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Synthesis and reporting of new nanoparticles with diverse properties is important
in chemistry. A one-step, rapid and controllable synthesis of the new Fe3O4

surrounded in Ti-MOF nanostructures was carried out with microwave
technology. After identifying and confirming the structure, Fe3O4 surrounded
in Ti-MOF nanostructures was used as a suitable catalyst with high thermal
resistance and recyclable in a three-component reaction of phenylhydrazine,
malononitrile and aldehyde to synthesis novel pyrazole derivatives. Continuing
investigations on Fe3O4 surrounded in Ti-MOF nanostructures, its antimicrobial
properties were tested on Gram-positive bacterial species, Gram-negative
bacterial species and fungi bacterial. Identification of Fe3O4 surrounded in Ti-
MOF nanostructures with morphology and size distribution technique (SEM),
surface area technique (BET), Infrared spectroscopy (FT-IR), Energy-Dispersive
X-ray spectroscopy (EDX/EDX mapping), and Vibrating Sample Magnetometer
(VSM) were performed. Synthesized pyrazole derivatives with Fe3O4 surrounded in
Ti-MOF nanostructures than previously reportedmethods have less synthesis time
and high efficiency. In antimicrobial properties high effects were observed based
on MIC, MBC, and MFC values.
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1 Introduction

Recently, there have been many reports on the capabilities
and applications of different nanostructures. Catalyst ability
(Farsi, Mohammadi, and Saghanezhad, 2021), photocatalyst
ability (Karimipour et al, 2021; Eshghi et al, 2023), and
biological activity such as antimicrobial and antioxidant
activity (Aghaee et al, 2022; Akbari et al, 2022) are an
example of them. Metal–organic frameworks (MOFs) are
nanocompounds that have attracted the attention of
scientists recently due to their unique capabilities (Karimi
et al, 2021). One of the most important reported uses of
these compounds is their energy applications (Sharafi-Badr,
Hayati, and Mahmoudi, 2022). Due to the widespread use of
nanostructures such as MOFs, efficient synthesis methods of
these samples are an essential issue. Investigations show that
choosing the method of synthesizing MOF nanostructures,
developing new nanostructures, and improving their surface
properties is an essential and profound challenge (Zhou et al,
2022), and the properties of the final product are affected by the
physical properties and the nature of the structure (Asghar, Iqbal,
and Noor, 2020). One of the most effective methods for
synthesizing these nanostructures is the microwave technique.
The use of microwave paths in synthesizing MOF nanostructures
has improved the physicochemical properties of these
nanostructures. Crystallinity, thermal stability, and particle
size distribution are among these properties (Abd El Salam

and Sharara, 2019). The synthesis of nanostructures in a high
specific level of the product and short time are other features of
this efficient method (Abdi et al, 2022). A magnetic core–shell
structure of MOF magnets can be synthesized. Easy recycling in
use as a catalyst for the synthesis of heterocyclic compounds is a
distinctive property of core–shell magnetic nanostructures.

Pyrazole derivatives are heterocyclic compounds that have shown
broad pharmacological and pharmacological properties. This kind of
heterocyclic compound has been used alone or together with various
other structures such as antifungal agents (Bendaha et al, 2011),
antiviral agents (El-Sabbagh et al, 2009), antidepressant agents
(Abdel-Aziz, Abuo-Rahma, and Hassan, 2009), antimicrobial agents
(Gouda et al, 2010), and sectional agonists for nicotinic acid receptors
(Van Herk et al, 2003), p38 kinase inhibitors (Graneto et al, 2007), and
CDK inhibitors (Kryštof et al, 2006).

Synthetic derivatives of pyrazole are often widely used in
developing anticancer agents (Kumar, Saini, et al, 2013a).
Furthermore, natural products containing pyrazole have shown
medicinal properties. As shown in Figure 1, some pyrazole
derivatives such as 4-methylpyrazole- 3(5)-carboxylic acid,
pyrazole-3(5)-carboxylic acid, pyrazophorin, and pyrazophorin B
that are isolated from natural products with medicinal properties
have been shown (Kumar, Kaur, et al, 2013b).

