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This investigation determined the effectiveness of an exterior magnetic field on
bacteria enclosed by thousands of magnetite nanoparticles. Variable thermal
conductivity and Joule heating were used in the interstitial nano liquid in which
artificial bacteria were swimming in a biotic cell. The unsteady motions of a
Powell–Eyring fluid in two dimensions were assumed. The porous extending wall
was used as a bent surface shape. To convert the governing non-linear PDEs into
non-linear ODEs, suitable transformations were exploited. The homotopy analysis
technique (HAM) was utilized to resolve the semi-analytical results of non-linear
ODEs. Plots were utilized to investigate the impact of significant parameters of
velocity distribution, temperature profile, bacterial density field, nutrient
concentration field, skin friction, Nusselt number, and nutrient concentration
density. Clinical disease has shown that daring tumors have reduced blood flow.
The results of this study showed that augmenting the values of unsteady parameters
improved the blood velocity profile. The velocity distribution decreased for higher
magnetite volume fraction values, aswell as porosity andmagnetic parameters. As the
concentration of magnetite nanoparticles increased, so did the blood temperature
distribution. As a result, the immersion of magnetite nanoparticles improved the
physical characteristics of the blood. These findings also demonstrated that magnetic
parameters and Eckert number play an essential role in increasing heat transfer rates.
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1 Introduction

Radiotherapy and chemotherapy are frequently applied to treat
patients with cancer. However, the combination of these treatments
may be inadequate to achieve a cure in some cases. Thus, the
development of advanced and novel tactics may provide
oncologists with additional therapeutic possibilities. A laboratory in
Spain recently produced an artificial magnetic bacterium that, when
consumed, can trigger a charged magnetism compass to mark and
destroy tumors because the compass rotation speed heats and melts
tumors. This method is based on hyperthermia caused by magnets,
which is an exploratory treatment method in which magneto-
nanoparticle-saturated tumors are subjected to a discontinuous
magnetic field. This treatment begins by immersing a tumor in
iron magneto-nanoparticles. Every cell in the body requires oxygen
to function, and tumors cannot grow beyond the size of a sugar pill
without it. Thus, tumors produce hormones that permit them to
obtain oxygen-rich blood by hijacking surrounding blood vessels.
Moreover, because blood arteries grow in tumors in an unorganized
and faster manner, they are porous and defective. When
ferromagnetic iron nanoparticles are infused into blood circulation,
they travel throughout the body, avoiding healthy blood vessels unless
they enter the leakages that nourish tumors. Mathuriya et al. (2015)
reported that these vaccinatedmagnetic iron nanomaterials eventually
pass through the blood unless they reach a tumor’s blood generator, in
which these particles accumulate. Magnetic nanoparticles show
potential as a drug conveyance module because of their large
surface area, high viability, low toxicity, and volume proportions.
Furthermore, magnetic hyperthermia uses magnetic nanoparticles to
reduce tumor volume and to target and eliminate malignant cells.
Magnetic bio partitioning is useful for detaching a specific atom from
a catalog of molecules. One example is the magnetic bio partitioning
used to restrict viral RNA for further investigation by polymerase
chain reaction. Furthermore, magnetic particles exhibit imaging
characteristics, making them useful for multimodal theranostics.
These characteristics of magnetic nanomaterials allow simultaneous
treatment and diagnostics (Anik et al. (2021). Kong et al. (2014) and
Cui et al. (2012) used an unsteady applied magnetic field impact to
examine the movement of magnetotactic bacteria (MTB) in a
Newtonian fluid. The authors addressed the swimming motion of
MTB from a fluid dynamics standpoint in conjunction with an entire
three-dimensional Stokes flow. Vincenti et al. (2018) scrutinized the
effect of a magnetic field on micro-swimmer suspensions in liquid.
Furthermore, Nagaraj et al. (2018) reported on the joint effect of
electric and magnetic fields on the synovial fluid in a biological
context. Bhatti (2021) recently investigated nanomedicine utilizing
suspensions of magnetized gold (Au) nanoparticles. Afridi et al.
(2019) explored the effect of thermal dissipation and entropy
formation on the flow of a hybrid nanofluid across a curved sheet.
Moreover, it is practical to use a spreading twisted surface for
interstitial nanoparticle flow, in which artificial magnetic bacteria
swim within biological cells. Shukla et al. (2019) examined the effects
of viscoelasticity factors on second-order fluid in carotid artery blood
flow. The HAMwas used to initiate an entropy creation evaluation of
time-dependent second-grade nanoliquid and heat transfer under the
influence of a magnetic field. The authors discovered that increasing
the second-order viscoelastic and magnetic values increased the
entropy production number.

