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An anisotropic horizontal porous layer saturated with viscoelastic liquids of the
Oldroyd-B type is explored to determine how the internal heat source affects
thermal convection. As a momentum equation, a modified Darcy–Oldroyd model
is used that takes into account the anisotropyof theporous layer. Theenergy equation
is formulated in such a way that the influence of internal heat sources and anisotropy
in thermal diffusivity on the stability criterion may be easily identified. The effects of
anisotropy, viscoelasticity, and internal heat generation on the onset of thermal
convection are investigated using linear stability analysis. It is understood that
convection begins via an oscillatory mode instead of a stationary mode because
viscous relaxation, thermal diffusions, and internal heat generation mechanisms
compete with one another. Both steady and unsteady finite-amplitude
convections are studied using nonlinear stability analysis with the truncated
Fourier series method. The effect of different governing parameters on the
system’s stability and on convective heat transfer is studied. The present
investigation has been significantly validated by the recovery of several prior
results as special situations. The findings presented in this work are anticipated to
have significant implications for a number of real-world applications, including
modeling of oil reservoirs, crude oil extraction, crystal growth, the pharmaceutical
and medical industries, and the use of geothermal energy, among others.
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1 Introduction

Numerous real-world applications exist for the theoretical and practical analysis of convective
heat transfer in porous media. Geothermal energy systems, hydrocarbon reserves, nuclear
reactors, medicine, and the chemical industry are among the many examples. Ingham and
Pop (2005), Nield and Bejan (2006), Vafai (2005), and Vadasz (2008) have documented the
developments in porous medium thermal convection. An essential component of rheological
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research is the study of the viscoelastic properties of the asthenospheric
and mantle components of the Earth (see Lowrie, 2020). Snow systems
and the rheology of food transport involve viscoelastic liquids saturated
in porousmedia. Less research has been conducted onRayleigh–Benard
convection in liquids with viscoelastic properties than on thermal
convection in a Newtonian fluid (refer to Li and Khayat, 2005).

Due to their coagulated viscosity, polymeric liquids are unaffected
by flow and turbulence, whereas Newtonian fluids are affected.
Moreover, oscillatory convection is believed to exist as viscoelastic
fluids are characterized by their elasticity. According to Kim et al.
(2003), the system is unstable due to its elasticity but stable due to its
porosity. The oscillatory mode is appropriate for studying convection
because convection reduced to supercritical and stable bifurcation forms
does not vary with elasticity. However, few authors have investigated
oscillatory convection in viscoelastic liquids, andmany researchers have
not addressed a comparable problem in porous media. Thermal
convection in viscoelastic fluids was studied by O’Connell and
Budiansky (1977), Griffiths (1987), Rudraiah et al. (1989), Yoon
et al. (2004), Malashetty et al. (2006a), and Swamy et al. (2012).

When a porous medium exhibits anisotropy in its mechanical and
thermal properties, the flow behavior is significantly altered. The
assumption underlying Darcy’s model is that the fluid flow is
sufficiently slow for inertial effects to be negligible, and that the fluid
complies with the laws of continuummechanics. If the porous medium
is anisotropic, then the medium’s permeability will depend on the flow
direction. In other words, the permeability of the porous medium will
vary in different orientations. Darcy’s law must be modified to account
for the anisotropy of the medium in this instance. This can be
accomplished by introducing a permeability tensor that describes the
medium’s permeability in various orientations. Numerous applications
in the actual world involve anisotropic porousmedia. Anisotropy results
from the incorrect orientation of a solid matrix or the asymmetries of
the natural porousmedium; it is also a characteristic of porous synthetic
materials, such as the fibrous material utilized for insulation and
pelleting, both of which are beneficial to chemical engineering
processes.

McKibbin et al. (1985) and Storesletten (1998) have exhaustively
documented the work pertaining to convection in anisotropic porous
media. Govender (2006) described the effects of anisotropy on thermal
convection in a porous layer. Malashetty et al. (2006b)presented a study
on the effect of a time-periodic modulated temperature field on the
stability of a viscoelastic fluid saturated within an anisotropic porous
layer. Saravanan and Purusothaman (2009) studied non-Darcian effects
in anisotropic porous media. Many pertinent studies on anisotropy
have been conducted (Malashetty and Swamy, 2007a; Malashetty and
Swamy, 2007b; Malashetty et al., 2009; Sivakumar and Saravanan, 2009;
Malashetty and Swamy, 2010; Agarwal et al., 2011; Malashetty et al.,
2011; Srivastava et al., 2011; Chandra and Satyamurty, 2012; Swamy
et al., 2013; Swamy et al., 2014; Swamy, 2017; Swamy et al., 2019;
Capone et al., 2020).

Understanding thermal convection in a porous stratum with
internal heat generation is crucial in a variety of natural and artificial
systems. The interior of the Earth provides an example of internal
heat production. Due to the disintegration of radioactive isotopes
and residual heat from the planet’s formation, the Earth’s core is
thought to be the source of significant internal heating. This heat
production is responsible for the elevated temperature of the Earth’s
interior and is one of the driving forces behind plate tectonics and

volcanism. Electronic devices, such as computer processors, are
another example of internal heat generation. A computer
processor’s electronic components generate heat due to the
passage of electric current through them. If the generated heat is
not effectively dissipated, the processor may malfunction or even
fail. To prevent this, electronic devices are frequently equipped with
cooling systems, such as heat sinks and fans, to dissipate heat and
maintain secure component temperatures. Chemical reactions can
also generate heat internally. Due to the exothermic nature of the
combustion reaction, for example, heat is produced when fuel is
consumed. This internal heat production can be utilized to generate
electricity in power facilities or to heat industrial processes.

Internal heat generation results in a nonlinear temperature
gradient. A temperature gradient is the temperature change over
a specified distance. A nonlinear temperature gradient indicates that
the change in temperature over a given distance is not constant. In
other terms, the change in temperature is not linear. This refers to
the fact that the system ormaterial in question generates its own heat
rather than receiving it from an external source. Therefore, thermal
convection occurs even though the temperature difference between
the lower and upper surfaces is insufficient for convection to begin.
Consequently, the production of internal heat is an additional
essential mechanism for regulating the onset of convection in the
porous layer. Numerous researchers have conducted extensive
research on thermal convection in absorbent layers with internal
heat generation [refer to (Thirlby, 1970; Mahabaleshwar et al., 2017;
Ahmed and Rashed, 2019; Yadav et al., 2021; Enagi et al., 2022; Raju
et al., 2022; Upadhya et al., 2022)].

