
Analysis of the electrically
conducting
magnetohydrodynamic hybrid
nanofluid flow past a convectively
heated stretching surface with
suction/injection and non-linear
thermal radiation

Ebrahem A. Algehyne1,2, Showkat Ahmad Lone3, Zehba Raizah4,
Sayed M. Eldin5*, Anwar Saeed6 and Ahmed M. Galal7,8

1Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia,
2Nanotechnology Research Unit (NRU), University of Tabuk, Tabuk, Saudi Arabia, 3Department of Basic
Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah-M, Riyadh, KSA,
4Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia, 5Center of
Research, Faculty of Engineering, Future University in Egypt New Cairo, New Cairo, Egypt, 6Center of
Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, Faculty
of Science, KingMongkut’s University of Technology Thonburi (KMUTT), BangMod, Thung Khru, Bangkok,
Thailand, 7Department of Mechanical Engineering, College of Engineering in Wadi Alddawasir, Prince
Sattam bin Abdulaziz University, Saudi Arabia, 8Production Engineering and Mechanical Design
Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt

Fluid flow through a porous media has many industrial applications such as water
flowing through rocks and soil and purification of gas and oil mixed in rocks. Also,
heat transfer enhancement has been introduced in various thermal and
mechanical systems by improving the thermal conductance of base fluids. In
this article, the flow of an electrically conducting water-based hybrid nanofluid
comprising GO and Fe3O4 nanoparticles over an extending sheet using a porous
medium has been investigated. The space-dependent heat source, Joule heating,
Brownian motion, thermophoresis, thermal radiation, chemical reaction, and
activation energy impacts are taken into account. For the solution of the
modeled equations, the homotopy analysis method is considered. The
homotopic convergence is shown with the help of a figure. This analysis is
contrasted with previous outcomes and has found a great agreement. The
impacts of embedded factors on different flow characteristics, skin friction
coefficient, and Nusselt and Sherwood numbers are displayed using figures
and tables. The outcomes of the present analysis show that the increasing
magnetic and suction factors have reduced the fluid motion while amplifying
the thermal profiles. Additionally, the suction factor has a reducing impact on both
temperature and concentration profiles. The thermal profiles have increased with
the increasing thermal Biot number, Eckert number, thermophoresis, and
Brownian motion factors. The Nusselt numbers have increased with the
increasing thermal Biot number and stretching factor but reduced with the
increasing thermal radiation and temperature difference factors.
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1 Introduction

The selection of the coolant of different devices/equipment at
the industrial level and for various engineering applications is one of
the most challenging tasks. Recently, thermal flow enhancement has
been introduced in various thermal and mechanical systems by
improving the thermal conductance of base fluids. Different fluids
which are considered as pure base fluids are engine/kerosene oil,
water, ethylene glycol, etc. The suspension of non-size particles in a
pure fluid has been familiarized by Choi and Eastman (1995) first to
expand the thermal flow characteristics of the base fluid. Acharya
et al. (2022) discussed the fluid flow and thermal phenomenon for a
time-based MHD nanoliquid on a spinning surface and explored
that the thermal properties of the nanofluid were enhanced by
84.61% in comparison to the normal fluid. Shah et al. (2020)
mixed gold particles in blood to enhance its thermal properties
by incorporating radiation and rotational effects in the flow system.
Khan et al. (2021) introduced radiative effects in the revolving
motion of an MHD nanofluid on a spinning cylinder and
noticed a difference in temperature growth at the wall as well as
on the surface of the cylinder. Bhatti et al. (2022) explored a
bioconvective MHD Williamson nanofluid flowing amid two
spinning circular surfaces placed in a penetrable medium.
Hussain et al. (2022) solved numerically the radiative EMHD
Williamson fluid flow on a stretching surface. Rasheed et al.
(2022) discussed the Brownian three-dimensional motion of a
thin-film nanofluid past a stretched and rotary sheet and found
that the Nusselt number augmented with growth in magnetic and
Brownian factors and the concentration of nanoparticles. Akbar
et al. (2022) scrutinized the exact solution of an unsteady thermal
conductive pressure on peristaltic transport with temperature
nanofluid viscosity. Carbon nanotubes (CNTs) are grasped as
nanoparticles in an irregular channel. Akram et al. (2022)
investigated the electroosmotic flow of peristaltic transport of a
nanofluid over a curved microchannel.