Many studies have proposed strategies for mathematical models
within the human body, including the flow of fluid across a curved
surface. Several investigators have also considered abdominal fluid
flowing through biological cells as a non-Newtonian Powell–Eyring
fluid. Saleem and Munawar (2016) examined blood flow via a
stenotic artery in a constant magnetic field by assuming that
blood within the artery was an Powell–Eyring fluid. Hina et al.
(2016) investigated the heat transfer characteristics of a
Powell–Eyring fluid in peristaltic flow within a curved channel
with compliant walls. According to Riaz et al. (2019), the heat
transfer procedure in the human body is a complex process that
includes heat movement in tissues, membrane pores,
electromagnetic radiation emitted by cell phones, exterior
interface, metabolic heat production, and arterial-venous blood
circulation. Their research aimed to determine the impact of
bioheat and mass transfer in the peristaltic movement of an
Powell–Eyring liquid in a three-dimensional rectangular cross
section in the context of the human thermoregulation framework
and thermotherapy. Hussain et al. (2020) numerically explored flow
and explained blood flow behavior through tapered arteries as a
non-Newtonian Powell–Eyring fluid. Asha and Sunitha (2018),
Gholinia et al. (2019), Mallick and Misra (2019), Sultan et al.
(2019), and Basha and Sivaraj (2021) conducted relevant research
on this model. In the presence of a magnetic field generated using
magnetite (Fe3O4), Yasmin (2022), Alyousef et al. (2023), Yasmin
et al. (2023a), Yasmin et al. (2023b), and Yasmin et al. (2023c)
performed biomedical investigations of fluid flow and studied
nanofluid flow and hybrid nanofluids experimentally and
theoretically, with stability analysis in the context of energy
storage and other applications.

Based on these previous findings, the present study
considered the growth of artificial magnetic bacteria in a non-
Newtonian Powell–Eyring nanofluid on a stretching curved
surface using a porous medium. The variable fluid thermal
conductivity of the nanofluid was considered. As shown in
Figure 1, curvilinear coordinates were used to model
mathematical expressions across the curved biological
boundary. This investigation also used magnetite
nanoparticles. The temperature, concentration, and velocity of
magnetite/blood in biological cells were acquired by the
homotopy analysis method (HAM) via MATHEMATICA and
depicted in a set of plots. Additionally, different scenarios were
developed by varying the impact of dimensionless parameters,
and distinct cases were constructed to obtain maximum reference
data. The magnetic bacterium function as a magnetically charged
compass to mark and abolish tumors by revolving at such a high
rate that tumors heat and melt. Section 2 provides the
mathematical formulas and all relevant details. Section 3
presents the physical quantities and the solution method, and
its convergence with the validation of the results is shown in
Sections 4 and 5. Section 6 includes the results and discussion.
Finally, Section 7 contains the conclusions.

2 Mathematical formulas

We assumed a two-dimensional unsteady boundary layer
Powell–Eyring nanofluid flow on a strained curved surface using a
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porous medium that was a spiral in a circle with radius R around the
curvilinear coordinates. The stretching surface in the s − direction had a
velocity u � Uw and was vertical to the r − direction. A magnetic field
of intensityB(t)was applied in the vertical direction. The nanofluidwas
embedded in the porous medium, and its flow behavior in the porous
mediumwas accounted for by using the Brinkmanmodel. The effects of
variable thermal conductivity, heat generation/absorption, and joule
dissipation were all considered. We used reaction–diffusion equations
to explicitly model the dynamics of the bacterial density ρn and nutrient
concentration n.

2.1 Formal model and geometry

Figure 1 shows the geometry of the flow problem along with the
coordinate system, velocity field, and other details.

2.1.1 Governing equations and boundary
conditions after applying assumptions

Navier–Stokes flow is a type of fluid movement in which the
spinning speed of the flow, Uw, is extremely low and the typical
dimension a is slight. The Stokes estimate is commonly used to
describe the motion of magnetic bacteria because it ignores the
inertial term in the Navier–Stokes equation by using a low Reynolds
number. Thus, the Navier–Stokes and continuity equations govern
the fluid speed produced by swimming magnetotactic bacteria. The
theory of rate mechanisms was utilized to deduce the Powell–Eyring
model (1994) to define shear in non-Newtonian flow. The shear

tensor in the Powell–Eyring fluid model is given by (Riaz et al.
(2019)

τ � μ∇V + 1
β1
sinh−1

1
c1
∇V( ) (1)

and

sinh−1
1
c1
∇V( ) ≈

1
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∇V( ) − 1

6
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1
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∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣≪ 1. (2)

The appropriate governing equations to examine the foregoing
fluid flow are as follows:
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FIGURE 1
Fluid flow configuration and coordinate system.
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subject to the boundary condition (Elgazery et al., 2022)

u � Uw � as

1 − ct
, v � 0, T � Tw, ρn � ρn( )w, n � nw at r → 0

u → 0,
zu

zr
→ 0, T → T∞, ρn → ρn( )∞, n → n∞, as r → ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (9)

Here, �r � r + R,B(t) � B0
1−ct√ , Y � (ρn)w−(ρn)∞

nw−n∞ is the conversion
factor, A (n, t) � aλ(t) n

(Km+n) represents the variable nutrient bacterial
growth rate, and λ(t) � λ0

1−ct represents the maximum growth rate. In this
present discussion, we assume that n is greater than the Monod constant
Km and that a> 0 and c≥ 0 with dimension (time)−1.

