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The decrease in the subgrade modulus immersed in rainwater can significantly
increase the fracture risk of a cement concrete pavement plate. The aim of this
study was to develop a meshless finite block method (MFBM) to reveal the failure
mechanism of a cement concrete pavement due to the weakening of the
subgrade modulus. A normal distribution function was adopted in this study to
represent the distribution of the subgrade modulus at the bottom of the cement
concrete pavement plate. The settlement results show that the progressive
softening model of soil subgrade is more suitable to represent subgrade
modulus decay. The maximum stress of the cement concrete pavement
mainly concentrates at 1.05–1.15 m of the plate edge. The weak fracture
position is influenced by the subgrade modulus reduction, the size of the
immersion range, and the pavement and subgrade thickness. When improving
the subgrade modulus, adding plate thickness appropriately can effectively
control the cracking of the cement concrete pavement. Compared with the
finite element model, it is proved that the proposed MFBM has an advantage in
the solution of pavement fracture with high accuracy and less computation time.
In addition, findings in this study may provide evidence for understanding the
effect of the subgrade modulus on the durable pavement design.
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1 Introduction

Generally, a cement concrete pavement is regarded as a small deflection elastic plate
supported on an elastic foundation, and the theory of the elastic foundation plate is used
for analysis and calculation. This theory assumes that the contact surface between the
elastic thin plate and the elastic half-space body is completely contact, continuous, and
uniform, with no void (Rahim and George, 2005; Lin and Karadelis, 2019). However, it is
interesting to note that the phenomenon of scouring and disengaging is very common in
reality for a pavement base composed of semi-rigid materials (Wang et al., 2019). These
common defects result in a great difference between the actual support condition at the
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concrete plate bottom and the complete contact assumption of
continuous uniform support (Liu et al., 2020). In addition, the
cavity beneath the concrete plate can be exacerbated over time,
making the surface layer lose its support of foundation (Qu et al.,
2017). The soil subgrade is also affected by scouring and
disengaging issues, which leads to obvious changes in soil
subgrade conditions in different periods (Peng et al., 2020). In
particular, water is one of the environmental media that
significantly affects the subgrade modulus. The decay of the
subgrade modulus results in the uneven settlement of the base
layer (Zhao et al., 2019). Since the bearing mode of the concrete
surface plate becomes a cantilever mode with a single support, the
corner of the plate is easily prone to fracture failure. However,
currently, experimental studies find it difficult to measure the
fracture behavior of the pavement plate, considering the effect of
moisture on the subgrade modulus. The fracture characteristics
of a cement concrete pavement plate are still a necessary issue in
pavement structure design.

In engineering applications, numerical techniques have
become an effective and efficient tool for analyzing the
mechanical strength of continuum and dis-continuum
structures (Wen et al., 1997; Wen et al., 1998; Wei et al.,
2022). Nowadays, the most popular numerical research
method of cement concrete pavement failure is the finite
element method (FEM) (Li et al., 2019). However, the FEM
often lacks the precision and convergence for calculated
results for discontinuous physical domains. Due to the
restriction of the FEM on discontinuous mechanics, some
novel computational methods have been formulated in recent
years (Li et al., 2023). For example, Lian et al. (2011) developed a
material point (MP) model of a reinforced concrete structure by
incorporating the FEM element of steel reinforcement. The
results suggest that the MP method can take into account the
advantages of different FEM elements. Combining the crack
propagation of a specific loading zone, Mahmoud et al. (2014)
investigated the fracture characteristics of seven paving materials
through an extended FEM. Nayroles et al. (1992) reported that
meshless approximation is applicable in a simulating
discontinuous medium since it takes discrete points as
calculation elements. The meshless method has a unique
advantage in adaptive, large deformation, and structural