The experiment indicates that, in the pyrazole ring, the presence
of cyano, aryl, or amino groups as specific substituents has an
effective role in observing biological and bioactive effects
(Mitchell et al, 2015). Therefore, it can be said that, from the

FIGURE 1
Pyrazole derivatives isolated from natural products.
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FIGURE 2
Synthesis of Fe3O4 surrounded by Ti-MOFs.

FIGURE 3
SEM image (A) and distribution histogram (B) of Fe3O4 surrounded by Ti-MOF nanostructures.
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point of view of medicinal chemistry, pyrazole heterocycles have a
high potential for diversity-based organic synthesis (DOS) (Koehler,
Shamji, and Schreiber, 2003).

To introduce this amount of diversity to the structure of
chemical compounds, multicomponent reactions are the best
possible tools (Sunderhaus and Martin, 2009; Syamala, 2009;
Biggs-Houck, Younai, and Shaw, 2010).

Considering the importance of synthesizing heterocyclic
compounds and reporting new methods, in this study, Fe3O4

surrounded by Ti-MOF nanostructures with the microwave method
was synthesized. Fe3O4 surrounded by Ti-MOF nanostructures was

used as a recyclable and efficient magnetic nanocatalyst in the synthesis
of pyrazole-4-carbonitrile derivatives.

In the continuation of investigations on the properties of Fe3O4

surrounded by Ti-MOF nanostructures, its antibacterial and
antifungal activities were investigated, and significant results were
observed.

2 Experiments

2.1 Materials and instruments

Solvents and chemical reagent from Merck were purchased.
Fe3O4 nanostructures were purchased from Sigma-Aldrich.

The crystalline structures of the samples were investigated
by X-ray powder diffraction (XRD, Rigaku SmartLab 9 kW) with a
Cu-Kα radiation source (λ = 0.15406 nm). The morphology
and particle size distribution of the nanostructures were
analyzed by scanning electron microscopy (SEM, Hitachi
Regulus 8,100) at 3.0 kV. The physical properties of the
catalysts were investigated by nitrogen adsorption–desorption
characterization (Micromeritics AXAP 2460) performed
at −196°C. The specific surface area was calculated using the
BET equation, and the pore structure parameters were
calculated from the BJH method.

The types of functional groups of the samples were tested by
Fourier transform infrared spectra (FT-IR, Nicolet iS50) with a wave
number range of 400–4,000 cm−1.

FIGURE 4
N2 adsorption/desorption isotherm of Fe3O4 surrounded by Ti-
MOFs.

FIGURE 5
FTIR spectrum of Fe3O4 surrounded by Ti-MOF (A) and Ti-MOF nanostructures (B).
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2.2 Synthesis of Fe3O4 surrounded by Ti-
MOF nanostructures

A solution of 1 mmol Fe3O4 nanoparticle, 2 mmol Ti (NO3)4,
and 2 mmol dipicolinic acid in 25 mL double-distilled water for
10 min at 75°C was stirred. Then, the mixture was put into the
microwave reactor under irradiation (power of 500 W) at 25°C for
15 min. The products were cooled to room temperature. Finally,
they were isolated and washed three times with deionized water/
EtOH and dried at 25°C.

2.3 Synthesis of pyrazole-4-carbonitrile
derivatives

For synthesizing pyrazole-4-carbonitrile derivatives, in 2 mL
EtOH:H2O (1:1), 1 mmol aromatic aldehydes, 1 mmol
malononitrile, 1 mmol (2,4-dinitrophenyl)hydrazine, and 1 mg
Fe3O4 surrounded by Ti-MOF nanostructures were added and
stirred at 25°C. Reaction monitoring was performed by thin layer
chromatography. After completion of the reaction, Fe3O4

surrounded by Ti-MOF nanostructures was separated by a
magnet, and products were recrystallized in EtOH:H2O.

