of impact damage of the composite plate into
qualitative damage by introducing the cloud model, which makes the damage
situation more intuitive. The results show that the accuracy of the prediction
model is 97.23%, the accuracy of the evaluation model is 92.41%, and the
comprehensive accuracy of the model is 89.85%. The composite damage
prediction model has a good prediction performance.
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1 Introduction

Composite plates have been widely used in the aircraft manufacturing industry due to its
high strength and strong plasticity and have become the preferred structural material in
newly developed aircraft structures (Dolati et al., 2014). At present, the utilization rate of
composite plates in the airframe structure of Boeing B787 and Airbus A350, the
representative models of two large civil airliners, has reached 50% and 53%, respectively
(Dhanisetty et al., 2019). It can be said that the utilization rate of composite plates in the
airframe structure has become an important symbol to measure the progressiveness and
reliability of aircrafts (Oliveira et al., 2020). However, in the complex operating environment
of aircraft, some external impacts such as bird impact, gravel, and hail, are often encountered
(Anghileri et al., 2005). At this time, composite plates often show complex damage
conditions.

In recent years, many studies have been carried out on the external impact of composite
plates. Hosoi et al. (2017) studied the impact of damage on material properties through the
falling weight impact test and three-point bending test and evaluated the damage

OPEN ACCESS

EDITED BY

Ruzhuan Wang,
Chongqing University of Science and
Technology, China

REVIEWED BY

Chuyang Luo,
Donghua University, China
Shaojun Zhu,
Tongji University, China
Borui Zheng,
Xi’an University of Technology, China

*CORRESPONDENCE

Ning Hu,
ninghu@cqu.edu.cn

SPECIALTY SECTION

This article was submitted to
Smart Materials,
a section of the journal
Frontiers in Materials

RECEIVED 12 February 2023
ACCEPTED 27 March 2023
PUBLISHED 13 April 2023

CITATION

Zeng X, Hu N, Liu Y, He J, Shang X, Ning H
and Shao L (2023), Prediction and
evaluation of projectile damage in
composite plates using the neural
network–cloud model.
Front. Mater. 10:1164090.
doi: 10.3389/fmats.2023.1164090

COPYRIGHT

© 2023 Zeng, Hu, Liu, He, Shang, Ning
and Shao. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Materials frontiersin.org01

TYPE Original Research
PUBLISHED 13 April 2023
DOI 10.3389/fmats.2023.1164090

https://www.frontiersin.org/articles/10.3389/fmats.2023.1164090/full
https://www.frontiersin.org/articles/10.3389/fmats.2023.1164090/full
https://www.frontiersin.org/articles/10.3389/fmats.2023.1164090/full
https://www.frontiersin.org/articles/10.3389/fmats.2023.1164090/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2023.1164090&domain=pdf&date_stamp=2023-04-13
mailto:ninghu@cqu.edu.cn
mailto:ninghu@cqu.edu.cn
https://doi.org/10.3389/fmats.2023.1164090
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2023.1164090


development within CFRP (carbon fiber-reinforced plastic). The
results showed that the internal damage of the plate was mainly
caused by internal delamination, and the impact tolerance of the
panel could be improved by adding sandwich panels. Wei et al.
(2020) carried out a pendulum impact experiment on CFRP
composites and used a non-linear acoustic resonance method
to detect their impact on fatigue damage. The results showed that
the damage index increased slowly at the beginning of the impact
cycle and rapidly increased when the fatigue life exceeded 70%.
Hou et al. (2022) established the impact finite element model of
waterjet-CFRP by studying the impact of high-speed water flow
on CFRP plates. The results show that delamination is most likely
to occur at the interface of adjacent layers with unequal
dimensions in the plate structure, and the velocity and
diameter of the waterjet have a significant influence on the
damage of CFRP. Formisano et al. (2022) performed a low-
velocity impact response of GFRP laminates with different
thicknesses and conditions. Through the study of key
characteristics, such as temperature and impact energy, it is
found that the laminate will have lower indentation and
delamination at low temperature, and the impact energy that
can be resisted is also greater. Yang et al. (2022) used projectiles
at different speeds to perform external impact experiments on
curved GFRP laminates. By analyzing the residual velocity of the
projectile and the energy absorption rate of the plate, the
thickness required for the plate to achieve optimal
performance was obtained.