It has further been noticed experimentally that the thermal
conductance of a base fluid can be additionally enhanced by
suspending two unlike natures of nanoparticles in it and is
characterized as a hybrid nanofluid. Chu et al. (2022) examined
the impact of different nanoparticle shapes for unsteady hybrid
nanofluid flow amid two plates of infinite length and determined
that velocity weakened whereas the temperature of the fluid
upsurged with augmentation in the number of hybrid
nanoparticles. Zhang et al. (2022) examined the effects of
magnetic field on hybrid nanoparticle flow over an elastic sheet
and noticed that motion of the fluid propagated faster with
progression in tantalum nanoparticles and the Darcy number
while the temperature of the fluid declined with an upsurge in
nickel and tantalum nanoparticle concentration. Guedri et al. (2022)
discussed the trihybrid radiative nanofluid motion over a non-linear
extended sheet using the impression of the Darcy–Forchheimer
model and noticed that the heat of the fluid amplified with growth in
Brownian, temperature ratio, and thermophoretic parameters.
Salahuddin et al. (2022) examined flow and thermal behavior for

a highly magnetized wavy heated cylinder on which hybrid
nanofluids flow. Alrabaiah et al. (2022) estimated the
bioconvective hybrid nanoparticles’ flow in the cavity of a cone/
disk using the influences of dissipation and microorganisms. Lone
et al. (2022) explored MHD micro-rotational hybrid nanoparticles’
flow past a flat plate using thermally radiated effects and mixed
convection. Khan et al. (2022a) examined hybrid dissipative
nanofluid flow on a heated revolving needle using
microorganisms and Hall current effects. Maraj et al. (2017)
studied the closed-form solution of mixed convective MHD
carbon nanotube nanofluid flow in a rotating channel. In this
study, one can see that temperature is the enhancing function
against the improving estimations of the volume fraction
parameter. Habib and Akbar (2021) proposed the incorporation
of novel nanofluids in clinical isolates to battle Staphylococcus
aureus. Akram et al. (2021) reported water-based hybrid
(Ag–Au) nanofluids electroosmotically pumped through an
inclined asymmetric microfluidic channel in a porous setting.
With the help of the Debye–Hückel and lubrication linearization
principles, the governing equations of the current model are
linearized.

The study of electrically conducted fluids associated with
magnetic effects such as salty water and plasma is called
magnetohydrodynamics (MHD). Such fluids are crucial in many
engineering and industrial applications, for instance, design of
nuclear reactors, MHD generators, and flow meters. Asjad et al.
(2022) explored the impact of activated energy and magnetic effects
on a Williamson fluid using bioconvective effects on an
exponentially stretched surface. Bejawada et al. (2022) inspected
radiated MHD fluid motion on a non-linear inclined sheet using a
permeable Forchheimer surface and concluded that the motion of
liquid degenerated while temperature expanded with progression in
the magnetic factor. Kodi and Mopuri (2022) discussed MHD time-
based oscillatory fluid flow on an inclined surface using chemically
reactive effects and thermal absorption. Usman et al. (2021)
explored the impact of EMHD couple stress on a thin film
hybrid nanoliquid flow on a gyratory surface and established that
thermal conductance is better in case of hybrid nanoparticles.
Venkata Ramudu et al. (2022) explored the impact of convective
diffusion conditions on Casson MHD fluid motion on a stretched
sheet and noticed that the Sherwood number upsurged while the
Nusselt number declined with an escalation in the non-linear
radiative factor. Sharma et al. (2022) deliberated theoretically on
convection MHD liquid flow past a rotary extended disk and
recognized that the Nusselt number augmented with progression
in the magnetic factor at the lower disk. Same ideas can be seen in
Waseem et al. (2021); Mahabaleshwar et al. (2022); Nagendramma
et al. (2022); and Nazeer et al. (2022).