2.1.2 Similarity transformations and modeled ODEs
Using the following dimensionless similarity transformations

(Elgazery et al., 2022),

ξ �
a

]f 1 − ct( )
√

r,

u � as

1 − ct
f′ ξ( ), p � ρf

as

1 − ct
( )2

P ξ( ), T � T∞ + Tw − T∞( )θ ξ( ),

ρn � ρn( )∞ + ρn( )w − ρn( )∞( )χ ξ( ), n � n∞ + nw − n∞( )ω ξ( ).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(10)

and using the aforementioned dimensionless quantity, the
equation of continuity is satisfied, and after pressure elimination
the governing Eqs 7–12 can be written as follows:
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Similarly, pressure can be expressed as follows:
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2K
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(15)
subject to the boundary conditions

f′ 0( ) � θ 0( ) � χ 0( ) � ω 0( ) � 1, f 0( ) � 0,
f′ ∞( ) � f″ ∞( ) � θ ∞( ) � χ ∞( ) � ω ∞( ) � 0,

(16)

where �ξ � ξ +K,K � 
a

]f(1−ct)
√

R,M � σfB2
0

ρfa
,Ω � (ρn)w

(ρn)w−(ρn)∞, α1 �
μf
β1c1

,

α2 � a3s2

β1c
3
1ρf]

2
f
(1−ct)3, β0 �

μf(1−ct)
ρfk1a

, Lb � ]f/Dn, Q � 1−ct
a(ρCP)fQ*, and

Pr � ](ρCP)f
k0

(Pr≈ 21for blood).

2.1.3 Thermo-physical characteristics of nanofluid
The thermo-physical characteristics of an effective nanofluid can

be expressed as follows (Mallick and Misra, 2019; Yasmin, 2022;
Alyousef et al., 2023):

μnf � φ1 μf, ρnf � φ2 ρf, ρCP( )nf � φ3 ρCP( )f, σnf � φ5 σf,

(17)
where

φ2 � 1 − ϕ( ) + ρP
ρf

ϕ, φ3 � 1 − ϕ( ) + ϕ
ρCP( )P
ρCp( )

f

φ5 �
σP + 2σf + 2ϕ σP − σf( )( )
σP + 2σf − ϕ σP − σf( )( ) , φ1 � 1 − ϕ( )−2.5

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (18)

Here, the index f represents the base fluid and P refers to the
nanoparticles (Fe3O4). The thermophysical characteristics of magnetite
nanoparticles are given in Table 1. Moreover, the nanoliquid variable
thermal conductivity can be considered as follows (Yasmin, 2022):

κnf T( ) � φ4κ0 1 + β θ η( )( ), (19)
where φ4 � (kP+2kf+2ϕ(kP−kf)

kP+2kf−ϕ(kP−kf)), k0 represents the constant thermal

conductivity of the base fluid and β is a parameter used for variable
thermal conductivity.

3 Physical quantities

The physical quantities of concern in the current research are
expressed as follows:

Cf � τw
ρfU

2
w

, Nus � sqw
kf Tw − T∞( ), Nns � sqn

Dn nw − n∞( ), (20)

TABLE 1 Thermophysical characteristics of Fe3O4 magnetite nanoparticles and blood (Alyousef et al., 2023; Yasmin et al., 2023a).

Thermophysical property ρ (kg/m3) Cp (J/kgK) k (W/mK) σ (S/m)
Blood 1,000 4,180 0.543 0.0109

Iron oxide Fe3O4 5,180 670 9.7 25,000
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where Cf signifies the skin friction,Nus denotes the Nusselt number,
andNns represents the nutrient concentration. Moreover, τw, qw, and
qn are the surface shear stress, heat flux, and wall nutrient
concentration flux, respectively. These are defined as follows:

τrs � μnf +
1
βc

( ) zu

zr
+ u

�r
( ) − 1

6βc3
zu

zr
+ u

�r
( )3[ ]

r�R
,

qw � −knf zT

zr
[ ]

r�0
, qs � −Dn.

(21)

These quantities can be written in non-dimensional form as
follows:

Cf Res( )1/2 � φ1 + α1( ) f″ 0( ) + f′ 0( )
�ξ

) − α2 f″ 0( ) + f′ 0( )
�ξ

)3

,((
Nus Res( )−1/2 � −θ/ 0( ), Nns Res( )−1/2 � −ω/ 0( ), (22)

where (Res)1/2 �


a
]f(1−ct)

√
s represents the local Reynolds number.

4 Solution methods

To find the solution to the system of Eqs 11–14 under the boundary
constraints (16), aHAM(Liao, 2004) approachwas used and figures were
sketched for convergence. The complete procedure is shown in Eqs
23–45.

The initial guesses were selected as follows:

f0 η( ) � 1 − e−η, θ0 η( ) � e−η, χ0 η( ) � e−η,ω0 η( ) � e−η. (23)

The linear operators are taken as Lf, Lθ, Lχ , andLω:

Lf f( ) � f‴ − f′, Lθ θ( ) � θ″ − θ, Lχ χ( ) � χ″ − χ, Lω � ω″ − ω,

(24)
which have the following properties:

TABLE 2 Tables 2(a-d).