The aforementioned research simulated the external impact
through experiments, recorded the damage data of composite
plates, and analyzed their damage development laws. These
works are more suitable for judging whether the properties of
composite plates are suitable for a certain engineering field.
However, for the complex and changeable external working
environment of the aviation industry, it is more important to
timely judge whether the materials can resist the upcoming
impact risk in the operation process. Until now, there are few
theoretical studies on damage prediction and evaluation of
composite plates. Therefore, in the field of composite damage, a
model that can predict and evaluate in time according to the limited
external information is needed.

Since the mathematical model of neurons was proposed in
1943, the research in this field has experienced immense
popularity and decline, and various neural network-derived
models have been proposed (Yang et al., 2021). Among them,
the ANN (artificial neural network) is widely used because of its
strong adaptive, self-organizing, and self-learning abilities in the
fields of pattern recognition, intelligent robots, automatic
control, predictive estimation, biology, medicine, and economy
(Koopialipoor et al., 2019). The ANN has successfully solved
many practical problems that are difficult to be solved by modern
computers and has shown good intelligent characteristics.
Maynard and Harris (2022) created 18 models of different
systems by extracting accident data from official accident
reports. By analyzing the convergence, universality, and
stability of each model, the high-risk flight environmental
factors are successfully predicted. Doğan and Demir (2022)
took Turkey and China as the research objects and predicted
the possibility of earthquakes within a specific time interval by

using the structural recursive network to capture spatial
proximity and structural property.

In the aforementioned research, the neural network has
been used in different engineering fields and has achieved
good prediction results. However, the neural network is only
a non-linear prediction of the research object, which will lead to
deviation in the data results. Therefore, it is necessary to
introduce an evaluation system that can tolerate errors in the
evaluation process and realize quantitative and qualitative
transformation so that the prediction results can be
transformed into intuitive damage description. Gu et al.
(2021) proposed a cloud model method for assessment of
debris flow geological hazard risk. Through the calculation of
a variety of evaluation factors, the risk level of debris flow is
determined. Zhao et al. (2022) considered the natural fuzziness
of safety and the volatility of safety level and then proposed an
oil depot safety evaluation method based on cloud model
theory. The reliability of the evaluation method was verified
by taking the oil storage tank areas of four oil companies as
examples. Through the aforementioned research, it can be
found that in the field of composite damage, the combination
of the cloud model and neural network can effectively predict
and evaluate its damage status.

In this paper, an ANN based on the cloud model is established to
realize quantitative calculation and qualitative evaluation
transformation; five types of experimental characteristics are used
as input parameters, and the depth and diameter of the damage area
are used as output parameters to train the neural network–cloud
model. Then, the model is analyzed to determine its prediction and
evaluation effect. The results can provide theoretical support for
damage prediction and evaluation of composite plates under
projectile impact.

FIGURE 1
Artificial neural network theory.
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2 Methodology

2.1 Neural network–cloud model

The artificial neural network simulates the biological neural
network from the perspective of informatics; the purpose of
information processing is achieved by adjusting the connection
mode within the network (Zhang, 2021). The ANN is one of the
most popular neural networks, as an operation model; there are
many nodes connected inside the neuron, and its structural principle
is shown in Figure 1.

As shown in the aforementioned figure, the artificial neural
network is composed of three layers: input layer, output layer, and
hidden layer (middle layer). Each circle in the figure represents a
neuron node. The number of input layer nodes Xi and output layer
nodes Yk is determined according to the number of known input
parameters and target output parameters (Huang et al., 2022). The
number of hidden layer nodes h is calculated using Eq. 1

h � ����
i + k

√ + a, (1)
where i represents the number of nodes in the input layer and k
represents the number of nodes in the output layer. The value range
of a is 1–10, and the final value needs to be determined according to
the actual prediction results.