failure analysis (Atluri and Zhu, 1998). In addition, the
numerical model is independent of meshing elements due to
neither domain nor boundary meshes required in the numerical
procedure (Sladek et al., 2005; Sladek et al., 2006). Based on the
meshless method, Yu et al. (2023) established a microstructure of
cement concrete to analyze the impact of drying shrinkage on
mechanical behavior. The result suggested that the meshless
method is more flexible and applicable in the adaptive analysis
and the global stress smoothness than in the traditional FEM.
Therefore, the meshless method provides a scientific solution to
evaluate fracture characteristics of a dis-continuum structure
under load and other external conditions (Huang et al., 2023).
Furthermore, to improve the efficiency and accuracy of
calculation, a finite block method (FBM) was proposed for
solving practical problems over unbounded regions by
Lagrange series interpolation (Li and Wen, 2014; Wen et al.,
2014). Huang et al. (2018) established the FBM to determine the
stress and fracture characteristics of an elastoplastic structure
with excellent accuracy. Ahmad et al. (2020) applied a local
meshless method to solve the sparse system of 3D problems
and demonstrated the high degree of accuracy with rectangular
domains. These numerical studies demonstrated that the
meshless finite block method is effective for solving fracture
problems of a cement concrete plate.

The aim of this paper was to establish a meshless finite block
method (MFBM) model of a cement concrete pavement structure
for evaluating the stress change of the pavement plate with the
weakening of the subgrade modulus. The MFBM developed in this
study can eliminate the limitation with a mesh technique with high
accuracy and less computation time. The subgrade material
drenched by rainwater was assumed as a functionally graded
material in this study. A progressive softening model of soil
subgrade was established to characterize the subgrade modulus
decay. The FEM analysis software application Abaqus was used
to verify the validity and accuracy of the results calculated by
the MFBM.

2 Lagrange interpolation and mapping
technique

An MFBM interpolated by the Lagrange series has been
proposed on the mapping technique according to the research of
Li et al. (2016). A brief introduction about the technique is described
in this section. Specifically, for 2D problems, a set of nodes is used in
the normalized space P(ξk, ηk), k � (j − 1) × Nξ + i,
i � 1, 2,/, Nξ , and j � 1, 2,/, Nη, as shown in Figure 1. The
field function u(Q) at a mapped domain Q(ξ, η) can be
approximately expressed by Eq. (1).

u Q( ) � ∑Nξ

i�1
∑Nη

j�1
F ξ, ξ i( )G η, ηj( )u k( ) � ∑M

k�1
φk Q( )u k( ) , (1)

where Nξ and Nη indicate the numbers of nodes along ξ and η

axes, respectively; M is the total number of nodes for each block;
φk(Q) is the shape function; ξ and η represent coordinates in
Q(ξ, η); and F (ξ, ξi) and G (η, ηi) are the polynomial functions, as
shown in Eq. (2).

FIGURE 1
Geometry mapping technique in the FEM.
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F ξ, ξ i( ) � Π
Nξ

m�1
m ≠ i

ξ − ξm( )
ξi − ξm( ), G η, ηj( ) � Π

Nη

n�1
n ≠ j

η − ηn( )
ηj − ηn( ) . (2)

Combined with Eq. 1, 2, the shape function can be calculated by
Eq. (3).

φk Q( ) � F ξ, ξi( )G η, ηj( ) � Π
Nξ

m�1
m ≠ i

ξ − ξm( )
ξ i − ξm( ) Π

Nη

n�1
n ≠ j

η − ηn( )
ηj − ηn( ). (3)

Therefore, the first-order partial differentials (FOPDs) of the
shape function φk(Q) directly with respect to Q can be derived, as
shown in Eq. (4).

zφk Q( )
zξ

� zF ξ, ξ i( )
zξ

G η, ηj( ), zφk Q( )
zη

� F ξ, ξ i( ) zG η, ηj( )
zη

. (4)

The nodal value of the FOPDs is arranged by a vector form, as
shown in Eq. (5).

u,α � Dαu,Dα � φkl,α{ }
M×M

  k, l � 1, 2,/,M; α � ξ, η( ), (5)

where u is the nodal value, expressed by Eq. (6). D represents the
partial differential matrices.

u,α � zu P1( )
zα

,
zu P2( )
zα

,/,
zu PM( )

zα
{ }T

, u � u P1( ), u P2( ),/, u PM( ){ }T

(6).