ξ HAMsolution Numerical solution Absolute error

(a) Validations of the HAM with a numerical method for f′(ξ)
0.0 1.000000 1.000000 0.000000

0.5 0.654935 0.656548 0.001613

1.0 0.466136 0.469411 0.003275

1.5 0.346991 0.351120 0.004129

2.0 0.256295 0.260327 0.004032

2.5 0.180685 0.183972 0.003287

3.0 0.119248 0.121564 0.002315

3.5 0.073023 0.074451 0.001428

4.0 0.041167 0.041928 0.000762

4.5 0.021032 0.021363 0.000331

5.0 0.009352 0.009439 0.000087

(b) Validation of the HAM with the numerical method for p(ξ)
0.0 1.000000 1.000000 0.000000

0.5 0.622007 0.622523 0.000516

1.0 0.402824 0.403989 0.001165

1.5 0.262053 0.263350 0.001297

2.0 0.169004 0.170127 0.001122

2.5 0.107701 0.108555 0.000854

3.0 0.067856 0.068458 0.000602

3.5 0.042343 0.042748 0.000405

4.0 0.026223 0.026486 0.000264

4.5 0.016145 0.016313 0.000168

5.0 0.009897 0.010003 0.000105

(c) Validation of the HAM with the numerical method for θ(ξ)
0.0 1.000000 1.000000 0.000000

0.5 0.644781 0.644908 0.000127

1.0 0.410030 0.410170 0.000141

1.5 0.257583 0.257698 0.000115

2.0 0.160285 0.160368 0.000083

2.5 0.099048 0.099105 0.000057

3.0 0.060908 0.060945 0.000037

3.5 0.037330 0.037354 0.037354

4.0 0.022829 0.022844 0.000015

4.5 0.013942 0.013951 9.44 × 10−6

5.0 0.008507 0.008513 5.89 × 10−6

(Continued in next column)

TABLE 2 (Continued)

ξ HAMsolution Numerical solution Absolute error

(d) Validation of the HAM with the numerical method for χ(ξ)
0.0 1.000000 1.000000 0.000000

0.5 0.657530 0.658168 0.000637

1.0 0.424080 0.424782 0.000703

1.5 0.269068 0.269642 0.000574

2.0 0.168602 0.169017 0.000416

2.5 0.104703 0.104985 0.000283

3.0 0.064615 0.064801 0.000185

3.5 0.039707 0.039826 0.000119

4.0 0.024333 0.024409 0.000075

4.5 0.014886 0.024409 0.000047

5.0 0.009097 0.009126 0.000029
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Lf c1 + c2η + c3e
−η + c4e

η( ) � 0, Lθ c5e
η + c6e

−η( ) � 0,
Lχ c7e

−η + c8e
η( ) � 0, Lω c9e

−η + c10e
η( ) � 0,

(25)

where ci(i � 1 − 10) are the constants in the general solution.
The resultant non-linear operatives Nf,Nθ , Nχ , andNω are

given as follows:

Nf f η;p( )[ ] � φ4 + α1( ) z4f η;p( )
zη4

+ 2
ξ

z3f η;p( )
zη3

− 1

ξ2
z2f η;p( )

zη2
+ 1

ξ3
zf η;p( )

zη
[ ]

−φ3M
z2f η;p( )

zη2
+ 1
ξ

zf η;p( )
zη

( ) − φ4β0
z2f η;p( )

zη2
+ 1
ξ

zf η;p( )
zη

( )

−α2

z2f η;p( )
zη2

( )2

+ 2
ξ

zf η;p( )
zη

z2f η;p( )
zη2

+ 2

ξ2
zf η;p( )

zη
( )2⎛⎝ ⎞⎠ z4f η;p( )

zη4

+ z2f η;p( )
zη2

( )2

− 3
ξ

zf η;p( )
zη

z2f η;p( )
zη2

− 2

ξ2
zf η;p( )

zη
( )2⎛⎝ ⎞⎠ 1

ξ2
z2f η;p( )

zη2

+ 3

ξ5
zf η;p( )

zη
( )3

+ 2
z2f η;p( )

zη2
+ 1
ξ

zf η;p( )
zη

( ) z3f η;p( )
zη3

( )2

+2 3
z2f η;p( )

zη2
( )3

+ 2
ξ

zf η;p( )
zη

z2f η;p( )
zη2

− 1

ξ2
zf η;p( )

zη
( )2⎛⎝ ⎞⎠ 1

ξ

z3f η;p( )
zη3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×φ1

k

ξ
f η;p( ) z3f η;p( )

zη3
− zf η;p( )

zη

z2f η;p( )
zη2

( ) + k

ξ2
f η;p( ) z2f η;p( )

zη2
− zf η;p( )

zη
( )2( )

k

ξ3
f η;p( ) zf η;p( )

zη
− γ

ξ

ξ

2
z2f η;p( )

zη2
− zf η;p( )

zη
( ) − γ

2
ξ
z3f η;p( )

zη3
+ 3

z2f η;p( )
zη2

( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(26)