The connections among the layers in the network structure
represent weights (thresholds), and the arrows represent the
direction of signal transmission (Li et al., 2020). (The weights of
the input layer and the hidden layer are represented by ωi,j, and the
weights of the hidden layer and the output layer are represented by
ωj,k). The values of the nth hidden layer node and the mth output
layer node are calculated using Eqs 2, 3

Hn � f ∑j
n�1

Xlωin
⎛⎝ ⎞⎠, (2)

Ym � f ∑k
m�1

Hnωjm
⎛⎝ ⎞⎠, (3)

where l represents the l-th input layer node l � 1, 2, 3/i;
n � 1, 2, 3/j; m � 1, 2, 3/k.

In Eqs 2, 3, the activation function f(x) is a unipolar sigmoid
function, as shown in Eq. 4

f x( ) � 2
1 + e−2x

− 1. (4)

The neural network includes data flow forward propagation and
error back propagation. The error output calculation follows the
direction from the input to output. When the model output is
inconsistent with the expected output, the error is back-propagated,
and the weight (threshold) is adjusted to reduce the training error
(Liu et al., 2014). Therefore, the error function needs to be
introduced to achieve the optimal prediction of the network, as
shown in Eq. 5

E � 1
2
∑k
m�1

y − Y( )2, (5)

where E represents the error value, Y is the predicted value trained
by the neural network, and y is the true value for verification. E

reflects the prediction effect of the neural network model. When the
prediction effect does not meet the requirements, the weight is
adjusted (Liu et al., 2019). The weight adjustment function between
the input layer and the hidden layer is shown in Eq. 6, and the weight
adjustment function between the hidden layer and the output layer
is shown in Eq. 7

Δωkj � −α zE

zωkj
, (6)

Δωji � −β zE

zωji
, (7)

where α and β represent the training rate, which reflects the neural
network learning time. α ∈ (0, 1); β ∈ (0, 1).

We repeat the aforementioned training process, and the network
stops training after the parameters (weights) corresponding to the
minimum error are determined. The number of repetitions in the
training process is called the training number. In the subsequent
process, the information of similar samples is input into the neural
network, and the network will process the information of non-linear
transformation with the smallest output error.

The damage prediction data from the aforementioned process
can be obtained, and then these data need to be converted between
quantitative and qualitative transformations to facilitate evaluation
(Cao et al., 2022). The cloud model based on probability theory can
be used to study the relationship between fuzziness and randomness
and complete the transformation from uncertain language
description to quantitative expression (Gao et al., 2019). The
principle is shown in Eq. 8

μ: U → 0, 1[ ] ∀x ∈ C ∈ U x → μ x( ), (8)
where U is a domain, C is a qualitative concept, and x is a stochastic
realization. μ(x) represents the membership of x to C.The cloud
models are evaluated by generating the cloud image through cloud
generators; cloud generators are classified into forward cloud generator
and back cloud generators (Liang et al., 2019).

The first step in the damage assessment phase is to convert
the predicted experiment output parameters into three types of
cloud digital eigenvalues. (Ex, En, He). It is noteworthy that the
diameter of the damage layer has a good effect when used to
describe the surface damage of the plate, but its size is not directly
related to the damage of the internal structure and cannot be used
as a good basis for evaluating the damage degree. (Pérez et al.,
2021). Therefore, in the damage assessment stage, the diameter of
the damage layer is not included the determination of the damage
degree. Since the original data involve three types of composite
plates and each plate has different physical properties, such as
thickness and size, in order to evaluate them at the same time, a
unified reference is needed. Generally, the higher the degree of
damage, the greater is the proportion of damage depth to the total
thickness. Differences between plates can be ignored by using the
depth ratio of the damage layer as an evaluation reference. The
calculation process is as follows:

R � y

h
*100%, (9)

where y is the depth of the damage layer and h is the total thickness
of the composite plates. In addition, the predicted damage depth
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ratio is obtained by neural network prediction. After comparing it
with the real damage depth, the error between the two can reflect the
accuracy of the model prediction; the calculation process is as
follows:

A � 1
N

∑N
i�1

Ry − RY

∣∣∣∣ ∣∣∣∣, (10)

where N represents the number of data for model training and RY

and Ry are the values of true depth ratio of the damage layer and the
predicted depth ratio of the damage layer, respectively. After
obtaining the true depth ratio of the damage layer and the
predicted depth ratio of the damage layer, the cloud digital
eigenvalue of the experimental input data can be calculated using
Eqs 11–13.

Exi � Yi, (11)

Eni � Exi − yi

∣∣∣∣ ∣∣∣∣
3

, (12)
Hei � k · Eni, (13)

where k is a constant, which affects the thickness of the cloud in the
cloud image and can be adjusted according to the actual situation.
After several adjustments, it is found that the cloud thickness is
appropriate when k = 0.08 (Wang et al., 2016).

The prediction model is established through the
aforementioned process. In order to realize the damage
assessment of composite plates, an evaluation model was
constructed based on five kinds of experimental input
parameters and three kinds of cloud digital eigenvalues. Then,
the cloud droplet is generated based on the predicted
(Ex, En, He) (Xue et al., 2018). This process can be achieved
through the forward CG (forward cloud generator). The principle
is shown in Figure 2.

In the aforementioned figure, Ex is the spatial expectation value
of cloud droplets in the cloud map, which can reflect the size of the
prediction data. En represents the dispersion degree of cloud
droplets and also reflects the deviation range between the
predicted value and the true value. He is the degree of entropy
dispersion, through which the thickness of cloud droplets can be
observed (Zhao et al., 2020). We substitute the cloud digital
eigenvalue into the forward cloud generator and generate cloud
droplets via Eq. 14

μ x( ) � exp
− x − Ex( )2

2λ2
[ ], (14)

where λ ~ N(En,He2) and x ~ N(Ex, λ2)
We repeat the aforementioned process to generate a sufficient

number of cloud droplets, and the cloud image can be formed (Zhou
et al., 2016), as shown in Figure 3 (when the number of cloud
droplets is below 1,000, some cloud image areas are blank. When the
number is 1,000, the cloud image quality can be satisfied. This article
sets to generate 1,000 cloud droplets)

2.2 Damage level

The damage level is very important for evaluating the
predicted damage data. In this paper, the damage degree of
composite plates is classified into four grades by referring to
relevant literature (Xie et al., 2016): surface depression (Level I),
substrate crack (Level II), interlayer delamination (Level III), and
fiber breakage (Level Ⅳ). The range of each damage standard
grade interval is expressed by the ratio of damage depth. The ratio
corresponding to the four types of damage standard level

FIGURE 2
Forward cloud generator.

FIGURE 3
Cloud image.
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intervals can be obtained by referring to relevant literature (Luo
et al., 2020), as shown in Table 1.

The table contents show the range of damage depth ratios for
each damage standard level. In order to establish a standard cloud
image for reference and comparison based on the data in the table
(Wu and Zou, 2020), the cloud digital eigenvalues are obtained via
Eqs 15–17. The results are shown in Table 2.

Ep
x � Mp +Np

2
, (15)

Ep
n �

E2
x − E1

x

3
p � 1( )

Ep
x − Ep−1

x

3
p≥ 1( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (16)

He � β, (17)

where Ep
x and Ep

n are the expected values and the entropy of the
p-risk level in the standard level, respectively, and Mp and Np are
the boundary values of the p level. β is adjusted according to the
actual cloud dispersion to ensure proper cloud thickness. This paper
assumes β = 0.5. After obtaining each damage standard grade, the
number of cloud droplets can be calculated using Eq. 14, and then
the standard cloud image is formed as shown in Figure 4. The degree
of damage can be determined by comparing the cloud assessment
image with the standard cloud (Xu and Xu, 2018).