Its L-order partial differential function is calculated, as shown in
Eq. (7).

u,mn ξ, η( ) � zm+nu
zξmzηn

, m + n � L. (7)

Therefore, the aforementioned expression can be approximated,
as shown in Eq. (8).

u,mn ≈ Dm
ξ D

n
ηu. (8)

FIGURE 2
Starting and ending angles for block q at joint O.

FIGURE 3
Disengaging of the cement concrete pavement plate.

FIGURE 4
Mechanical model of the cement concrete pavement.
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In Figure 1, a quadratic block with eight seeds can be mapped
into a space Q(ξ, η) by Eq. (9).

Ni � 1
4

1 + �ξ iξ( ) 1 + �ηiη( ) �ξ iξ + �ηiη − 1( )  for  i � 1, 2, 3, 4,

Ni � 1
2

1 − ξ2( ) 1 + �ηiη( )  for  i � 5, 7,

Ni � 1
2

1 − η2( ) 1 + �ξiξ( )  for  i � 6, 8,

(9)

where (�ξi, �ηi), i � 1, 2,/, 8 are coordinates of seeds, as shown in
Figure 1.

Then, the coordinate (mapping) can be transferred from the
coordinate of the real system into that of the normalized space by
Eq. (10).

x � ∑8
k�1

Nk ξ, η( )xk, y � ∑8
k�1

Nk ξ, η( )yk . (10)

The FOPDs of u(x, y) are given by Eq. (11) in Cartesian
coordinates.

zu

zx
� 1
J

β11
zu

zξ
+ β12

zu

zη
( ), zu

zy
� 1
J

β21
zu

zξ
+ β22

zu

zη
( ), (11)

where these parameters are defined by Eq. (12).

J � β22β11 − β21β12, β11 �
zy

zη
, β12 � −zy

zξ
, β21 � −zx

zη
, β22 �

zx

zξ
.

(12)
Therefore, the matrices of FOPDs are introduced by Eq. (13).

u,x � Δ11Uξ + Δ12Uη � Δ11Dξ + Δ12Dη( ) u � Dxu,

u,y � Δ21Uξ + Δ22Uη � Δ21Dξ + Δ22Dη( ) u � Dyu,
(13)

where matrices Δij are defined as follows:

Δij �
β 1( )
ij /J 1( )( ) 0 / 0

0 β 2( )
ij /J 2( )( ) / 0

/ / / /
0 0 / β M( )

ij /J M( )( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (14)

where (β(k)ij /J(k)), k � 1, 2,/,M is at each collocation point
P(ξk, ηk).

It is obvious that the nodal values of the FOPDs in the physical
domain can be obtained by the FOPDs in the normalized space
|ξ|≤ 1; |η|≤ 1.

TABLE 1 Calculation parameters of the MFBM model.

Horizon Thickness/cm Modulus/MPa Poisson ratio

Pavement 20/25 31,000 0.3

Subgrade 20 1,200 0.3

Foundation — 50 0.3

FIGURE 5
Dimensionless tensile stress distribution of the pavement using the MFBM with h1 = h2 = 20 cm: (A) α = 0.25, (B) α = 0.5, and (C) α = 0.75.
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3 Finite block method in elasticity

First, this study makes a basic assumption that the parameters of
non-homogeneous materials are closely related to the coordinates in
space, and in Cartesian coordinates, the relationships between
displacements (uα, α � x, y) and stress (σx, σy, τxy) are given in
Eq. (15).

σx � Q1
zux

zx
+ Q2

zuy

zy
, σy � Q2

zux

zx
+ Q1

zuy

zy
, τxy � Q3

zux

zy
+ zuy

zx
( ).

(15)
For plane-stress elasticity, isotropic homogenous material

mechanical coefficients are given, as shown in Eq. (16).