The experimental and theoretical investigations of fluid flow under
the impact of Joule heating have been handled frequently in the
literature. It plays a pivotal role in controlling the thermal flow
effects. Shamshuddin and Eid (2022) discussed a higher-order
reactive nanofluid in a convective extending sheet under the impact
of Joule heating and mixed convection and proved that the Eckert
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number supported the fluid motion and thermal characteristics,
whereas growth in the magnetic factor declined the velocity and
upsurged the Nusselt number. Wahid et al. (2022) examined an
MHD nanofluid at the stagnant point of a shrinking surface with
viscously dissipative Joule heating effects and noticed that 25% growth
in melting effects augmented skin friction by 5%, whereas the flow
phenomenon can be sustained as laminar by taking alumina
nanoparticles as 2% instead of 1%. Xuan (2022) reviewed non-linear
electro-kinetic fluid flow taking the effects of induced charge to Joule
heating. Abbas et al. (2022) debated on the influence of the
Darcy–Forchheimer model on dissipative MHD fluid flow using
Joule heating effects on a porous sheet and explored that with
progression in the thermal diffusion factor, the temperature,
concentration, and velocity characteristics augmented. Khan et al.
(2022b) examined the production of irreversibility for hydro-
magnetic fluid flow using the Darcy–Forchheimer model and Joule
heating effects and explained the thermal flow phenomenon both for
prescribed thermal flux and surface temperatures. Waqas et al. (2022)
deliberated on MHD nanoliquid flow on a radiated stretched surface
using Joule heating as well as dissipative effects and noticed that the
density of microbes degenerated with growth in the Peclet number.
Saleem et al. (2022) discussed the bio-mathematical model for the flow
of blood through an artery using Joule heating. Kumar et al. (2022)
discussed numerically the chemically reactive MHD fluid slip flow with
Joule heating on an exponentially extended sheet and explored that fluid
motion weakened while the Nusselt number, as well as skin friction,
amplified with an upsurge in magnetic effects. Xie et al. (2023a)
designed experimental and numerical evaluations of a novel
bearing’s fluid–structure interaction lubricating abilities. Xie et al.
(2023b) demonstrated the fluid–structure–acoustic coupling
dynamics of a new water-lubricated bearing being studied
theoretically and experimentally.

Thermal radiation is another main factor that plays a significant
role in thermal flow analysis. Rehman et al. (2022) thermally inspected
the radiated MHD Jeffery fluid flow with a comparative analysis upon
plan/cylindrical surfaces and deduced that fluid flow on cylindrical
surfaces has better thermal flow properties than on plain surfaces. For
instance, the Nusselt number has greater values in case of cylindrical
surfaces. Shaw et al. (2022) inspected MHD cross-liquid motion with
effects of linear as well as non-linear heat radiations using an arbitrary
Prandtl number and highlighted the thermal flow characteristics for
Prandtl numberswithin the interval 10−4 ≤Pr ≤ 104 in case of the linear
as well as non-linear thermal radiation factor. Bilal et al. (2022) explored
the impact of heat radiation on liquid motion over a linear stretched
surface and explained that with elevation in porosity and radiation
factors, there is a growth in skin friction. Adnan (2022) discussed
numerically the effects of radiative and convective thermal conduction
on nanoliquid flow on a non-linear extended sheet and determined that
fluid motion weakened with growth in the radiation factor, which, on
the other hand, augmented both the Nusselt number and skin friction.
Yaseen et al. (2022) discussed motion of hybrid nanoparticles amid two
plates placed in parallel direction with the influence of the Darcy
permeable medium and heat radiations effects and concluded that the
Nusselt number augmented with progression in radiation and porosity
factors. Ibrahim et al. (2022) debated on time-based viscously affected
fluid flow using thermal radiations on a stretched plate. Ramesh et al.
(2022) discussed CNT nanofluid flow on a gyratory sphere by
employing the thermal radiation and thermophoretic effects.

Recently, thermal flow enhancement has been introduced in
various thermal and mechanical systems by improving the thermal
conductance of base fluids. Different fluids which are considered as
base fluids are pure engine/kerosene oil, water, ethylene glycol, etc.
This work investigates the flow of an electrically conducting hybrid
nanofluid over an extending surface using a porous medium. The
space-dependent heat source, Joule heating, Brownian motion,
thermophoresis, thermal radiation, and chemically reactive
activation energy impacts are taken into consideration. Section 2
comprises the main body of the study. Section 3 shows the
homotopic solution of the model. The homotopic convergence is
shown in Section 4. Section 5 shows the results and discussion part
of the work. The final remarks are listed in Section 6.