3 Model verification and analysis

In this paper, 31 sets of damage data of composite plates are
collected with reference to relevant literature (Jordan and Naito,
2014; Luo et al., 2020; Wang et al., 2022). Since this study aimed to
obtain data that can feedback the damage situation through limited
parameters before the experiment, which means that the
experimental input parameters are easy to obtain and the output
data intuitively describe the damage results. Based on the
aforementioned considerations, the data involve five kinds of
experimental input parameters and two kinds of experimental
output parameters by screening the parameters. In addition, the
training of the prediction model and the evaluation model allocate
the data in a ratio of 7:3, but considering the small number of data
samples, they are finally divided into three categories: test data
(19 groups), validation data (eight groups), and evaluation data (four
groups). The three composite plates are adopted, the main material
of composite plate 1 is GFRP, and that of composite plate 2 and
composite plate 3 is CFRP, and their thicknesses are 14 mm, 32 mm,
and 3.6 mm, respectively. A total of 19 sets of test data are used as
training samples of the neural network, as shown in Table 3.

The neural network fitting toolbox of MATLAB (which can
solve fitting problem by using two-layer feedforward network) is
used as the training tool, and the training samples are input to start
the training. In the training process, the samples are randomly
divided into three parts: training set, verification set, and test set. The
training set is a data sample used for neural network model fitting.
The model can be optimized by gradient descent of the training
error, which has an important impact in determining the weight
parameters of the built-in neurons. The validation set is a separate
data sample used in the model-training process, which is used to
adjust the parameters and feedback the model prediction effect. By
using the validation set, the problem of the model can be found in
time, and the generalization ability of the model can also be verified.
The test set is used to evaluate the final generalization capability of
the model. The data capacity ratio of the three types of samples is set

TABLE 1 Damage standard level.

Damage level Value range Description

I (0,25) The surface of the composite plate is sunken, and there is no obvious damage inside

II (25,34] Cracks appear on the surface of the composite plate, and the internal structure is relatively complete

III (34,50] Laminate separation and displacement in the composite plates

IV (50,100] The composite plate is completely penetrated, the internal structure is severely damaged, and the outer material is peeled off

TABLE 2 Standard cloud digital eigenvalues.

Level Cloud digital eigenvalues

Ex En He

I 12.5 4.2 0.5

II 29.5 1.5 0.5

III 42 2.7 0.5

IV 75 8.3 0.5

FIGURE 4
Standard cloud image.
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as 0.7:0.15:0.15. Then, the number of hidden layers is set. The range
of the hidden layers can be determined as (3–13) according to Eq. 2.
By comparing the actual values and predicted values under different
layers, it is found that when the number of hidden layer nodes is 6,
the error between them is the smallest and the model prediction
effect is the best. In the toolbox, the advantages and disadvantages of
each training algorithm are different. The Levenberg–Marquardt
algorithm is chosen as the training algorithm in this paper. Although
it will consume more running memory, the time it takes to train the
model will be significantly reduced, which is important to improve
the efficiency of neural network training. After setting the
aforementioned parameters, the neural network model starts
training. After setting the aforementioned parameters, the neural
network model starts training. After inputting the eight sets of
validation data shown in Table 4 into the model, the predicted values

TABLE 3 Composite damage test data.