Q1 � E x( )
1 − ]2 x( ), Q2 � ] x( )E x( )

1 − ]2 x( ), Q3 � G x( ), (16)

where E, ], andG are the Young’s modulus, Poisson’s ratio, and
shear modulus, respectively, and x indicates the coordinate (x, y).

The equilibrium equations are expressed in Eq. (17).

zσx
zx

+ zτxy
zy

+ bx � 0,
zτxy
zx

+ zσy
zy

+ by � 0, (17)

where bx and by are body forces in two directions.
Considering the matrix forms of Eqs. 13, 15, 16, the differential

matrices’ form (Dα, α � x, y) of Eq. (17) is shown in Eq. (18).

DxQ1Dx +DyQ3Dy( )ux + DxQ2Dy +DyQ3Dx( )uy + bx � 0,

DyQ2Dx +DxQ3Dy( )ux + DxQ3Dx +DyQ1Dy( )uy + by � 0,

(18)
where uβ stands for vectors of nodal displacement; bβ(β � x, y)
stands for body force vectors; Ql � diag[Q(k)

l ] represents diagonal
matrices; and Q(k)

l (l � 1, 2, and 3) represents the elasticity
coefficient at node k.

For 2D elasticity, there are two kinds of boundary conditions
shown as follows:

uβ x( ) � u0
β x( ), x ∈ Γu,

tβ x( ) � t0β x( ), x ∈ Γt,
(19)

where u0β and t0β are specified displacements and tractions on the
boundaries Γu and Γu, respectively.

There are 2M linear algebraic equations in Eqs 18, 19,
respectively. Therefore, all nodal values of displacement
should be determined. The physical domain is divided into
few blocks by using the finite block method, which is unlike
the traditional meshless method. In this case, the continuous
condition for displacements uβ and tractions tβ on the smooth
interface except two ends (joints) between blocks I and II is given
in Eq. 20

uI
β x( ) − uII

β x( ) � 0, tIβ x( ) + tIIβ x( ) � 0, x ∈ Γint. (20)

FIGURE 6
Dimensionless tensile stress distribution of the pavement using the MFBMwith h1 = 25 cm and h2 = 20 cm: (A) α = 0.25, (B) α = 0.5, and (C) α = 0.75.
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However, at a corner joint, both the point equilibrium equations
and displacement continuity conditions should be considered, as
shown in Eqs 21, 22.

uI
β x( ) � uII

β x( ) � / � uX
β x( ), (21)

∑X
q�I

σ
q( )

x sin θ
q( )

2 − sin θ
q( )

1[ ] − τ
q( )

xy cos θ
q( )

2 − cos θ
q( )

1[ ]( ) � 0,

∑X
q�I

τ
q( )

xy sin θ
q( )

2 − sin θ
q( )

1[ ] − σ
q( )

y cos θ
q( )

2 − cos θ
q( )

1[ ]( ) � 0,

(22)
where θ(q)2 and θ(q)1 are starting and ending angles, respectively, at
the joint for block q at the joint, as shown in Figure 2.

4 Case studies

The aforementioned method has been applied in the fields of
computational solid mechanics and fluid mechanics. It can avoid
grid reconstruction and effectively solve the numerical simulation
problems that are difficult to analyze using the grid algorithm. It is
extremely beneficial to solve large deformations such as stamping
deformation, crack propagation, and fluid–solid coupling problems.