Now, let us see the physical mechanisms involved in the present
problem. As a result of the internal heating, a temperature gradient is
generated within the porous layer, with the temperature being higher
near the heat source and decreasing toward the top surface of the layer.
This temperature gradient creates density differences within the
viscoelastic liquid, causing it to flow from the heat source toward
the top surface. The fluid flow of the viscoelastic liquid is influenced by
the anisotropy of the porous layer. If the porous layer ismore permeable
in one direction than in other directions, the fluid flow will be
preferentially directed along the more permeable direction, resulting
in anisotropic convection. The properties of the porous medium, such
as its porosity, permeability, and tortuosity, also affect the rate of fluid
flow and the way in which heat is transferred through the medium. For
example, a higher porosity of the porous layer can increase the flow rate
of the viscoelastic liquid, while a higher tortuosity can hinder the flow,
leading to a slower rate of fluid motion. The viscoelasticity of the liquid
can also influence the way in which fluid flow and heat transfer occur
within the porous layer. A viscoelastic liquid has both viscous and elastic
properties, which can lead to nonlinear behavior in fluid flow and heat
transfer. For instance, the elasticity of the liquid can cause it to exhibit
oscillatory behavior in response to the temperature gradient, resulting in
oscillatory fluid flow and heat transfer. The heating of the bottom
surface by an external means can also affect the flow of the viscoelastic
liquid. For instance, uniformly heating the bottom surface can generate
a temperature gradient that interacts with the temperature gradient
generated by the internal heat source, resulting in a more complex flow
pattern.

A stability analysis of an Oldroyd-B fluid in a porous medium
with the combined influence of anisotropy and the internal heat
source is rare. Such investigations are still greatly desired. The
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primary objective of this study is to determine how the viscoelastic
parameters, internal heat generation coefficient, and anisotropy
parameters impact the onset criterion of thermal convection and
the heat transfer across the layer.

2 Mathematical formulation

A shallow horizontal anisotropic porous layer saturated with
Oldroyd-B liquid is considered. The surfaces held at z � 0 and z �

h are regarded as being stress-free and isothermal. The gravitational
force g ≡ (0, 0,−g) is acting downward in the direction of the z-axis.
The adverse temperature gradient ΔT between the two surfaces is
maintained by heating the lower surface uniformly. Internal heat
generation is considered as an additional source. The temperatures
of the solid and liquid phases are assumed to have reached equilibrium.
The conservation law of linear momentum is represented by amodified
Darcy–Oldroyd model incorporating local time derivatives, Boussinesq
approximation, and anisotropy. The convection velocities are expected
to be negligible. Thus, the effects of Forchheimer inertia and advection
are disregarded. Consequently, the pertinent mathematical model is

∇.v � 0, (1)

1 + Λ1
z

zt
( ) ρ0

ε

zv
zt

+ ∇p − ρg( ) � −μ 1 + Λ2
z

zt
( )K · vD, (2)

γ
zT

zt
+ v · ∇( )T � ∇ · κ · ∇T( ) + QI T − T0( ), (3)

ρ � ρ0 1 − α T − T0( )( ), (4)
where v ≡ (v1, v2, v3) denotes the velocity vector, vD � εv is the
seepage velocity, Λ1 is the stress-relaxation time, Λ2 is the strain-
retardation time, ε is the porosity, μ is the viscosity, ρ is the density, α is

TABLE 1 Comparison of the present result with the earlier published works.

Special
case

Result recovered from Eq. 32 Previously
published work

ξ � η � 1 Rast � δ2(4π2 − RaI)(δ2 − RaI)/4π2k2 Gasser and Kazimi
(1976)

RaI � 0 Rast � δ21δ
2
2/k

2 Storesletten (1998)

ξ � η � 1,
RaI � 0

Rast � δ4/k2 Horton and Rogers
(1945) and Lapwood
(1948)

FIGURE 1
Plot of Rac versus λ2 for varying (A) λ1, (B) ξ, (C) η, and (D) RaI.
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the thermal expansion coefficient, γ � (ε(ρc)f + (1 − ε)(ρc)s)/(ρc)f
is the ratio of specific heat capacities, K � (e1e1 + e2e2)K−1

1 +
(e3e3)K−1

3 and κ � (e1e1 + e2e2)κ1 + (e3e3)κ3 denote the
anisotropy-induced permeability and thermal diffusivity tensor,
respectively, with e1, e2, e3 being the unit vectors along the x, y, and

z-axes, respectively. The last term in Eq. 3 is due to the presence of
internal heat generation, where QI quantifies the amount of heat
generation within the bulk of the porous layer

Because the fluid is at rest in the basic state, we can determine its
mass, pressure, and temperature by

FIGURE 2
Plot of Rac as a function of (A) ξ and η, (B) RaI and η, and (C) Pr and γ.

Frontiers in Materials frontiersin.org04

Swamy et al. 10.3389/fmats.2023.1158644

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1158644


FIGURE 3
Plot of Nu against Ra/RaStc for varying (A) RaI , (B) ξ and η, and (C) η.
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ρb z( ) � ρ0 1 − αΔT sin
������
QI/k3√

h 1 − z/h( )( )/sin ������
QI/k3√

h( )( )( ),
(5)

pb z( ) � ρ0g z − αΔT/ ������
QI/k3√( ) cos

������
QI/k3√

h 1 − z/h( )( )/sin ������
QI/k3√

h( )( )( ),
(6)

Tb z( ) � T0 + ΔT sin
������
QI/k3√

h 1 − z/h( )/sin ������
QI/k3√

h( )( )( ).
(7)

The stability of the system is studied by imposing the
perturbations on the basic state.

v � v′, ρ � ρb z( ) + ρ′, T � Tb z( ) + T′, (8)
where prime represents the quantity in the perturbed state. We use
Eqs. 5–8 in the governing Eqs. 1–4 and eliminate p′. Furthermore,
assume the flow to be two-dimensional and thus incorporate the
stream function such that (u′, w′) � (z/zz,−z/zx)Ψ′. Then, use
(x, z) � h(x*, z*), t � (h2/k3)t*,Ψ � k3Ψ* and T′ � (ΔT)T* to
express the equations in the nondimensional form as follows:

1 + λ1
z

zt
( ) 1

Pr
z

zt
∇2Ψ( ) + Ra

zT

zx
( ) � − 1 + λ2

z

zt
( )∇2

1Ψ, (9)

γ
zT

zt
+ f z( ) zΨ

zx
− zΨ

zx

zT

zz
− zΨ
zz

zT

zx
( ) � ∇2

1T + RaIT, (10)

where f(z) � ���
RaI

√
cos( ���

RaI
√ (1 − z))/sin( ���

RaI
√ ),

∇2
1 � z2/zx2 + (1/ξ)(z2/zz2), and ∇2

2 � η(z2/zx2) + z2/zz2. Ra �
ρ0αgΔTh

3/μk3 denotes the thermal Rayleigh number, RaI �
Qh2/k3 is the internal Rayleigh number, Pr � μh2/ερ0k3K3 is the
Darcy–Prandtl number, λ1 � Λ1k3/h2 is the Deborah number or
stress-relaxation parameter, λ2 � Λ2k3/h2 is the strain-retardation
parameter, and ξ � K1/K3 and η � k1/k3 denote mechanical and
thermal anisotropy parameters, respectively. Because the boundaries
are assumed to be stress-free and isothermal, the relevant boundary
conditions are

Ψ � D2Ψ � T � 0 at z � 0, 1. (11)

3Galerkin weighted-residual technique

In the linear stability theory, the imposed perturbations are
anticipated to be infinitesimal, and hence, the nonlinear terms in
Eqs. 9–11 can be ignored. The normal mode analysis is used to solve

FIGURE 4
Nu versus t for varying (A) Pr, (B) γ,(C) λ1, and (D) λ2
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the resulting eigenvalue problem. Thus, it is supposed that the
infinitesimal perturbations are the periodic waves of form

Ψ, T( ) � Ψ z( ),Θ z( )( )ei ωt+kx( ), (12)
where the real variable k is the wavenumber, and the complex
variable ω is the temporal growth rate. It decides whether these
tiny-recurrent-perturbations either enlarge or degenerate. In
thermal convection, wavenumber is a term used to describe the
spatial variation of temperature and fluid flow patterns that arise
due to temperature differences within the fluid. Wavenumber is a
measure of the number of waves that occur in a given distance. The
concept of wavenumber is closely related to the concept of
wavelength, which is the distance between successive peaks or
troughs of a wave. The wavelength and wavenumber are related by
the formula k = 2π/λ, where λ is the wavelength of the wave. This
shows that the wavenumber is inversely proportional to the
wavelength; that is, waves with shorter wavelengths have larger
wavenumbers, and waves with longer wavelengths have smaller
wavenumbers.

In natural convection, the spatial variation of temperature and
fluid flow patterns can take on different wavelengths, depending on
factors such as the geometry of the system, the temperature
differences within the fluid, and the properties of the fluid
itself. The wavelength of these patterns can be quantified in
terms of the wavenumber, and the behavior of natural
convection can be analyzed in terms of the relationship between
the wavenumber and other parameters such as the Rayleigh
number.

On substituting Eq. 12 into linearized Eqs. 9–11, we obtain

iω

Pr
1 + iωλ1( ) D2 − k2( ) + 1 + λ2iω( ) 1

ξ
D2 − k2( )( )Ψ

+Ra 1 + iωλ1( )ikΘ � 0, (13)
D2 − ηk2 − iωγ + RaI( )Θ − ikf z( )Ψ � 0, (14)

Ψ � D2Ψ � Θ � 0at z � 0, 1. (15)
According to the Galerkin method, we choose

Ψ z( ),Θ z( )( ) � A1Ψ1 z( ), B1Θ1 z( )( ), (16)
where A1 and B1 are constants, and Ψ1(z),Θ1(z) are so designated
that they satisfy the boundary conditions (15). On multiplying Eqs.
13, 14, respectively, by Ψ1(z),Θ1(z) and integrating the resultant
equations w. r. t. z between the limits 0 and 1, we acquire

iω

Pr
1 + iωλ1( )X0 + 1 + iωλ2( )X1( )A1 + ikRa 1 + iωλ1( )X2B1 � 0,

(17)
ikX4A1 + iωγ − RaI( )X5 −X6( )B1 � 0, (18)

where X0 � 〈Ψ1(D2 − k2)Ψ1〉, X1 � 〈Ψ1(1ξD2 − k2)Ψ1〉,
X2 � 〈Ψ1Θ1〉, X4 � 〈f(z)Θ1Ψ1〉, X5 � 〈Θ2

1〉, and
X6 � 〈Θ1(D2 − ηk2)Θ1〉. The angular brackets denote the
integral w. r. t. z between the limits 0 and 1. The requirement for
the existence of a non-trivial solution of Eqs. 17 and 18 yield the
expression for Rayleigh number:

Ra � Nr + iωNi

k2X2X4 1 + ω2λ21( ). (19)

Because ω � ωr + iωi, the case ωr < 0 specifies a stable state,
while ωr > 0 corresponds to the unstable mode. A neutral state is
attained for ωr � 0. The steady-marginal stability can be observed
for ω � 0 (i.e., ωr � ωi � 0), with which Eq. 19 abridges to the
expression of stationary Rayleigh number:

Rast � X1 RaIX5 +X6( )/k2X2X4. (20)
The trial functions that satisfy the boundary conditions (15) are

obviously

Ψ1 z( ),Θ1 z( )( ) � sin πz, sin πz( ).
On using these, one can estimate X1, X2, X4, X5 and X6 value and

then substituting into Eq. 20 to get

Rast � δ21
4π2k2

4π2 − RaI( ) δ22 − RaI( ), (21)

where δ21 � k2 + π2/ξ and δ22 � ηk2 + π2. Eq. 21 is free from
viscoelasticity, so it resembles the equation obtained for a viscous
Newtonian fluid. The validity of our work can be ascertained
through Table 1, wherein we recovered the previous classical
results as a special case of Eq. 21

Now, we discuss the behavior of Eq. 19 with the nonzero growth
rate, that is, ω ≠ 0. As Ra portrays a physical phenomenon, it should
not be imaginary and hence, Eq. 19 admits Ni � 0 as ω ≠ 0. This
affords the expression forω2:

ω2 � X1 X5 γ + λ1RaI( ) − λ2 X6 +X5RaI( ) + λ1X6( ) − Pr−1X0 X6 +X5RaI( ).
λ1 λ1Pr−1X0 X6 +X5RaI( ) − γλ2X1X5( )

(22)

The real part of Eq. 19 then symbolizes the expression for the
oscillatory Rayleigh number:

RaOsc � Nr

k2X2X4 I + ω2λ21( ). (23)

To estimate RaOscc , we minimize (23) w. r. t. k, after substituting
ω2(> 0) from Eq. 22.