Nθ f η;p( ), θ η;p( )[ ] � φ5 1 + β
zθ η;p( )

zη
( ) z2θ η;p( )

zη2
+ 1
ξ

zθ η;p( )
zη

( )[
+β zθ η;p( )

zη
( )2] − φ3MPrEc

zf η;p( )
zη

( )2

+φ2Pr
kf
ξ
− γξ

2
( ) zθ η;p( )

zη
+ Q

φ2

θ η;p( )[ ], (27)

Nω f η;p( ),ω η;p( )[ ] �z2ω η;p( )
zη2

+ 1
ξ

zω η;p( )
zη

+ Lb

K

ξ
f η;p( ) − γξ

2
( ) zω η;p( )

zη

+λ Ω + χ η;p( )( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(28)
Nχ f η;p( ), χ η;p( )[ ] � z2χ η;p( )

zη2
+ 1
ξ

zχ η;p( )
zη

+ Lb
K

ξ
f η;p( ) − γξ

2
( ) zχ η;p( )

zη
+ λ Ω + χ η;p( )( )].[

(29)

TABLE 3 Comparison of skin friction.

M Present results Imtiaz et al. (2019)

0.0 −3.035213606332084 −3.03837

0.2 −3.426597847646775 −3.42970

0.5 −3.8509138382373056 −3.85035

FIGURE 2
(A–D) Graphical validations of the HAM with numerical methods for f′(ξ), p(ξ), θ(ξ), and χ(ξ).
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FIGURE 3
(A–C) Variations in f′(ξ), p(ξ), and θ(ξ) for distinct numbers of K.

FIGURE 4
(A–C) Variations in f′(ξ), p(ξ), and θ(ξ) for distinct numbers of γ.
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The fundamental concept of HAM is characterized in Cui
et al. (2012), Kong et al. (2014), Mathuriya et al. (2015), and Anik
et al. (2021). The zeroth-order problems from Eqs 9–12 are as
follows:

1 − p( )Lf f η;p( ) − f0 η( )[ ] � pZfNf f η;p( )[ ], (30)
1 − p( )Lθ θ η;p( ) − θ0 η( )[ ] � pZθNθ f η;p( ), θ η;p( )[ ], (31)
1 − p( )Lω ω η;p( ) − ω0 η( )[ ] � pZωNω f η;p( ),ω η;p( )[ ], (32)

1 − p( )Lχ χ η;p( ) − χ0 η( )[ ] � pZχNχ f η;p( ),ω η;p( ), χ η;p( )[ ].
(33)

The equivalent boundary conditions are as follows:

f η;p( )∣∣∣∣η�0 � 0,
zf η;p( )

zη

∣∣∣∣∣∣η�0 � 1,
zf η;p( )

zη

∣∣∣∣∣∣η→∞
� 0,

θ η;p( )∣∣∣∣η�0 � 0, θ η;p( )∣∣∣∣η�∞ � 0,

ω η;p( )∣∣∣∣η�0 � 0, ω η;p( )∣∣∣∣η�∞ � 0,

χ η;p( )∣∣∣∣η�0 � 0, χ η;p( )∣∣∣∣η�∞ � 0,

(34)

where p ∈ [0, 1] is the imbedding parameter and
Zf, Zθ , Zω, and Zχ are used to control the convergence of the
solution. When p � 0 and p � 1,

f η; 1( ) � f η( ), θ η; 1( ) � θ η( ), ω η; 1( ) � ω η( ), χ η; 1( ) � χ η( ).
(35)

and expanding f(η;p), θ(η;p),ω(η;p), and χ(η;p) in the
Taylor’s series about p � 0,

f η;p( ) � f0 η( ) + ∑∞
m�1fm η( )pm,

θ η;p( ) � θ0 η( ) + ∑∞
m�1θm η( )pm,

ω η;p( ) � ω0 η( ) + ∑∞
m�1ωm η( )pm,

χ η;p( ) � χ0 η( ) + ∑∞
m�1χm η( )pm,

(36)

where

fm � 1
m!

zf η;p( )
zη

∣∣∣∣∣∣∣∣
p�0

, θm � 1
m!

zθ η;p( )
zη

∣∣∣∣∣∣∣∣
p�0

,

ωm � 1
m!

zω η;p( )
zη

∣∣∣∣∣∣∣∣p�0, χm � 1
m!

zχ η;p( )
zη

∣∣∣∣∣∣∣∣p�0.
(37)

The secondary constraints Zf, Zθ , Zω, and Zχ are selected so
that the series (27) converges at p � 1; substituting p � 1 in (27),
we obtain:

f η( ) � f0 η( ) + ∑∞
m�1fm η( ),

θ η( ) � θ0 η( ) + ∑∞
m�1θm η( ),

ω η( ) � ω0 η( ) + ∑∞
m�1ωm η( ),

χ η( ) � χ0 η( ) + ∑∞
m�1χm η( ).

(38)

The mth − order problem satisfies the following:

Lf fm η( ) − χmfm−1 η( )[ ] � ZfR
f
m η( ),

Lθ θm η( ) − χmθm−1 η( )[ ] � ZθR
θ
m η( ),

Lω ωm η( ) − χmωm−1 η( )[ ] � ZωR
ω
m η( ),

Lχ χm η( ) − χmχm−1 η( )[ ] � ZχR
χ
m η( ).