A cement concrete pavement is an important structural form
of high-grade pavement. The cement concrete pavement is a
multi-layer structure. The surface layer is divided into
rectangular plates of finite size by joints. The scale in the
plane direction is much larger than that in the thickness
direction. In the analysis of the pavement structure, it is
necessary to establish a reasonable mechanical model for the
actual pavement structure and the stress–strain relationship of
each structural layer material. At present, the pavement structure
is mainly modeled by two schemes. One is the plate model, which
regards the concrete surface layer as a single plate or multiple
plates supported by the foundation. The other is that the three-
dimensional model can consider the actual geometric shape and
structural level of the pavement structure, which is an ideal
model. However, under the repeated action of temperature
change, humidity change, and vehicle load, the cement
concrete pavement can warp and deform. The bottom surface
of the edge, middle, or corner part of the panel may be separated
from the top surface of the foundation and form a void beneath
the slab. At the same time, the plastic deformation accumulates
when the base material is pressed, which also leads to a void
beneath the slab. This is similar to the problem of large
deformation such as stamping deformation and crack
extension. Therefore, it is feasible to analyze the fracture

FIGURE 7
Dimensionless tensile stress distribution of the pavement using the FEM with h1 = h2 = 20 cm: (A) α = 0.25, (B) α = 0.5, and (C) α = 0.75.
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characteristics of the slab at the edge of the cement pavement
using the aforementioned method. In this study, all codes of the
MFBM were written in Fortran. The commercialized
package Abaqus with subroutine UMAT was used for FEM
simulation.

First, a square domain was divided into 10 × 10 cells in the
model. In addition, each cell was divided into 4 × 4 Gauss points. In
the normalized domain (ξ, η), the coordinates of the node are
calculated by Eq. (23). The number of nodes in total is M �
Nξ × Nη for each block.

ξ i � −cos π i − 1( )
Nξ − 1

, i � 1, 2,/, Nξ ,

ηj � −cos π j − 1( )
Nη − 1

, j � 1, 2,/, Nη.

(23)

4.1 Mechanical model of the cement
concrete pavement plate

There are two kinds of voids beneath the slab. One is the
structural void, which is caused by temperature and humidity
warping deformation and plastic deformation accumulation of
the base. The other is the squirt mud void. Rainwater percolates

into the panel bottom through joints and edges of cement concrete
plates. The hydrodynamic pressure scours the top surface of the base
course and then forms, disengaging under the action of traffic load.
Because of the disengaging of the foundation and the traffic load, the
stress state of the cement concrete pavement is extremely
disadvantageous (Figure 3). In this case, the cement pavement
plate is similar to a cantilever beam and produces excessive
deflection and stress, resulting in the cracking of the cement
concrete plate. The structural void is the origin of the squirt mud
void, and the squirt mud void further develops the structural void.
The two types of voids alternately or jointly drive the evolution and
development of the void at the bottom of the slab. It can be seen that
squirt mud is one of the main factors leading to the void and fracture
of the cement concrete pavement. The most direct manifestation of
the phenomenon of squirt mud is the attenuation of the subgrade
modulus, which, in turn, affects the deformation of the cement
concrete pavement.

Based on the aforementioned situation, the progressive
softening model of subgrade was established, as shown in
Figure 4. The calculation parameters are shown in Table 1.
The boundary conditions are as follows: AB and EF are free
edges, BC and CD are simply supported edges, and DF is a fixed
boundary. Assuming that the load acts on the upper edge of the
first plate, the width of the load is 23 cm and the width of the
pavement is 200 cm. At the same time, the immersed area is

FIGURE 8
Dimensionless tensile stress distribution of the pavement using the FEM with h1 = 25 cm and h2 = 20 cm: (A) α = 0.25, (B) α = 0.5, and (C) α = 0.75.
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assumed to be an ellipse, which should satisfy the requirement of
Eq. 24.

x2

a2
+ y + h1 + h2( )2

b2
� 1, (24)

where a and b are the principal axis radii of the ellipse (b = 2a for this
example), and x and y are the coordinates, h1 and h2 are the
thicknesses of the pavement, respectively, as shown in Figure 4.

The soaking subgrade materials can be regarded as a functionally
graded material. The minimum value at the center position is taken,
and the subgrade modulus (E) is described as a function of
coordinates in Eq. (25).

E � En 1 − αe−β x2/a2+y′2/b2( )( ),
y′ � y + h1 + h2,

(25)

where En is the subgrade modulus under an anhydrous state; α is
the maximum reduced value of the subgrade modulus; and
0≤a≤1; β is a control parameter, which is the gradient of soil
subgrade softening.