4 Weak nonlinear theory

Nonlinear stability analysis is preferred to measure convection
amplitudes and heat transfer. This facilitates comprehension of the
physical mechanism with a little mathematical labor. This is a basic
step toward grasping the full nonlinearity of the problem. Because
the perturbations are assumed to be of finite amplitude, it is
reasonable to represent them in the form of a limited Fourier
series, as follows:

Ψ � A11 t( ) sin kx( ) sin πz( ), (24)
T � B11 t( ) cos kx( ) sin πz( ) + B02 t( ) sin 2πz( ). (25)

The finite amplitudes of A and B subscripts for unsteady
nonlinear convection are to be assessed by the dynamics of the
system. Using Eqs. 24 and 25 in Eqs. 9 and 10 and comparing the
coefficients of like terms, the following fourth-order Lorenz system
of autonomous nonlinear differential equations is obtained:

d/dt A11, G1, B11, B12( ) � G1, D1, G2, D2( ), (26)

Frontiers in Materials frontiersin.org07

Swamy et al. 10.3389/fmats.2023.1158644

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1158644


where

D1 � −Pr δ−2 λ−11 δ21 A11 + λ2G1( ) + δ2Pr−1G1 + RakB11( )( ) + RakG2( ),
G2 � −γ−1 kf z( )A11 + δ22B11 − RaIB11 + 2πkA11B02( ),
D2 � −γ−1 4π2 − RaI( )B02 − πkA11B11/2( ).

There is no suitable analytical method to obtain a closed-form
solution of the aforementioned system. Thus, a competent numerical
technique is recommended. Although it may not be possible to make
precise quantitative predictions, there are several qualitative insights
that can be gleaned from the available data or theoretical models. As
system of Eq. 26 is homogeneously bounded with time, it retains
numerous features of the full problem. For RaI < (0.5)δ22 + 2π2, the
velocity field possesses a constant negative divergence; that is,

∇ · d/dt A11, G1, B11, B12( )( ) � −λ−11 Prλ2δ
2
1δ

−2 + 1( )
− γ−1 δ22 + 4π2 − 2RaI( ). (27)

This implies that the system is constrained. In dynamical
systems theory, a system is said to be constrained if it is subject
to certain limitations or conditions. These constraints can arise due
to physical, mathematical, or other reasons. For example, a
mechanical system may be constrained by rigid walls or other
physical barriers that restrict the motion of its components.
When a system is constrained, the possible states that it can
occupy are limited to a subset of its phase space. The phase
space is the space of all possible states of the system, and it is
often represented as a high-dimensional space in which each
dimension corresponds to a particular variable or parameter of
the system. Because the system is constrained, the phase space paths
are drawn toward a set of measure zero or a fixed point. A set of
measure zero is a subset of the phase space that has zero volume or
probability. In other words, it is a set of states that is extremely
unlikely to be reached by the system. A fixed point, on the other
hand, is a state of the system that does not change over time. When
the phase space paths are drawn toward a set of measure zero or a
fixed point, this can result in volume shrinkage in the phase space.
This means that the volume of the phase space that is accessible to
the system becomes smaller over time as the system is forced to
occupy a smaller subset of the phase space due to the constraints.
This is revealed by Eq. 28 through the fact that if a set of preliminary
points in space fills a volume V(0) at t = 0, then after time t, the
endpoints of the corresponding paths will occupy a region

V t( ) � V 0( ) exp − λ−11 Prλ2δ
2
1δ

−2 + 1( ) − γ−1 δ22 + 4π2 − 2RaI( )( )t( ).
(28)

The larger values of the Darcy–Prandtl number and strain-
retardation number and smaller values of the Deborah number and
heat-capacities ratio are used to emphasize the exponential
deterioration of volume with time.

Upon switching from qualitative exploration, we now look into
the existence of an analytical solution. As the finite amplitude
instability can be well explored analytically using the truncated
model shown in Eqs. 24 and 25, a closed-form solution of Eq. 26 is
used for the steady case. The following expression is obtained by Eq.
26 after removing all terms except A11:

δ21 − Rak2f z( ) δ22 − RaI( ) + 2π2k2/ π2 − RaI/4( )( ) A2
11/8( )( )−1( )A11 � 0.

The solution A11 � 0 symbolizes the pure conduction state.
Thus, the second option guarantees the likelihood of finite
amplitude steady convection by offering the value of the finite-
amplitude A2

11/8 of convective motions in the form

A2
11/8 � π2 − RaI/4( )/2π2k2( ) Rak2f z( )δ−21 − δ22 − RaI( )( ). (29)
Rather than merely defining the onset criterion, the impact of

the Rayleigh number can be swiftly documented by analyzing its
effect on heat transport. In the study of convection, determining the
quantity of heat transported past the layer is of utmost importance.
Because the basic state is immobile, heat transfer in this state is
limited to conduction. However, as the Rayleigh number exceeds the
threshold, convection develops. The Nusselt number is used to
describe the convection-heat transport throughout the stratum.

Nu � 1 + ∫2π/kc

0
zT/zz( )dx/∫2π/kc

0
zTb/zz( )dx( )

z�0

By using Eqs. 28 and 7, one can obtain

Nu � 1 − 2π tan
���
RaI

√( )/ ���
RaI

√( ) B02( )z�0.