(39)

The following are the corresponding boundary conditions:

fm 0( ) � f′
m 0( ) � θm 0( ) � ωm 0( ) � χm 0( ) � 0,

f′
m ∞( ) � θm ∞( ) � ωm ∞( ) � χm ∞( ) � 0.

(40)

Here,

Rf
m η( ) � φ4 + α1( ) f

′′′′
m−1 +

2
ξ
fm−1‴ − 1

ξ2
fm−1″ + 1

ξ3
fm−1′[ ]

−φ3M fm−1″ + 1
ξ
fm−1′( ) − φ4β0 fm−1″ + 1

ξ
fm−1′( )

−α2

∑m−1
k�0 fm−1−k″ ∑k

l�0 fk−l″ f
′′′′
l + 2

ξ
∑m−1

k�0 fm−1−k′ ∑k

l�0fk−l″ f
′′′′
l

+ 2

ξ2
∑m−1

k�0 fm−1−k′ ∑k

l�0fk−l′ f
′′′′
l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+

1

ξ2
∑m−1

k�0 fm−1−k″ ∑k

l�0fk−l″ f″
l −

3

ξ2
∑m−1

k�0 fm−1−k′ ∑k

l�0fk−l″ f″
l −

2

ξ4
∑m−1

k�0 fm−1−k′ ∑k

l�0fk−l′ f″
l( )

+ 3

ξ5
∑m−1

k�0 fm−1−k′ ∑k

l�0fk−l′ f′
l + 2 ∑m−1

k�0 fm−1−k″ ∑k

l�0fk−l‴ f‴
l + 1

ξ
∑m−1

k�0 fm−1−k′ ∑k

l�0fk−l‴f‴
l( )

+2 3
ξ

∑m−1
k�0 fm−1−k″ ∑k

l�0fk−l″ f‴
l + 2

ξ2
∑m−1

k�0 fm−1−k′ ∑k

l�0fk−l″ f‴
l − 1

ξ3
∑m−1

k�0 fm−1−k′ ∑k

l�0fk−l′ f‴
l( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+φ1

k

ξ
∑m−1

k�0 fm−1−kf‴
k − ∑m−1

k�0 fm−1−k′ f″
k( ) + k

ξ2
∑m−1

k�0 fm−1−kf″
k − ∑m−1

k�0 fm−1−k′ f′
k( )

− k

ξ3
∑m−1

k�0 fm−1−kf′
k −

γ

ξ

ξ

2
fm −1″ −fm−1′( ) − γ

2
ξfm−1‴ + 3fm−1″( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (41)

FIGURE 5
(A,B) Variations in f′(ξ) and p(ξ) for distinct numbers of α1.

Frontiers in Materials frontiersin.org08

Tang et al. 10.3389/fmats.2023.1144854

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1144854


Rθ
m η( ) � φ5 θm−1″ + 1

ξ
θm−1′( )(

+β ∑m−1
k�0 θm−1−k′ θ″k +

1
ξ

∑m−1
k�0 θm−1−k′ θ′k( )

+β∑m−1
k�0 θm−1−k′ θ′k) − φ3MPrEc∑m−1

k�0 fm−1−k′ f′
k

+φ2Pr
kf
ξ
− γξ

2
( )θm−1′ + Q

φ2

θm−1( ), (42)

Rω
m η( ) � ωm−1″ + 1

ξ
ωm−1′

+ Lb
K

ξ
∑m−1

k�0 fm−1−kωk − γξ

2
ωm−1′( ) + λ Ω + χm−1( )[ ],

(43)
Rχ
m η( ) � χm−1″ + 1

ξ
χm−1′

+ Lb
K

ξ
∑m−1

k�0 fm−1−kχk −
γξ

2
χm−1′( ) + λ Ω + χm−1( )[ ],

(44)
where

χm � 0, if p≤ 1,
1, if p> 1.

{ (45)

5 Validations of the results

This section shows the result validations graphically and
numerically. The results obtained using the semi-analytical HAM

FIGURE 6
(A–C) Variations in f′(ξ), p(ξ), and θ(ξ) for distinct numbers of ϕ.

FIGURE 7
Variations in f′(ξ) for distinct numbers of β0.
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method are compared to the numerical (ND-Solved) techniques for
temperature θ(ξ), pressure p(ξ), velocity f′(ξ), bacterial density
field χ(ξ), and nutrient concentration ω(ξ).

Table 2(a–d) shows the results of the HAM solutions, numerical
solutions, and the absolute errors for temperature θ(ξ), pressure
p(ξ), velocity f′(ξ), bacterial density field χ(ξ), and nutrient
concentration ω(ξ). We observed excellent agreement between
the results for all profiles. Table 3 shows a comparison between
the current and previous results (Elgazery et al., 2022) for skin
friction and it was found that both results agreed. Figures 2A–D
show comparison between HAM and numerical solutions for the
temperature θ(ξ), pressure p(ξ), velocity f ′(ξ), the bacterial density
field χ(ξ), nutrient concentration ω(ξ). An excellent agreement is
found between both results for all profile.