Parameters α and β can be determined by two points of the
subgrade modulus, such as E0 (located at the central point) and
E1(y � y1) (located at a certain depth). In this example, the value
of α is 0.25, 0.5, and 0.75, respectively; β � ln(100α). Six groups of
different immersion conditions were selected for calculation, i.e., a = b =
0, a= 20 cm and b = 40 cm, a = 40 cm and b = 80 cm, a= 60 cm and b=
120 cm, a = 80 cm and b = 160 cm, and a = 100 cm and b = 200 cm.

4.2 Result analysis

4.2.1 Dimensionless tensile stress distribution
Figures 5, 6 present the dimensionless tensile stress distribution

of the pavement. The dimensionless tensile stress is the ratio of
surface stress to tire stress. In Figure 5, h1 = h2 = 20 cm and α is 0.25,
0.5, and 0.75. With the increase of the distance from the edge of the
plate, the stress first increases and then decreases. The stress reaches
the peak value at about 1.1 m from the edge of the plate, which
presents the weak position of the cement concrete plate fracture. The
subgrade modulus decay has an important influence on the force

FIGURE 9
Maximum principal stress/load gradient distributions with h1 = 20 cm and h2 = 20 cm (A: the MFBM; B: the FEM): (A) a = b = 0 cm; (B) a = 20 cm and
b = 40 cm; (C) a = 40 cm and b = 80 cm; (D) a = 60 cm and b = 120 cm; (E) a = 80 cm and b = 160 cm; (F) a = 100 cm and b = 200 cm.
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FIGURE 10
Maximum principal stress/load gradient distributions with h1 = 25 cm and h2 = 20 cm: (A) a = b = 0 cm; (B) a = 20 cm and b = 40 cm; (C) a = 40 cm
and b = 80 cm; (D) a = 60 cm and b = 120 cm; (E) a = 80 cm and b = 160 cm; (F) a = 100 cm and b = 200 cm.

FIGURE 11
Field cracking investigation of the concrete pavement: (A) point 1; (B) point 2.
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condition of the cement concrete plate. The peak stress reaches the
maximum when α is 0.75, and the cement concrete plate is more
likely to break. When α is a fixed value, the larger the size of the
immersion range, the greater the peak stress. In Figure 6, h1 = 25 cm,
h2 = 20 cm, and α is 0.25, 0.5, and 0.75. The change trend shown in
Figure 6 is similar to that shown in Figure 5, and the stress value
under the condition h1 = 0.25 m and h2 = 0.2 m is lower than that
under the condition h1 = h2 = 0.2 m.With the increase of α, the stress
value decreases. When α is 0.75, the reduction of the stress value
reaches 27%. Figure 6 shows that increasing pavement thickness can
reduce the risk of cement concrete plate fracture.

In other words, all the reduction of the subgrade modulus, the
size of the immersion range, and the thicknesses of the pavement
and subgrade can affect the cement concrete plate fracture. The
smaller subgrade modulus reduced ratio, broader immersion ranges
of earth subgrade, and thinner pavement and subgrade thickness are
extremely disadvantageous to the force acting on the pavement
plate. The maximum stress of the cement concrete pavement mainly
concentrates in the range 1.05–1.15 m from the plate edge.When the
stress changes to a certain extent, the pavement plate may be prone
to fracture damage.

4.2.2 Comparison between results of the MFBM
and FEM

In order to verify the validity and accuracy of the MFBM, the
FEM was used as a benchmark for comparative analysis. The
material parameters, geometry, and boundary of the FEM are the
same as those of the MFBM. Six sets of the same situations were
discussed. The results of the FEM are shown in Figures 7, 8.