Substituting the value of B02 at z � 0 gives

Nu � 1 − 2π
tan

���
RaI

√���
RaI

√( )
× −πk2f 0( )

π2 − RaI/4( ) δ22 − RaI( ) + 2π2k2 A2
11/8( )( ) A2

11/8( )( ).
This can be further simplified as

Nu � 1 + 2π2k2 A2
11/8( )/

× π2 − RaI/4( ) δ22 − RaI( ) + 2π2k2 A2
11/8( )( ). (30)

This analysis is valid for Rayleigh numbers close to their
threshold value. By including more terms in the Fourier
expansion, one can anticipate better outcomes. The
Runge–Kutta–Gill method is used to clarify the unsteady Eq. 26.
The calculated amplitude values for various time intervals are then
used to estimate Nu as a function of t.

5 Results and discussion

The onset of convection refers to the point at which fluid motion
due to buoyancy forces begins to occur in a fluid that is initially at
rest. This occurs when a fluid is subjected to a temperature difference
that is large enough to cause density variations within the fluid,
which in turn generate buoyancy forces that drive fluid motion. The
onset of convection can be characterized by a critical value of a
dimensionless parameter called the Rayleigh number. The Rayleigh
number represents the ratio of buoyancy forces to viscous forces in
the fluid. For a fluid layer that is initially at rest, the onset of
convection occurs when the Rayleigh number exceeds a critical value
that is specific to the geometry and boundary conditions of the
system. Above this critical value, the buoyancy forces overcome the
viscous forces and initiate fluid motion. The critical Rayleigh
number can be determined through theoretical analysis or
experimental observation. The onset of convection is an
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important phenomenon in many natural and industrial systems,
including geophysical flows, crystal growth, and industrial heat
transfer processes. Understanding the onset of convection is
important for predicting the behavior of these systems and for
designing efficient heat transfer systems.

The primary objective of investigating a convection problem is
to determine the smallest possible Rayleigh number that
demonstrates convection. Fine-tuning the parameters that define
the Rayleigh number is advantageous for deferring or accelerating
convective motions. This study examines the interaction between
variable permeability, thermal diffusivity, and internal heat
generation. The point (kc, Rac) at which the marginal stability
curve reaches the least signifies the convection threshold. The
detailed behavior of this critical value is deliberated as a function
of the strain-retardation number. Figures 1A–D display the
dependence of critical Ra on the strain-retardation parameter λ2.
It has already been mentioned that RaStc is independent of
viscoelasticity. This fact is justified by a horizontal dotted line
(corresponding to RaStc ) in Figure 1A, which is invariant with
respect to λ2, λ1 and located at the higher level. All the RaOsc

curves lie at the lower level, indicating that the onset of convection is
through oscillatory mode. It is observed that RaOscc increases with λ2.
Thus, the strain-retardation parameter makes the system more
stable, but this stabilizing effect is retarded by λ1 because there is
a significant decrease in RaOscc w.r.t. λ1. We note that the influence of
λ2 on RaOscc is constrained to a specific range depending on the value
of λ1. Beyond this range, the oscillatory convection ceases to occur.

In Figure 1B, the effect of the mechanical anisotropy parameter,
which signifies heterogeneity in the permeability of the porous layer,
is expressed. The values of both RaStc and RaOscc decline with ξ. This
indicates that the onset of convection can be advanced by increasing
the anisotropy in permeability. Figure 1C exhibits the impact of
anisotropy in thermal diffusivity on the threshold of convection. It
portrays that by choosing larger values for η, one can enhance the
values of RaStc and RaOscc . Hence, stabilization can be achieved
through increasing η. Figure 1D depicts the variation of Rac with
the internal Rayleigh number. Convective motions in both steady
and oscillatory modes vary considerably with the aid of internal
heating. This is revealed through the fact that when RaI is increased,
the Rac curves are shifted downward in both stationary and
oscillatory cases. This confirms that internal heating favors the
onset of convection.

One of the main objectives of the present paper is to analyze the
significance of controlling the convection by the anisotropic nature
of the porous layer. The detailed behavior of RaOscc as a function of
anisotropy parameters is demonstrated via Figure 2A. The black
solid curve with regards to the left-side axis shows that the value of
RaOscc decreases with ξ. Therefore, the anisotropy in permeability
causes the oscillatory convective motions to occur at the earlier
stage. However, note that this destabilization is more sensitive for
the small and moderate values of ξ. Furthermore, the red curve
drawn with reference to the right-side axis makes us aware of the
stabilizing role of anisotropic thermal diffusivity. The value of RaOscc

increases almost linearly with η.
The impact of RaI, which signifies the strength of the internal

heat source, is expressed through the curves in the (Rac, RaI) plane
(see Figure 2B). Both RaStc and RaOscc plummet with RaI. This
indicates that onset of convection can be brought forward by

increasing the rate of internal heating. The figure also exhibits
that these critical curves are shifted upward when we increase the
thermal anisotropy parameter. So, the heterogeneity of thermal
diffusivity retards the destabilization caused by an internal heat
source.

To explore the activity of Rac with respect to the varying Prandtl
number, we plot the critical curves in the (Rac,Pr) plane in
Figure 2C. For smaller values of Pr, there is a swift decrease in
the value of RaOscc . This trend continues up to some specific value of
Pr, beyond which RaOscc becomes independent of Pr. Thus, a
destabilizing effect is reported for smaller values of Pr. The
dotted horizontal line, which corresponds to the stationary case,
shows that RaStc is not influenced by the varying Prandtl number.
Furthermore, the value of RaStc is much larger than RaOscc . Another
fact that can be noticed through this figure is the enhancement in the
values of RaOscc with respect to the increasing heat capacities ratio.
Therefore, the destabilization caused by increasing Pr can be
suppressed by γ. Linear stability analysis, which provided us with
a glimpse of the convection threshold, is followed by weak nonlinear
stability analysis.

This study helped us to measure the amplitude of convective
motions and the amount of heat transfer. The Nusselt number (Nu)
that signifies the extent of convective heat transfer is calculated. The
control of Rayleigh number over Nu is presented in Figures 3A–C.
The value of Nu is found to be 1 at the onset, while as the Rac
increases to about three times the value of the critical Rayleigh
number, the Nusselt number also increases. Thereafter, Nu becomes
less sensitive to Rac. Thus, one can conclude that in the vicinity of
the onset of convection, the enhancement of heat transfer occurs,
and the same magnitude is maintained even after the further
increase in Rac.