6 Results and discussion

This investigation used HAM to graphically explore the efficacy
of numerous governing factors, such as the curvature factor K,
volume fraction ϕ, maximum bacteria growth rate λ, fluid parameter
α1, unsteady parameter γ, magnetic parameter M, porosity

parameter β0, non-dimensional bacterial density difference Ω,
non-dimensional generation/absorption coefficient, bioconvection
Lewis number Lb, and variable thermal conductivity β, on the
temperature θ(ξ), pressure p(ξ), velocity f′(ξ), bacterial density
field χ(ξ), nutrient concentration ω(ξ), Nusselt number, skin
friction, and density of nutrient concentration.

Figures 3A–C show how the curvature factor K affects the velocity
f′(ξ), pressure P(ξ), and temperature θ(ξ) curves, in which increases
in velocity and decreases in pressure resulted in increased curvature
parameter values. Tumor blood flow usually decreases as tumors grow
larger; however, mathematical examination predicted that enhancing
the curvature parameter would boost tumor blood flow, which may
enhance medical treatment.

Furthermore, as shown in Figures 4A, B increasing the curvature
parameter value increased the radius of the curved surface, which
increased the velocity and decreased the pressure. Due to vascular
damage, the environment within the tumors became hypoxic, acidic,
and nutritionally deficient when heated. These suboptimal
environmental changes enhance the tumor cell hyperthermia
response, inhibit thermal damage repair, and interfere with the
development of thermal tolerance. At high temperatures, the acidic
environment enhances the tumor cell response to certain drugs. As
shown in Figure 4C, the temperature decreased as the curvature
factor increased, and increased with increasing unsteady parameter.
In medical treatment, to enhance the tumor cell response to
magnetic magnetite nanoparticles, γ should be increased, thus
increasing the environmental temperature of the nanofluid.
Figures 4A, B show increased velocity and decreased pressure
with increasing unsteady parameter γ.

Figures 5A, B show the effect of the fluid parameter α1 on
velocity and pressure. Figure 5A shows that the blood velocity first
decreased and then gradually increased as the fluid parameter value
increased. Figure 5B shows that the blood pressure curves increased
for large fluid parameter values.

Figures 6A–C show how the magnetite nanoparticle volume
fraction parameter ϕ affects the velocity f′(ξ), pressure P(ξ), and
temperature θ(ξ) curves. As the volume fraction of magnetite
nanoparticles increased, the velocity profile and pressure
distribution decreased. The mathematical explanation showed
that magnetite nanoparticles reduced blood flow pressure, which

FIGURE 8
(A,B) Variations in f′(ξ) and θ(ξ) for distinct numbers of M.

FIGURE 9
Variations in θ(ξ) for distinct numbers of Pr.
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is a beneficial outcome in the medical treatment of cancer, thus
demonstrating the potential effectiveness of magnetite
nanoparticles in medical therapy. As the concentration of
magnetite nanoparticles increased, so did the blood
temperature distribution. Therefore, passing magnetite
nanoparticles through the blood improves its physical properties.

The impact of the porosity parameter on blood velocity is shown
in Figure 7, in which the blood velocity decreased as the porosity

increased. This effect occurred because increasing blood porosity
increased the interactions and fraction between the flow and blood
cells, resulting in decreased velocity.

The exploration of the magnetic factor M showed that
opposition in artificial magnetic bacteria swimming within the
blood flow was a major factor. Figures 8A, B show the effects of M
on the velocity f′(ξ) and temperature θ(ξ), respectively. When
the magnetic factor M increased, f′(ξ) decreased and θ(ξ)
increased. The changes in magnetite/blood velocity were
inversely related to the magnetic factor. Thus, applying a
magnetic field to an electrically conducting liquid created a
resistive Lorentz force that tended to diminish the fluid flow
while increasing the temperature.

Figure 9 depicts the influence of the Prandtl number Pr on the
temperature θ(ξ). As Pr increased, the temperature decreased.
The thermal boundary layer thickness decreased as the Prandtl
number increased. The Prandtl number is the momentum
diffusivity/thermal diffusivity ratio and it governs the relative
thickening of the momentum and thermal boundary layers in
heat transfer.

Figure 10 shows the temperature distribution for various Eckert
number Ec values. The relationship between heat enthalpy
difference and flow kinetic energy is known as the Eckert
number Ec. Therefore, increasing the Eckert number increases
the kinetic energy. Furthermore, temperature is defined as the

FIGURE 10
Variations in θ(ξ) for distinct numbers of Ec.

FIGURE 11
(A,B) Variations in χ(ξ) and ω(ξ) for distinct numbers of Lb.

FIGURE 12
(A,B) Variations in χ(ξ) and ω(ξ) for distinct numbers of Ω.
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average kinetic energy. Consequently, the temperature of the fluid
increased with increasing Eckert number Ec.

Figures 11A, B show the effect of the bioconvection Lewis number
Lb on the bacterial density χ(ξ) and nutrient concentration ω(ξ), in

which both bacterial density and nutrient concentration decreased with
increasing bioconvection Lewis number Lb.