2.3.1 5-Amino-1-(2,4-dinitrophenyl)-3-(4-
fluorophenyl)-1H-pyrazole-4-carbonitrile (D2)

IR (KBr): 3,379, 3,319, 3,126, 3,042, 2,264, 1,621 cm−1;
1HNMR (DMSO-d6, 400 MHz): δ= 7.52 (1H, d, J = 8.7 Hz),
7.61 (1H, d, J = 9.3 Hz), 7.79 (2H, d, J = 8.84 Hz), 7.86 (1H, d, J =
8.8 Hz), 7.90 (2H, d, J = 8.4 Hz), 8.61 (1H, s), and 8.76 (1H, s)
ppm; 13CNMR (DMSO-d6, 100 MHz): δ= 81.9, 114.9, 121.6,
122.7, 124.1, 128.5, 129.1, 129.4, 131.8, 133.7, 139.6, 148.2,
151.4, and 160.3 ppm; elemental analysis: C16H9FN6O4

calculated: C, 52.18; H, 2.46; N, 22.82; O, 17.38. Found: C,
52.25; H, 2.41; N, 22.79, O, 17.41.

2.3.2 5-Amino-3-(4-bromophenyl)-1-(2,4-
dinitrophenyl)-1H-pyrazole-4-carbonitrile (D4)

IR (KBr): 3,386, 3,314, 3,135, 3,024, 2,247, and 1,626 cm−1;
1HNMR (DMSO-d6, 400 MHz): δ= 7.49 (1H, d, J = 8.8 Hz), 7.63
(1H, d, J = 9.2 Hz), 7.75 (2H, d, J = 8.8 Hz), 7.85 (1H, d, J =
8.7 Hz), 7.95 (2H, d, J = 8.5 Hz), 8.64 (1H, s), and 8.71 (1H, s)
ppm; 13CNMR (DMSO-d6, 100 MHz): δ= 82.6, 115.3, 121.4,
122.3, 123.9, 128.9, 129.6, 129.9, 131.5, 134.1, 139.1, 148.6,
151.7, and 161.4 ppm; elemental analysis: C16H9BrN6O4

calculated: C, 44.78; H, 2.11; N, 19.58; O, 14.91. Found: C,
44.81; H, 2.09; N, 19.57, O, 14.93.

FIGURE 6
EDX (A) and EDS mapping [(B1) combination; (B2) O; (B3) N; (B4) C] of Fe3O4 surrounded by Ti-MOF nanostructures.
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2.3.3 5-Amino-1-(2,4-dinitrophenyl)-3-(4-
nitrophenyl)-1H-pyrazole-4-carbonitrile (D6)

IR (KBr): 3,371, 3,331, 3,116, 3,047, 2,264, and 1,625 cm−1;
1HNMR (DMSO-d6, 400 MHz): δ= 7.54 (1H, d, J = 8.6 Hz), 7.65
(1H, d, J = 9.1 Hz), 7.71 (2H, d, J = 8.7 Hz), 7.80 (1H, d, J =
8.4 Hz), 7.91 (2H, d, J = 8.4 Hz), 8.58 (1H, s), and 8.76 (1H, s)
ppm; 13CNMR (DMSO-d6, 100 MHz): δ= 83.61, 115.7, 121.8,
122.6, 124.3, 128.5, 129.1, 129.5, 131.2, 135.6, 140.1, 148.7, 153.6,
and 162.1 ppm; elemental analysis: C16H9N7O6 calculated: C,
48.62; H, 2.30; N, 24.80; O, 24.28. Found: C, 48.59; H, 2.33; N,
24.84, O, 24.31.

2.4 Biological activity of Fe3O4 surrounded
by Ti-MOF nanostructures

Biological activity of Fe3O4 surrounded by Ti-MOF
nanostructures and antibacterial and antifungal activities based

on minimum inhibitory concentration (MIC), minimum
bactericidal concentration (MBC), and minimum fungicidal
concentration (MFC) values against Gram-negative bacterial
strains and Gram-positive bacteria strains according to the CLSI
guidelines M07-A9, M26-A, and M27-A2 were evaluated (Abdieva
et al, 2022; Afrough et al, 2021; Zeraati et al, 2022; Hosseinzadegan
et al, 2020a). In antimicrobial investigations, all tests were repeated
three times, and the average results were reported.

3 Results and discussion

3.1 Synthesis identifies and confirms the
structure of novel Fe3O4 surrounded by Ti-
MOFs

In this study, Fe3O4 surrounded by Ti-MOF nanostructures was
synthesized according to Figure 2.

FIGURE 7
VSM curve of Fe3O4 surrounded by Ti-MOFs.