From Figures 3A,B, Nu is found to upsurge for the higher RaI
and ξ. Therefore, heat transport is amplified by introducing an
internal source within the porous layer and by choosing the
anisotropy in permeability. Furthermore, through Figure 3C, we
notice that there is a significant reduction in the value ofNuw.r.t. the
thermal anisotropy parameter. The heat transfer across the layer
decreases considerably with increasing anisotropy in thermal
diffusivity.

In unsteady finite-amplitude analysis, the fourth-order Lorenz
model has been solved numerically using the Runge–Kutta–Gill
method. The amplitudes are obtained as the functions of t and then
substituted into the expression ofNu. In general, the Nusselt number
is a function of several parameters, including the fluid velocity,
temperature, and physical properties of the fluid, and it can vary
with time during transient heat transfer processes. The behavior of
the heat transfer coefficient with respect to time is displayed through
the curves in the (Nu, t) plane, as shown in Figures 4A–D. One can
observe from these figures that at the onset of natural convection,
heat transfer initially occurs through conduction alone, and Nu has a
value of 1, which corresponds to purely conductive heat transfer. As
the fluid flow starts to develop, convective heat transfer becomes
dominant, and the Nusselt number becomes sensitive to time. The
behavior of the Nusselt number during this transient phase is
oscillatory, with the value of Nu fluctuating about a mean value.
This means that the heat transfer coefficient, which is related to the
Nusselt number, varies periodically in time, with some oscillations.
However, as time progresses, the oscillatory behavior of the Nusselt
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number starts to decay, and after a short period of time, the heat
transfer process reaches a steady state. At this point, the Nusselt
number reaches a mean value that is similar to the value of Nu
obtained in the steady-state, finite-amplitude case. Thus, in general,
these figures display that the behavior of the Nusselt number during
a transient heat transfer process is initially oscillatory and sensitive
to time but eventually reaches a steady-state mean value. This
behavior is a result of the interplay between conduction and
convection heat transfer mechanisms during the transient phase
of the process.

Figures 4A, B depict a considerable enhancement in the value
of the heat transfer coefficient with the Prandtl number and the
heat capacities ratio. It also shows that the sensitivity of Nu with
respect to t increases with increasing Pr and γ. Figure 4C shows
that the amount of convective heat transfer rises with Deborah’s
number. However, the strain-retardation parameter shows a
decrease in the heat-transfer coefficient (see Figure 4D). This
justifies the fact that the influence of retardation time is to
inhibit the heat transfer.

6 Conclusion

The aforementioned results support the subsequent conclusions.
Due to a competition between thermal diffusion, viscoelastic
relaxation, anisotropy in permeability, thermal diffusivity, and
internal heat generation, the conduction state degenerated into
convective motions via the oscillatory mode. Viscoelasticity, the
heat capacity ratio, and the Prandtl number have no effect on
stationary convection. Increasing anisotropy in permeability, the
coefficient of internal heat generation, and stress-relaxation
parameters are associated with an early onset. It has been
discovered that anisotropy in thermal diffusivity and heat
capacity ratios delays convection. Strain-retardation time
reinforces oscillatory case stability. The range of retardation
parameter values within which oscillatory convection occurs is
determined by the magnitude of the relaxation time. Beyond this
range, oscillatory convection ceases, and stationary mode instability
is then established. The Prandtl number indicates the effect of
destabilization on oscillatory convection. The coefficient of heat
transfer increases with the Rayleigh number, the internal Rayleigh
number, the Deborah number, the Prandtl number, anisotropy in
permeability, and the heat capacity ratio. Increasing values of the
strain-retardation parameter and anisotropy in thermal diffusivity
indicate an inverse trend. It is possible to promote or inhibit
convection in a given system by adjusting the relevant
parameters in accordance with practical application. In other
words, the onset and intensity of convection can be manipulated
by adjusting the system’s controlling parameters, such as
temperature gradients, fluid properties, and geometrical factors.
Several of the prior results were obtained through the use of

special cases. This provides substantial support for the results of
the current investigation (Eswaramoorthi et al., 2023).

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.

Author contributions

MS, BH, AS: conceptualization, methodology, software, formal
analysis, and writing—original draft. AH: writing—original draft,
data curation, investigation, visualization, and validation. UK:
conceptualization, writing—original draft, writing—review and
editing, supervision, and resources. RK: validation, investigation,
writing—review and editing, and formal analysis. VK:
writing—review and editing, data curation, validation, and
resources. All authors contributed to the article and approved the
submitted version.

Funding

This work was partially funded by the research center of the
Future University in Egypt 2023.

Acknowledgments

The authors would like to express their gratitude to the reviewers
for their constructive remarks and insightful suggestions, which
have significantly improved the current work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Agarwal, S., Bhadauria, B. S., and Siddheshwar, P. G. (2011). Thermal instability of a
nanofluid saturating a rotating anisotropic porous medium. Spec. Top. Rev. Porous
Media 2 (1), 53–64. doi:10.1615/specialtopicsrevporousmedia.v2.i1.60

Ahmed, S. E., and Rashed, Z. Z. (2019). MHD natural convection in a heat generating
porous medium-filled wavy enclosures using Buongiorno’s nanofluid model. Case Stud.
Therm. Eng. 14, 100430. doi:10.1016/j.csite.2019.100430

Frontiers in Materials frontiersin.org10

Swamy et al. 10.3389/fmats.2023.1158644

https://doi.org/10.1615/specialtopicsrevporousmedia.v2.i1.60
https://doi.org/10.1016/j.csite.2019.100430
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1158644


Capone, F., De Luca, R., and Gentile, M. (2020). Thermal convection in rotating
anisotropic bidispersive porous layers. Mech. Res. Comm. 110, 103601. doi:10.1016/j.
mechrescom.2020.103601

Chandra, P., and Satyamurty, V. V. (2012). Effect of anisotropy on natural convective
flow through a rectangular porous slab. J. Porous Media 15 (6), 595–605. doi:10.1615/
jpormedia.v15.i6.70