Figures 12A, B show the influence of the bacterial difference
density parameter Ω on the bacterial density field χ(ξ) and nutrient

FIGURE 13
(A,B) Variations in χ(ξ) for distinct numbers of λ.

FIGURE 14
Influences of γ and ϕ on skin friction.

FIGURE 15
Influences of γ and M on skin friction.

FIGURE 16
Effects of Q and ϕ on Nus(Res)−1/2.

FIGURE 17
Effects of Q and β on Nus(Res)−1/2.
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concentration ω(ξ). As the Ω increased, so did the bacterial density
and nutrient concentration.

The effects of the bacteria maximum growth rate λ on the
bacterial density and nutrient concentration are shown in Figures
13A, B, in which the bacterial density and nutrient concentration
fields improved when the bacterial maximum growth rate increased.

6.1 Skin friction coefficients and Nusselt
numbers

Figures 14, 15 show the effects of the nanoparticle volume
fraction ϕ and magnetic factor M on the skin friction
coefficient, with mainly significant influences on the unsteady
constraint γ on skin friction. The skin friction increased with
increasing ϕ and M.

Figure 16 shows the effects of the volume fraction ϕ and variable
thermal conductivity constraint β on the Nusselt number.
The Nusselt number decreased with increasing ϕ. Figure 17
shows the effects of β against Q on the Nusselt number
distribution. The Nusselt number decreased with increasing β.

Figure 18 shows the variation in the nutrient concentration
density because of the bacterial difference density Ω and the
optimum bacterial growth rate λ. When both the bacterial
difference density and the optimum bacterial growth rate
increased, the nutrient concentration density increased. These
mathematical outcomes showed that in the medical treatment of
cancer using magnetite nanoparticles and artificial bacteria, it is
preferable to moderate the bacterial difference density and the
bacterial growth rate to increase nutrients in normal cells while
decreasing nutrient consumption in tumor cells. Figure 19 also
shows the behavior of the nutrient concentration density as a
function of the bioconvection Lewis number Lb and the magnetic
parameterM. The nutrient concentration density value improved as
the Lewis number increased but decreased as the magnetic
parameter increased. Physically, in medical treatment, increasing
the magnetic factor and decreasing the ratio of thermal diffusivity to
mass diffusivity are recommended to increase nutrient consumption
in normal cells while decreasing nutrient consumption in tumor
cells.

7 Conclusion

This study aimed to determine the effectiveness of an external
magnetic field on bacteria enclosed by thousands of magnetic
magnetite nanoparticles. Variable thermal conductivity and
Joule heating were used in the interstitial nanofluid, in which
artificial bacteria swam in a biological cell. The unsteady motion
of a Powell–Eyring fluid in two dimensions was considered. A
porous stretching wall was used as a curved surface structure.
To convert the governing non-linear PDEs into non-linear
ODEs, suitable transformations were exploited. The HAM
was used to resolve the semi-analytical results of non-linear
ODEs. This mathematical procedure demonstrates unnatural
magnetic bacterium that can function like a compass that is
magnetically charged to mark and abolish tumors by spinning at
such a high rate that tumors heat and melt. We discovered the
following:

• The blood velocity improved at higher curvature parameter
values and was unsteady when the velocity decreased for large
magnetic factor, volume fraction, and porosity parameter
values.

• The blood velocity profile began to decrease and then
gradually increased with increasing fluid parameter values.

• The mathematical description revealed that magnetite
nanoparticles lower blood pressure, which is a beneficial
outcome in the clinical consideration of cancer, and
demonstrates the effectiveness of magnetite nanoparticles in
such medical therapy.

• The mathematical analysis showed that to enhance the
reaction of tumor cells to several drugs in an acidic
environment, temperatures should be raised by increasing
the characteristics of the nearby environment, including the
unsteady parameter, Eckert number, magnetite nanoparticles,
and magnetic parameters.

FIGURE 18
Influences of Ω and λ on Nns(Res)−1/2.

FIGURE 19
Influences of Lb and M on Nns(Res)−1/2.
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• To increase nutrient consumption in normal cells while
decreasing nutrient consumption in tumor cells, our
mathematical outcomes showed that the bacterial difference
density, bacterial growth rate, and Lewis number should be
moderated in the medical treatment of cancer using magnetite
nanoparticles and artificial bacteria.

• For the intensification of the unsteady parameter, applied
magnetic fields should be considered.
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Nomenclature

(r, s) curvilinear coordinates
(u, v) velocity components

p pressure

T temperature

R curvature radius

k thermal conductivity

k1 permeability of the porous medium

t time

n nutrient concentration

Dn nutrient diffusivity

K curvature parameter

Pr Prandtl number

Lb bioconvection Lewis number

M magnetic parameter

Q generation/absorption coefficient

Greek terms

α1, α2 fluid parameters

μ dynamic viscosity

ν kinematic viscosity

ρ density

ρn bacterial density

β thermal conductivity parameter

β0 porosity parameter

γ unsteady parameter

Ω bacterial difference density

λ bacteria maximum growth rate

ϕ nanoparticle volume fraction

Subscripts

nf nanofluid

f base fluid

p nanoparticles

w at the curved surface

∞ far from the surface
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