FIGURE 8
XRD patterns of Ti-MOF nanostructures.
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To identify and confirm the structure of Fe3O4 surrounded by
Ti-MOF nanostructures, related characterization techniques
such as SEM, BET, EDX/EDX mapping, FT-IR, and VSM
were used.

The morphology and particle size distribution of Fe3O4

surrounded by Ti-MOF nanostructures by SEM image (Figure 3)
were investigated. According to this image, the morphology of Fe3O4

surrounded by Ti-MOF nanostructures was a uniform crystalline

FIGURE 9
Proposed structure of Fe3O4 surrounded by Ti-MOF nanostructures.

SCHEME 1
Fe3O4 surrounded by Ti-MOF nanostructures as magnetic nanocatalysts in the synthesis of pyrazole-4-carbonitrile derivatives.
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system with needle-shaped distribution. The homogeneous
morphology with narrow particle size distribution of Fe3O4

surrounded by Ti-MOF nanostructures can be attributed to the
efficient microwave-assisted synthesis under optimal conditions
(microwave power: 500 W, temperature: 25°C, and time duration:
15 min). Compared to the previous sample (Moghaddam-manesh
et al, 2022), the morphology of samples was homogeneous which
can be related to the type of the synthesis method and also mild
conditions of the microwave-assisted process. Particle size
distribution of Fe3O4 surrounded by Ti-MOF nanostructures
shows that the particles are in the nanorange, and the average
particle size was 97 nm.

N2 adsorption/desorption isotherms of synthesized Fe3O4

surrounded by Ti-MOF nanostructures are given in Figure 4.

BET results showed that Fe3O4 surrounded by Ti-MOF
nanostructures has a specific surface area of approximately
37.500 m2/g. This amount-specific surface confirmed that
Fe3O4 surrounded by Ti-MOF nanostructures has a desirable
surface for catalytic reactions and biological agents. It means
compared to the classical route (Zeraati et al, 2021), the
microwave-assisted method has been influential on the
synthesis of Fe3O4 surrounded by Ti-MOF nanostructures
with potential specific surface area.

The FTIR spectrum of Fe3O4 surrounded by Ti-MOF
nanostructures is given in Figure 5. In the FTIR spectrum of
Fe3O4 surrounded by Ti-MOF nanostructures, the peak near
3,421 cm−1 was due to the hydration of water. The absorption
near 3,000 cm−1 was due to C–H groups. The peak related to

SCHEME 2
Proposed mechanisms for the synthesis of pyrazole-4-carbonitrile derivatives by Fe3O4 surrounded by Ti-MOFs.

TABLE 1 Optimization of conditions in synthesizing D1.

Entry Amount catalyst (mg) Solvent Temperature (oC) Time (min) Yield (%)

1 1 EtOH r. t 60 64

2 2 EtOH r. t 60 77

3 3 EtOH r. t 45 85

4 4 EtOH r. t 45 85

5 5 EtOH r. t 45 81

6 3 H2O:EtOH (1:1) r. t 30 93

7 3 MeOH r. t 60 32

8 3 H2O:EtOH (1:1) 40 30 91

9 3 H2O:EtOH (1:1) 50 30 85

The bold values in the table indicate the optimal values obtained.
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TABLE 2 Synthesis of pyrazole-4-carbonitrile derivatives by Fe3O4 surrounded by Ti-MOFs.

Product Structure Time (min) Yield (%) Mp (°C)

Found Reported

D1 30 93 224–226 225–227 (Aryan et al, 2017)

D2 20 91 248–251 New

D3 20 93 259–263 260–265 (Aryan et al, 2017)

D4 25 89 269–272 New

(Continued on following page)
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carbonyl groups and C=N was near 1,600 cm−1 and 1,550 cm−1,
respectively. (Bakhshi et al, 2022). The absorption due to C=C
groups was shown near 1,400 cm−1. The absorption values related to
Ti–O and Fe–O were given near 670 cm−1 (Al-Amin et al, 2016) and
530 cm−1 (Hosseinzadegan, Hazeri, and Maghsoodlou, 2020b),
respectively.