Eswaramoorthi, S., Loganathan, K., Faisal, M., Botmart, T., and Shah, N. A. (2023).
Analytical and numerical investigation of Darcy-Forchheimer flow of a nonlinear-
radiative non- Newtonian fluid over a Riga plate with entropy optimization. Ain Shams
Eng. J. 14 (3), 101887. doi:10.1016/j.asej.2022.101887

Gasser, R. D., and Kazimi, M. S. (1976). Onset of convection in a porous medium with
internal heat generation. J. Heat. Transf. 98 (1), 49–54. doi:10.1115/1.3450468

Govender, S. (2006). Effect of anisotropy on stability of convection in a rotating
porous layer distant from the center of rotation. J. Porous Media 9 (7), 651–662. doi:10.
1615/jpormedia.v9.i7.40)

Griffiths, R. W. (1987). Effects of earth’s rotation on convection in magma chambers.
Earth Planet Sci. Lett. 85, 525–536. doi:10.1016/0012-821x(87)90146-4

Horton, C. W., and Rogers, F. T. (1945). Convection currents in a porous medium.
J. Al. Phys. 16, 367–370. doi:10.1063/1.1707601

Ingham, D. B., and Pop, I. (2005). Transport phenomena in porous media, III.
Amsterdam, Netherlands: Elsevier.

Kim, M. C., Lee, S. B., Kim, S., and Chung, B. J. (2003). Thermal instability of
viscoelastic fluids in porous media. Int. J. Heat. Mass Transf. 46, 5065–5072. doi:10.
1016/s0017-9310(03)00363-6

Lapwood, E. R. (1948). Convection of a fluid in a porous medium. Proc. Camb. Phil.
Soc. 44, 508–521. doi:10.1017/s030500410002452x

Li, Z., and Khayat, R. E. (2005). Finite-amplitude Rayleigh–Benard convection and
pattern selection for viscoelastic fluids. J. Fluid Mech. 529, 221–251. doi:10.1017/
s0022112005003563

Lowrie, W. (2020). Fundamentals of geophysics. Cambridge, United Kingdom:
Cambridge University Press.

Mahabaleshwar, U. S., Basavaraja, D., Wang, S., Lorenzini, G., and Lorenzini, E. (2017).
Convection in a porousmediumwith variable internal heat source and variable gravity. Int.
J. Heat. Mass Transf. 111, 651–656. doi:10.1016/j.ijheatmasstransfer.2017.04.030

Malashetty, M. S., Shivakumara, I. S., Kulkarni, S., and Swamy, M. (2006a).
Convective instability of Oldroyd-B fluid saturated porous layer heated from below
using a thermal non-equilibriummodel. Transp. Porous Med. 62, 123–139. doi:10.1007/
s11242-005-1893-0

Malashetty, M. S., Siddheshwar, P. G., and Swamy, M. (2006b). Effect of thermal
modulation on the onset of convection in a viscoelastic fluid saturated porous layer.
Transp. Porous Media 62, 55–79. doi:10.1007/s11242-005-4507-y

Malashetty, M. S., Swamy, M. S., and Sidram, W. (2011). Double diffusive convection
in a rotating anisotropic porous layer saturated with viscoelastic fluid. Int. J. Therm. Sci.
50, 1757–1769. doi:10.1016/j.ijthermalsci.2011.04.006

Malashetty, M. S., and Swamy, M. (2007b). The effect of rotation on the onset of
convection in a horizontal anisotropic porous layer. Int. J. Therm. Sci. 46, 1023–1032.
doi:10.1016/j.ijthermalsci.2006.12.007

Malashetty, M. S., and Swamy, M. (2010). The onset of convection in a binary fluid
saturated anisotropic porous layer. Int. J. Therm. Sci. 49, 867–878. doi:10.1016/j.
ijthermalsci.2009.12.008

Malashetty, M. S., and Swamy, M. (2007a). The onset of convection in a viscoelastic
liquid saturated anisotropic porous layer. Transp. Porous Media 67, 203–218. doi:10.
1007/s11242-006-9001-7

Malashetty, M. S., Tan, W. C., and Swamy, M. (2009). The onset of double diffusive
convection in a binary viscoelastic fluid saturated anisotropic porous layer. Phys. Fluids
21 (8), 084101. doi:10.1063/1.3194288

McKibbin, R. (1985). “Thermal convection in layered and anisotropic porous media:
A review,” in Convective flows in porous media. Editors R. A. Wooding and I. White
(Wellington, NZ: Department of Scientific and Industrial Research), 113–127.

Nield, D. A., and Bejan, A. (2006). Convection in porous media. New York, NY,
United States: Springer.

Enagi, N. K., Chavaraddi, K. B., Kulkarni, S., and Ramesh, G. K. (2022). Effect of
maximum density and internal heating on the stability of rotating fluid saturated
porous layer using LTNE model. Heliyon 8, e09620. doi:10.1016/j.heliyon.2022.
e09620

O’Connell, R. J., and Budiansky, B. (1977). Viscoelastic properties of fluid saturated
cracked solids. J. Geophys. Res. 82, 5719–5735. doi:10.1029/jb082i036p05719

Raju, C. S. K., Ahammad, N. A., Sajjan, K., Shah, N. A., Yook, S. J., and Kumar, M. D.
(2022). Nonlinear movements of axisymmetric ternary hybrid nanofluids in a thermally
radiated expanding or contracting permeable Darcy Walls with different shapes and
densities: Simple linear regression. Int. Comm. Heat. Mass 135, 106110. doi:10.1016/j.
icheatmasstransfer.2022.106110

Rudraiah, N., Kaloni, P. N., and Radhadevi, P. V. (1989). Oscillatory convection in a
viscoelastic fluid through a porous layer heated from below. Rheol. Acta 28, 48–53.
doi:10.1007/bf01354768

Saravanan, S., and Purusothaman, A. (2009). Floquet instability of a gravity
modulated Rayleigh–Benard problem in an anisotropic porous medium. Int.
J. Therm. Sci. 48, 2085–2091. doi:10.1016/j.ijthermalsci.2009.04.001

Sivakumar, T., and Saravanan, S. (2009). Effect of gravity modulation on the onset of
convection in a horizontal anisotropic porous layer. AIP Conf. Proc. 1146, 472–478.