The trend of solutions of the MFBM is the same as the FEM
results, and the positions of the maximum stress determined by
the two methods are basically consistent. The positions of the
maximum stress of the cement concrete pavement determined by
the FEM are around 1.1 m from the plate edge. The relationship
between the maximum reduction of the subgrade modulus and
the tendency of stress change can be identified using the FEM.
The larger the maximum reduced value of the subgrade modulus,
the higher the stress of the cement concrete pavement. The
difference between the maximum stress values of the two
methods is below 5%. With the thickness increase of the
pavement plate, the position of the maximal stress is still in
the same place, but the value of the stress reduces. The simulation
results of the MFBM and FEM confirm that increasing the
thickness of the pavement plate can decrease the degree of the
plate fracture.

For further explanation, the (σx/σ0) gradient distributions of the
two methods are compared when the maximum reduction of the
subgrade modulus is 0.5, as shown in Figure 9 and Figure 10,
respectively. As the maximum principal stress fluctuation mainly
occurs in the upper part of the road structure, this paper selects the
pavement layer of the structure and analyzes six groups of different
immersion conditions. The positions and magnitudes of the
principal stress of the two methods are basically the same. As the
immersion range increases, themagnitude of the principal stress also
increases. Meanwhile, the principal stress decreases as the thickness
of the pavement layer increases.

The subgrade modulus is an important characterization for the
performance of the pavement structure. When the cement concrete

pavement is in the process of scouring and disengaging, the subgrade
modulus changes with the position. The progressive softening model
of earth subgrade is more suitable to represent the changes in
the subgrade modulus, and the MFBM model is suitable for the
cement concrete pavement. Compared to the FEM, the MFBM
offers advantages such as the elimination of mesh or element
limitations, accurate solutions with reduced computation
time, and convenience in analyzing non-homogeneous softening
models.

In order to further verify the effectiveness and rationality of the
proposed calculation method, we conducted a large number of road
condition surveys on cement concrete pavements in Hunan, Guangxi,
Guangdong, and other provinces and cities in China. The on-site
cracking investigation was carried out in combination with the
Highway Performance Assessment Standards by the Chinese traffic
management department (JTG 5210-2018). We randomly investigated
the corner fracture in different areas and traffic load sections. In
addition, from the field investigation of the cement pavement plate
fracture, the position of the pavement plate fracture is basically
consistent with the calculated range, as shown in Figure 11.
Therefore, the numerical and field results indicate that the MFBM is
feasible and effective. By measuring the distance between the crack
position of the corner fracture of the cement concrete pavement slab
and the intersection of the longitudinal and transverse joints, it is easy to
observe that the maximum stress positions of the cement concrete
pavement obtained by numerical simulation agree with the
measurements very well.

5 Conclusion

A novel MFBM was extended to cement concrete pavement
engineering in this study. Compared with the FEM, the MFBM is
convenient and suitable for non-homogeneous softening model
analysis. The main findings are as follows:

(1) A progressive softening model established by the MFBM is
capable of describing the response of a cement concrete plate
with the decrease of the subgrade modulus. The proposed
MFBM model is suitable for the cement concrete pavement.
The position of the pavement plate fracture in the field is
consistent with the range calculated by the MFBM. The FEM
is one of the most powerful numerical tools for complicated
problems in engineering and science. As an alternative, the
meshless finite block method provides a new approach with
many advantages such as efficiency and simplicity.

(2) The subgrade modulus reduction, the size of the immersion
zone, and the thickness of the pavement and subgrade can affect
the cement concrete plate fracture. The larger the subgrade
modulus decay, the higher the stress. With the increase in the
thickness of the pavement plate, the position of the maximum
stress remains at the same place but the value of the stress
decreases. The maximum stress of the cement concrete
pavement mainly concentrates at 1.05–1.15 m of the plate edge.

However, the selection of a Lagrange series polynomial order is
one issue in the MFBM. At present, meshing of the block is still a
manual process in the MFBM, and the versatility needs to be further
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improved with complex regional models. In future works, the FBM
is to be extended to apply to more complicated problems, such as
elastoplasticity, thermoelasticity, and elastodynamics.
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