Input Output

Impact
energy

Projectile
diameter

Projectile
mass

Impact
velocity

Composite
material

Depth of the
damage layer

Diameter of the
damage layer

1 1,023 7.52 2.85 813 1 10.7 10.4

2 476 7.52 2.85 528 1 10.8 11.5

3 549 7.52 2.85 617 1 10.1 6.9

4 658 7.52 2.85 672 1 9.4 11

5 278.1 35 20.8 163.5 2 9.5 10

6 289.4 35 21.3 164.9 2 7.71 8.65

· · ·

· · ·

· · ·

17 130.4 30 13 146 3 3.6 61.85

18 141.4 30 13 152 3 3.6 84.85

19 239.7 50 60 92 3 2.4 76.49

TABLE 4 Composite damage validation data.

Input Output

No. Impact
energy

Projectile
diameter

Projectile
mass

Impact
velocity

Composite
material

Depth of the
damage layer

Diameter of the
damage layer

1 758 7.52 2.85 684 1 8.3 9.5

2 1,046 7.52 2.85 822 1 11.5 11.2

3 332.6 35 20.6 179.7 2 7.99 8.1

4 347.1 35 21 181.8 2 8.28 8.25

5 417.5 35 21 199.4 2 9.77 9.76

6 413.5 35 20.8 199.4 2 9.3 9.44

7 283.3 50 60 100 3 2.4 111.24

8 381.8 50 60 116 3 3.6 80.78

TABLE 5 Damage layer depth ratio for validation data.

No. 1 2 3 4 5 6 7 8

RY 72.83 76.94 25.77 26.36 30.30 30.09 100.00 99.13

Ry 59.29 82.14 24.97 25.88 30.53 29.06 100.00 100.00

TABLE 6 Cloud digital eigenvalue.

No. 1 2 3 4 5 6 7 8

Ex 59.29 82.14 24.97 25.88 30.53 29.06 100.00 100.00

En 4.51 1.73 0.27 0.16 0.08 0.34 0.00 0.29

He 0.36 0.14 0.02 0.01 0.01 0.03 0.00 0.02
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of the validation data are compared. The detailed data of both are
shown in Figures 5, 6.

Figures 5, 6 show the prediction effect of damage layer depth and
damage layer diameter, respectively. The predicted values in both
figures are close to the true values, which means that the trained
neural network model has a good prediction effect and can be used
to predict the damage degree of composite plates. In the eight sets of
data, the prediction effect of composite material 3 is worse than that
of composite material 1, and the prediction effect of composite
material 1 is not as good as that of composite material 2, which is
mainly caused by the number of training samples and the thickness
of composite materials.

4 Damage evaluation

In order to realize quantitative calculation and qualitative
evaluation transformation, the ratio of damage layer depth in

composite plates is calculated by Eq. 9, and the results are shown in
Table 5.

Table 5 shows the true depth ratio of the damage layer and the
predicted depth ratio of the damage layer. The accuracy of the
prediction model is 97.23%, which can be calculated using Eq. 10. In
order to realize the quantitative and qualitative conversion of the
data and output the damage level reflecting the damage degree, the
cloud digital eigenvalues of predicted data need to be obtained.
Calculated using Eqs 11–13, the results are shown in Table 6.

The data in the table reflect the predicted value of the damage
layer depth, the deviation between the real value and the predicted
value, and the thickness of cloud droplet in the cloud image. The
cloud digital eigenvalues in the aforementioned table are obtained
based on the known experimental results, as shown in Table 7. Based
on the data in Table 7; Eqs 15–17, the evaluation model can be
obtained. Based on the trained evaluation model, four sets of
evaluation data (each set of data contains five types of
parameters) are input into it, and four sets of predicted cloud

FIGURE 5
Prediction effect of damage layer depth.

FIGURE 6
Prediction effect of damage layer diameter.

TABLE 7 Cloud model data.