Srivastava, A. K., Bhadauria, B. S., and Kumar, J. (2011). Magnetoconvection in an
anisotropic porous layer using thermal nonequilibrium model. Spec. Top. Rev. Porous
Media 2 (1), 1–10. doi:10.1615/specialtopicsrevporousmedia.v2.i1.10

Storesletten, L. (1998). “Effects of anisotropy on convective flow through porous
media,” in Transport phenomena in porous media (Oxford, United Kingdom: Pergamon
Press), 261–283.

Swamy, M. S. (2017). Combined effect of thermal modulation and AC electric field on
the onset of electrothermoconvection in anisotropic porous layer. Am. J. Heat Transf. 4
(3), 95–114. doi:10.7726/ajhmt.2017.1011

Swamy, M. S., Naduvinamani, N. B., and Sidram, W. (2012). Onset of Darcy-
Brinkman convection in a binary viscoelastic fluid saturated porous layer.
Transp. Porous Med. 94, 339–357. doi:10.1007/s11242-012-0008-y

Swamy, M. S., Patil, S., and Pallavi, S. P. (2019). Soret and dufour effect induced
double- diffusive reaction-convection in anisotropic porous layer. J. Nanofluids 8,
1329–1337. doi:10.1166/jon.2019.1688

Swamy, M. S., Shivakumara, I. S., and Naduvinamani, N. B. (2014). Effect of gravity
modulation on electrothermal convection in dielectric fluid saturated anisotropic
porous layer. J. Heat. Transf. 136, 032601.

Swamy, M. S., Shivakumara, I. S., and Sidram, W. (2013). The onset of convection in a
gravity-modulated viscoelastic fluid-saturated anisotropic porous layer. Spec. Top. Rev.
Porous Media 4 (1), 69–80. doi:10.1615/specialtopicsrevporousmedia.v4.i1.70

Thirlby, R. (1970). Convection in an internally heated layer. J. Fluid Mech. 44,
673–693. doi:10.1017/s0022112070002082

Upadhya, S. M., Raju, S. V. S. R., Raju, C. S. K., Shah, N. A., and Chung, J. D. (2022).
Importance of entropy generation on Casson, Micropolar and Hybrid magneto-
nanofluids in a suspension of cross diffusion. Chin. J. Phys. 77 (2022), 1080–1101.
doi:10.1016/j.cjph.2021.10.016

Vadasz, P. (2008). Emerging topics in heat and mass transfer in porous media. New
York, NY, United States: Springer.

Vafai, K. (2005). Handbook of porous media. Boca Raton, Florida, United States:
Taylor and Francis.

Yadav, D., Mahabaleshwar, U. S., Wakif, A., and Chand, R. (2021). Significance of the
inconstant viscosity and internal heat generation on the occurrence of Darcy Brinkman
convective motion in a couple-stress fluid saturated porous medium an analytical
solution. Int. Comm. Heat. Mass Transf. 122, 105165. doi:10.1016/j.icheatmasstransfer.
2021.105165

Yoon, D. Y., Kim, M. C., and Choi, C. K. (2004). The onset of oscillatory convection in
a horizontal porous layer saturated with viscoelastic liquid. Transp. Porous Media 55,
275–284. doi:10.1023/b:tipm.0000013328.69773.a1

Frontiers in Materials frontiersin.org11

Swamy et al. 10.3389/fmats.2023.1158644

https://doi.org/10.1016/j.mechrescom.2020.103601
https://doi.org/10.1016/j.mechrescom.2020.103601
https://doi.org/10.1615/jpormedia.v15.i6.70
https://doi.org/10.1615/jpormedia.v15.i6.70
https://doi.org/10.1016/j.asej.2022.101887
https://doi.org/10.1115/1.3450468
https://doi.org/10.1615/jpormedia.v9.i7.40
https://doi.org/10.1615/jpormedia.v9.i7.40
https://doi.org/10.1016/0012-821x(87)90146-4
https://doi.org/10.1063/1.1707601
https://doi.org/10.1016/s0017-9310(03)00363-6
https://doi.org/10.1016/s0017-9310(03)00363-6
https://doi.org/10.1017/s030500410002452x
https://doi.org/10.1017/s0022112005003563
https://doi.org/10.1017/s0022112005003563
https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.030
https://doi.org/10.1007/s11242-005-1893-0
https://doi.org/10.1007/s11242-005-1893-0
https://doi.org/10.1007/s11242-005-4507-y
https://doi.org/10.1016/j.ijthermalsci.2011.04.006
https://doi.org/10.1016/j.ijthermalsci.2006.12.007
https://doi.org/10.1016/j.ijthermalsci.2009.12.008
https://doi.org/10.1016/j.ijthermalsci.2009.12.008
https://doi.org/10.1007/s11242-006-9001-7
https://doi.org/10.1007/s11242-006-9001-7
https://doi.org/10.1063/1.3194288
https://doi.org/10.1016/j.heliyon.2022.e09620
https://doi.org/10.1016/j.heliyon.2022.e09620
https://doi.org/10.1029/jb082i036p05719
https://doi.org/10.1016/j.icheatmasstransfer.2022.106110
https://doi.org/10.1016/j.icheatmasstransfer.2022.106110
https://doi.org/10.1007/bf01354768
https://doi.org/10.1016/j.ijthermalsci.2009.04.001
https://doi.org/10.1615/specialtopicsrevporousmedia.v2.i1.10
https://doi.org/10.7726/ajhmt.2017.1011
https://doi.org/10.1007/s11242-012-0008-y
https://doi.org/10.1166/jon.2019.1688
https://doi.org/10.1615/specialtopicsrevporousmedia.v4.i1.70
https://doi.org/10.1017/s0022112070002082
https://doi.org/10.1016/j.cjph.2021.10.016
https://doi.org/10.1016/j.icheatmasstransfer.2021.105165
https://doi.org/10.1016/j.icheatmasstransfer.2021.105165
https://doi.org/10.1023/b:tipm.0000013328.69773.a1
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1158644

	Darcy–Benard–Oldroyd convection in anisotropic porous layer subject to internal heat generation
	1 Introduction
	2 Mathematical formulation
	3 Galerkin weighted-residual technique
	4 Weak nonlinear theory
	5 Results and discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


