
Study on the influence of
magnetic field on the
performance of a 5 kW hall
thruster

L. Yang*, P. Y. Wang and T. Wang

School of Electrical Engineering, Northwest University for Nationalities, Lanzhou, Gansu, China

Hall thruster is a kind of plasma optics device, which is used mainly in space
propulsion. To study the influence of magnetic field on the performance of a
5 kW hall thruster, a two-dimensional PIC-MCC model was built. The Bohm
diffusion was modeled by using a Brownian motion instead of the Bohm
collision method and the near-wall conduction was modeled by a
secondary electron emission model. When the mass flow rate is 5 mg/s, the
thruster performance like thrust, efficiency and discharge current was
simulated under a discharge voltage from 300 to 1,000 voltage. At first, the
performance under constant magnetic field was simulated. The results showed
that themagnetic field could not restrain the electrons as the discharge voltage
increased. Later, the performance under varied magnetic field was simulated.
The results showed that increasing the magnetic field strength with the
increasing discharge voltage could restrain the electrons more efficiently,
which proved that increasing the magnetic field strength is necessary for
high specific impulse operation of hall thruster. At last, the performance
measurement experiment of the thruster was carried out, and the
experimental results verified the accuracy of the simulation results.

KEYWORDS

particle-in-cell, magnetic field, hall thruster, plasma optics device, high specific impulse

1 Introduction

Hall electric propulsion is one of the most mature and widely used electric propulsion
technologies (Pidgeon, 2006; Levchenko et al., 2018) for satellites or deep space explorers. In
recent years, new applications have emerged, taking the Starlink of SpaceX corporation
(McDowell, 2020) as an example.

The magnetic field affect the density and energy distribution of the plasmas and directly
decide the electric field distribution. The behavior of the plasmas then affect the beam
extraction, channel erosion, thrust and efficiency. Therefore, the magnetic field in the
discharge channel plays a very important role for a hall thruster. Research on the magnetic
field has already been carried out widely. In the classical magnetic field design theory, radial
magnetic lens are used to focus the ions, the intensity shows a positive gradient (Goebel and
Katz, 2008). For a reasonable magnetic field shape, the current density should be small
(Hofer et al., 2006), the magnetic field near the anode should be nearly zero, and themagnetic
field gradient should be as large as possible (Chesta et al., 2001; Choueiri, 2001; Garrigues
et al., 2003; Yamamoto et al., 2005; Wei et al., 2015; Zun et al., 2018; Kan et al., 2020).
Although the classic radial magnetic field topology offers a high level of performance,
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researchers have been trying to improve the performance of the
thruster by optimizing the magnetic field. Remarkable effect is the
magnetic shielding technology (Mikellides et al., 2010; Goebel et al.,
2011; Goebel et al., 2013; Goebel et al., 2014a; Goebel et al., 2014b;
Goebel et al., 2015; Grimaud et al., 2016), which can greatly reduce
sputtering corrosion of discharge channel.

The specific impulse of Hall thrusters that are now used is lower
than 2500s. If the specific impulse can be increased to 2,500–3,000 s,
it will bring significant benefits. This paper aims to study the
influence of magnetic field on the performance of a 5 kW hall
thruster LHT-140 (Figure 1) under a discharge voltage from
300 V to 1,000 V. Especially for the discharge voltage between
600 V and 1,000 V, under which the high specific impulse
(2,500–3,000 s) may be realized. Thruster performance with
different magnetic field distribution was simulated. The results
showed that increasing the magnetic field strength is necessary as
the discharge voltage increased for high specific operation of hall
thruster.

The reminder of the paper is organized as follows: Section 2
describes the simulation model, Section 3 discusses the simulation
results, conclusions and recommended future work are presented in
Section 4.

2 Particle-in-cell modeling method

A classical PIC method was used to build the numerical
simulation model of plasma discharge for the hall thruster (Yang
et al., 2021). An artificial mass ratio of 1,000 and amesh size of 1 mm
were used in the model. The simulation area includes the entire
discharge channel of hall thruster and the near plume area. The
boundary of the discharge channel includes metal anode walls,
ceramic walls, symmetric axis and free space. Since the magnetic
field produced by the plasma is far less than that produced by the

coils, only static magnetic field was used in the model. In addition to
the collision between particles, the collision between particles and
the wall of the discharge channel, Coulomb collision is also
considered.

3 Numerical simulation results and
discussion

3.1 Analysis of influence for constant
magnetic field

When the propellant flow rate is 5 mg/s and the magnetic field
strength is unchanged, the changes of thrust, discharge current and
efficiency with the discharge voltage are shown in Figures 3–6. It can
be seen that the total efficiency (shown in Figure 2) first increases
with the increase of discharge voltage, reaches the maximum at
500V, and then starts to decline. Because the experimental research
(Hofer and Gallimore, 2004) shows that the discharge voltage and
magnetic field strength in the Hall thruster need to be matched
reasonably, and the magnetic field strength must increase
synchronously when the discharge voltage rises to a certain value.
However, the magnetic field strength here remains unchanged.
When the discharge voltage exceeds 500V, the magnetic field
strength is insufficient to restrain electrons, the electrons are
absorbed by the anode before they have fully collided with the
propellant atoms, leading to a decrease in efficiency. When the
discharge voltage increases, the ionization of propellant atoms
becomes more and more sufficient, and the utilization efficiency
of propellant becomes higher and higher, until the insufficient
confinement of magnetic field to electrons led to insufficient
ionization of propellant atoms.