Based on the FTIR spectrum, the peaks and absorption of a
group present in the structure of Fe3O4 surrounded by Ti-MOF
nanostructures were observed.

The EDX and EDS mapping proved the presence of elements
and compounds used in synthesizing Fe3O4 surrounded by Ti-MOF
nanostructures. The elements of Fe, C, O, and N in EDX and EDS
mapping were observed. These elements were in the structure of
reactants. EDX and EDS mapping of Fe3O4 surrounded by Ti-MOF
nanostructures are given in Figure 6. According to these analyses,

the related elements were distributed as homogeneous which
confirmed the successful dispersion of Fe3O4 elements
surrounded by Ti-MOF nanostructures.

The magnetic saturation of Fe3O4 surrounded by Ti-MOF
nanostructures is given in the curve of Figure 7. The magnetic
saturation value for Fe3O4 surrounded by Ti-MOF nanostructures
was 0.022 emu/g. Magnetic saturation for Fe3O4 MNPs was
0.055 emu/g (Hosseinzadegan et al, 2020a). Reduction of
magnetic saturation in Fe3O4 surrounded by Ti-MOF
nanostructures proves the presence of Ti-MOF particles around
Fe3O4.

The magnetism of Fe3O4 surrounded by Ti-MOF
nanostructures makes them easy to separate after performing the
desired reactions by magnets, which was another feature of
synthesized Fe3O4 surrounded by Ti-MOF nanostructures.

TABLE 2 (Continued) Synthesis of pyrazole-4-carbonitrile derivatives by Fe3O4 surrounded by Ti-MOFs.

Product Structure Time (min) Yield (%) Mp (°C)

Found Reported

D5 25 93 154–156 154–155 (M’Hamed and Alduaij, 2016)

D6 15 94 231–232 New

TABLE 3 Synthesis of pyrazole-4-carbonitrile derivatives under different conditions.

Entry Condition Time (min) Temperature (°C) Yield (%)

1 Glucose:urea, deep eutectic solvent 50 r. t 89 (Aryan et al, 2017)

2 Through ball milling 40 r. t 93

3 This work 30 r. t 93
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Figure 8 shows the XRD patterns of Fe3O4 surrounded by Ti-
MOF nanostructures. According to this image, the patterns related
to the formation of Fe3O4 surrounded by Ti-MOF nanostructures
were successfully conformed. Furthermore, according to the
Debye–Scherer equation, the mean crystalline size is
approximately 91 nm. The width of peaks confirmed the narrow
crystalline size distribution of final products. The crystalline
behavior of Fe3O4 surrounded by Ti-MOF nanostructures was in
agreement with the previous literature (Li et al, 2019).

Based on the spectral data and analyzed, Figure 9 is proposed for
Fe3O4 surrounded by Ti-MOF nanostructures.

3.2 Synthesis of pyrazole-4-carbonitrile
derivatives by Fe3O4 surrounded by Ti-MOF
nanostructures

Fe3O4 surrounded by Ti-MOF nanostructures was used as
magnetic catalysts to synthesize pyrazole-4-carbonitrile
derivatives based on Scheme 1.

The first step in the synthesis of derivatives was optimization of
the reaction conditions. According to Table 1, for 5-amino-1-(2,4-
dinitrophenyl)-3-phenyl-1H-pyrazole-4-carbonitrile (D1),
milligrams of catalyst, solvent and temperature were optimized.

In 3 mg of catalyst, 1 to 1 H2O:EtOH as a solvent, ambient
temperature, and high efficiency were observed, and other
derivatives listed in Table 2 were synthesized using optimal conditions.

Derivatives D2, D4, and D6were new compounds synthesized in
this study. In Scheme 2, the proposedmechanism for the synthesis of
derivatives is presented.

One of the factors that made Fe3O4 surrounded by Ti-MOF
nanostructures important in synthesizing pyrazole-4-carbonitrile
derivatives was their recyclability. After synthesizing the products,
the catalyst with H2O and EtOH was washed and dried at ambient
temperature under vacuum. After drying, it was used again in the
synthesis of derivatives. Investigations proved that magnetic
nanoparticles could be used up to five times without significantly
reducing efficiency in the synthesis of D1 (Figure 10).