Input Output

No. Impact energy Projectile diameter Projectile mass Impact velocity Composite material Ex En He

1 758 7.52 2.85 684 1 59.29 4.51 0.36

2 1,046 7.52 2.85 822 1 82.14 1.73 0.14

3 332.6 35 20.6 179.7 2 24.97 0.27 0.02

4 347.1 35 21 181.8 2 25.88 0.16 0.01

5 417.5 35 21 199.4 2 30.53 0.08 0.01

6 413.5 35 20.8 199.4 2 29.06 0.34 0.03

7 283.3 50 60 100 3 100 0 0

8 381.8 50 60 116 3 100 0.29 0.02
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digital eigenvalues (Ex, En, and He) can be obtained., as shown in
Table 8. Based on the data in Table 8, the true value ratio and the
predicted value ratio of the evaluation data are compared, and the
results are shown in Table 9. The accuracy of evaluation data is
found to be 92.41% by substituting the data of Table 9 into Eq. 10 for
calculation, and the results show that the cloud model can be used to
predict the cloud digital characteristics of the experimental data of
composite plates. By further analysis of the data in Table 8 for
damage assessment, the cloud droplets can be generated using Eq.
14. The first set of data in the table is taken as an example, and its
cloud droplet parameters are shown in Table 10.

In Table 10, the independent and dependent variables of each cloud
droplet are given. The damage layer depth ratio is used as the
independent variable and the membership degree as the dependent
variable. Taking no. 1 evaluation data as an example, the evaluation
cloud image based on 1,000 cloud droplets is shown in Figure 7. In
Figure 7, Ex = 54.8, En = 1.01, andHe = 0.15 reflect the overall damage
interval, the fluctuation range of damage depth, and the possibility of
fluctuation of composite plates, respectively.

By comparing the cloud evaluation image with the standard
cloud image, it is found that all cloud droplets are in damage level
IV (50<Ex≤ 100). The proportion of cloud droplets in the
damage standard level reflects the membership degree of
damage level, so the membership degree of this group of
experimental data to Level IV is 1. This means that under the
experimental conditions of this set of data, the damage degree of
the composite plates will be fiber breakage.

5 Conclusion

In this paper, a composite plate damage prediction and
evaluation model based on the cloud model and neural
network is proposed. A total of 31 groups of data related to
composite impact damage experiments are collected, and the
data involved five kinds of experimental input parameters
(impact energy, projectile diameter, projectile mass, impact
velocity, and composite plate) and two kinds of experimental

TABLE 8 Evaluation data.

Input Output

No. Impact energy Projectile diameter Projectile mass Impact velocity Composite material Ex En He

1 782 7.52 2.85 823 1 54.80 1.01 0.15

2 482.4 35 20.8 215.4 2 34.47 1.02 0.17

3 509.6 35 20.8 2,214 2 39.99 2.49 0.52

4 414.7 50 60 121 3 99.15 0.94 0.12

TABLE 9 Damage layer depth ratio for evaluation data.

No. 1 2 3 4

RY 54.80 34.47 39.99 99.15

Ry 78.57 34.86 34.66 100

TABLE 10 Cloud droplet parameters.

No. λ x μ(x)
1 2.66 54.22 0.79

2 2.66 54.82 0.89

3 2.66 55.45 0.95

4 2.66 53.10 1.00

5 2.66 56.06 0.96

6 2.66 54.47 0.94

7 2.66 54.95 0.97

8 2.66 53.08 1.00

9 2.66 55.23 0.77

10 2.66 57.12 0.99

· ·

· ·

· ·

998 2.66 55.52 0.65

999 2.66 56.12 0.96

1,000 2.66 53.12 0.43

FIGURE 7
Evaluation cloud image.
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output parameters (damage layer depth and damage layer
diameter). Finally, the model is analyzed to determine its
prediction and evaluation effect, and the conclusions are as
follows.

· This paper proposes a computing model based on the cloud
model and neural network, which provides a method for
predicting and evaluating the damage degree of composite
plates.

· The composite damage prediction model has good prediction
performance, and the comprehensive accuracy of the model is
89.85%.

· It is found that the prediction error of composite plate 1 is up to
9.37%. The damage difference between composite plate 1 and
composite plate 2 is not large, but the impact energy of the
former is approximately 300% that of the latter, and the
thickness is only 43.75% of the latter.
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