When the discharge voltage rises from 300 V to 500 V, atomic
ionization becomes more and more sufficient, more and more ions
are generated, and the speed is faster. Therefore, the thrust (shown in

FIGURE 1
LHT-140 hall thruster.

FIGURE 2
Simulated efficiency with unchanged magnetic field.
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Figure 3) becomes larger and larger. When the discharge voltage
rises from 600 V to 1,000 V, the ionization efficiency drops sharply,
and the number of ions generated decreases. However, the ion
velocity is still increasing, and the thrust (shown in Figure 3) value is
still increasing, but the increasing rate becomes slow.

The change of discharge current (shown in Figure 4) is closely
related to ionization efficiency or total efficiency. When the
discharge voltage rises from 300 to 500 V, the ionization
efficiency increases, and more and more ions are generated.
Therefore, the discharge current is also increasing. When the
discharge voltage exceeds 600V, the ionization efficiency drops
rapidly, and the magnetic field lacks the ability to restrain
electrons, resulting in a large number of invalid electrons emitted
from the cathode into the discharge channel and absorbed by the

anode. That is to say, the increase of discharge current is mainly
caused by the increase of invalid electron current, which does not
significantly increase the thrust. Therefore, the total efficiency
decreases rapidly.

3.2 Analysis of influence for varied magnetic
field

Make the magnetic field strength increase with the discharge
voltage (as shown in Figure 5), and the thruster performance
changes are shown in Figures 7–10.

The obvious difference with the constant magnetic field strength
is that when the discharge voltage exceeds 600 V, the efficiency (as

FIGURE 3
Simulated thrust with unchanged magnetic field.

FIGURE 4
Simulated discharge current with unchanged magnetic field.

FIGURE 5
Magnetic field increased with the increase of discharge voltage.

FIGURE 6
Simulated efficiency with changed magnetic field.

Frontiers in Materials frontiersin.org03

Yang et al. 10.3389/fmats.2023.1150802

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1150802


shown in Figure 6) does not decrease rapidly with the increase of the
discharge voltage, but remains relatively stable (>45%). Because,
with the increase of discharge voltage, the magnetic field strength is
also increasing, and electrons can always be effectively constrained
by the magnetic field. Therefore, the ionization efficiency does not
decrease rapidly.

The increasing speed of thrust (as shown in Figure 7) did not
slow down obviously when the discharge voltage exceeded 600 V.

There is also no rapid increase of invalid electron current, that is,
the discharge current (as shown in Figure 8) does not increase
rapidly, and the increased discharge current is mainly caused by the
increase of ion current.

4 Verification of influence of magnetic
field strength on thruster performance

The verification experiment was conducted (as shown in Figures
9, 10), the mass flow rate, magnetic field and discharge voltage is the
same as Section 3.1, 3.2. The thrust was measured, the efficiency and
specific impulse could be calculated according to thrust.

The value of thrust (as shown in Figure 11) when the magnetic
field intensity changes with the discharge voltage is greater than that
when the magnetic field intensity remains unchanged. The error
between experimental results and simulation results is less than 15%.
When the field strength remains unchanged, the calculated value is
1.4%–9.3% smaller than the test value. When the magnetic field
intensity changes, the calculated value is 1.0%–10.2% less than the

FIGURE 7
Simulated thrust with changed magnetic field.

FIGURE 8
Simulated discharge current with changed magnetic field.

FIGURE 9
Thrust testing.

FIGURE 10
Thruster discharge.
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test value. The main reason is that the atomic backflow effect in the
vacuum chamber is not considered in this model.

5 Conclusion

The performance of the thruster, including efficiency, thrust, specific
impulse and discharge current, is simulated under the conditions that the
magnetic field is constant and the magnetic field strength increases with
the increase of discharge voltage. The simulation results show that the
magnetic field strength should increase with the increase of the discharge
voltage, otherwise the restriction ability to the electrons will be
insufficient. The electrons will be absorbed by the anode without full
collision with the atoms in the discharge chamber, leading to the increase
of the invalid electron current, resulting in the decrease of the thruster
efficiency and the increase of the heat load. The subsequent thruster
performance verification experiments proved the accuracy of the
simulation results and relevant conclusions, and the error between the
experiment and simulation calculationwas less than 15%. The research in
this paper explores amethod to achieve ultra-high specific impulse ofHall
thruster, that is, to match the high discharge voltage with reasonable
magnetic field strength. It is necessary to study the influence of the
configuration of magnetic field distribution in the discharge chamber on
the performance of thruster, which will be carried out in the future.
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