Since (2,4-dinitrophenyl)hydrazine has low reactivity, so far,
two methods have been reported for the synthesis of pyrazole-4-
carbonitrile derivatives using 2 (2,4-dinitrophenyl)hydrazine as a
reagent, and the results are given in Table 3.TA
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Based on the results of Table 3, the catalysts used in this study, in
addition to convenient synthesis conditions of derivatives and synthesis
of novel derivatives, took less time and had higher efficiency.

Although the magnetic MOF structures similar to the synthesized
compound in this study have been reported so far, the difference
between this study and the previous report is the use of different metals.
In this study, titanium was used, but in the reported study,
molybdenum was used. In addition, in the previous report, the
synthesized Fe3O4/Mo-MOF compound was used as a catalyst in
the synthesis of pyrano [2,3-d]pyrimidine derivatives, but Fe3O4

surrounded by Ti-MOF nanostructures synthesized in this study was
used for the synthesis of pyrazole derivatives (Abdtawfeeq et al, 2022).

3.3 Biological activity results of Fe3O4
surrounded by Ti-MOF nanostructures

Antibacterial and antifungal activities of Fe3O4 surrounded by Ti-
MOF nanostructures as biological activity were studied. MIC, MFC,
andMBCvalues onGram-negative bacterial species including Shigella
dysenteriae andKlebsiella pneumoniae; Gram-positive bacteria species
including Bacillus cereus and Staphylococcus epidermidis; and fungi
strains including Fusarium oxysporum and Candida albicans for
Fe3O4 surrounded by Ti-MOF nanostructures were studied (Table 4).

Based on previous studies, compounds containing titanium have
significant antimicrobial and antibacterial properties (He et al, 2017;
Azizi-Lalabadi et al, 2019). In this study, it was found that Fe3O4

surrounded by Ti-MOF nanostructures affects all studied bacterial
strains, Gram-positive bacterial strains, and fungal strains that its
high effectiveness can be attributed to the presence of titanium in its
structure. As mentioned in Sections 1–2, the high specific surface
area of Fe3O4 surrounded by Ti-MOF nanostructures was also
influential in its antibacterial and antifungal activity. A
comparison of the antibacterial and antifungal properties of
Fe3O4 surrounded by Ti-MOF nanostructures with cefazolin,
gentamicin, tolnaftate, and terbinafine showed that synthesized
Fe3O4 surrounded by Ti-MOF nanostructures has a higher effect
on Shigella dysenteriae, Bacillus cereus (bacterial strains), Fusarium
oxysporum, and Candida albicans (fungal strain) than cefazolin
(antibacterial) and terbinafine (antifungal), which were known as
a commercial antibacterial and antifungal drugs (Potbhare et al,
2019; Chouke, Dadure, et al, 2022a; Chouke, Shrirame, et al, 2022b).

4 Conclusion

In short, novel Fe3O4 surrounded by Ti-MOF nanostructures using
the microwave method was synthesized, and their structure was
identified and confirmed by SEM, BET, FT-IR, EDX/EDX mapping,
and VSM. Analysis of SEM and BET showed that the microwave
method has the uniformity of morphology and specific surface area of
Fe3O4 surrounded by Ti-MOF nanostructures, which can increase its
catalytic and biological properties and continue to be discussed. Fe3O4

surrounded by Ti-MOF nanostructures was used as a recyclable and
efficient catalyst in synthesizing pyrazole-4-carbonitrile derivatives and
proved that derivatives were synthesized under better conditions than
the previously presented methods. Derivatives were synthesized in
15–30 min with the efficiency of 89%–94%. Three new pyrazole

derivatives were synthesized and identified by spectral data. Another
advantage of using Fe3O4 surrounded by Ti-MOF nanostructures as a
catalyst was its easy separation after completion of the reaction by a
magnet. In the continuation of our research on Fe3O4 surrounded by
Ti-MOF nanostructures, its antibacterial and antifungal activities were
evaluated, and significant results were observed. The minimum
inhibitory concentration for the derivatives on the studied bacterial
and fungal species was observed between 16 and 128 μg/mL. In some of
the studied strains, higher effectiveness than known commercial drugs
was also observed, which can be attributed to the presence of titanium
and high specific surface area of it.
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