2 Formulation of the problem

We consider the two-dimensional flow of an MHD hybrid
nanofluid containing GO and Fe3O4 nanoparticles past a stretching
sheet using porous media. Amagnetic field of strength B0 with an acute
angle γ is employed for the hybrid nanofluid flow. The stretching
velocity of the sheet is depicted by uw(x) � ax. The surface of the sheet
is kept with a constant temperature and concentration,
Tw(such that Tw <Tf) and Cw, respectively, while the
corresponding ambient temperature and concentration are T∞ and
C∞, respectively. Here, Tf is the reference temperature. A geometrical
representation of the flow problem is shown in Figure 1. Additionally,
the space-dependent heat source, Joule heating, Brownian motion,
thermal radiation, thermophoresis, chemical reaction, and activation
energy impacts are taken into consideration. The leading equations are
(Reddy et al., 2020; Dawar et al., 2022a)
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subject to the following boundary conditions (Dawar et al., 2022b):
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This can be reduced as

zqr
zŷ
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So, Equation 3 can be written as
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In the abovementioned equations, Rd is the thermal radiation
factor, Nb is the Brownian motion parameter, Pr is the Prandtl
number, Kr is the chemical factor, Nt is the thermophoretic
factor, γ is the porosity factor, Sc is the Schmidt number, BiT is
the thermal Biot number, Ec is the Eckert number, Qe is the heat
source factor, M is the magnetic parameter, S is the suction/
injection factor, E is the activation energy factor, and δ is the
temperature difference parameter. Furthermore, A1, A2, A3, A4,
and A5 are defined as
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∇1 + ∇2
+ 2kf − kp1∇1 + kp2∇2( ) + ∇1 + ∇2( )kf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16)

FIGURE 1
Flow geometry.
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The quantities of interest such as Cfx, Nux, and Shx are
defined as

Cfx � τw
ρf uw x( )( )2, Nux � xqw

kf Tf − T∞( ), Shx � xqm

DB Cf − C∞( ).
(17)

Here,

τw � μhnf
zu

zy

∣∣∣∣∣∣∣∣ y�0( ), qw � −khnfzT
zy

∣∣∣∣∣∣∣∣ y�0( )
+ qr

∣∣∣∣y�0, qm � −DB
zC

zy

∣∣∣∣∣∣∣∣ y�0( ). (18)

Eq. 18 is reduced as

Cfx

���
Rex

√ � A1f″ 0( ), Nux���
Rex

√ � −A4 1 + Rdθ3w( )θ′ 0( ), Shx���
Rex

√ � −φ′ 0( ). (19)

Here, Rex � ûw(x̂)x̂
]̂bf

is the local Reynolds number.

3 Solution by HAM

The initial guesses are described as

f0 η( ) � S + λ( ) − λ exp −η( )
θ0 η( ) � BiT

khnf/kf( ) + BiT
exp −η( )

φ0 η( ) � −Nt

Nb
θ0 η( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (20)

The linear operators are defined as

Lf η( ) � f η( ) + f‴ η( )
Lθ η( ) � θ″ η( ) + θ η( )
Lφ η( ) � φ″ η( ) + φ η( )

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭, (21)

with the following properties:

Lf Z1 + Z2e
−η + Z3e

η( ) � 0
Lθ Z4e

−η + Z5e
−η( ) � 0

Lφ Z6e
−η + Z7e

−η( ) � 0

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭, (22)

where Z1 − Z7 are the arbitrary constants. The chart shown in
Figure 2 explains the procedure of the homotopy analysis method
(Liao, 1999; Liao, 2010).

4 HAM convergence

We are assured of the convergence of the series solution by the
homotopy analysis approach. Our series solutions’ convergence area is
controlled and adjusted by the significant auxiliary parameter -. Because
of this, we have displayed the -−curves in Figure 3. The acceptable value
for the velocity profile is −0.4≤ -f ≤ 0.1, the temperature profile is
−0.41≤ -θ ≤ 0.12, and the concentration profile is −0.65≤ -φ ≤ 0.2.

5 Results and discussion

This section presents the discussion on the impacts of
different embedded factors on the flow profiles of an

electrically conducting hybrid nanofluid over an extending
surface using a porous medium. The space-dependent heat
source, Joule heating, Brownian motion, thermophoresis,
thermal radiation, chemical reaction, and activation energy
impacts are taken into consideration. Figure 4A shows the
influence of the magnetic parameter M on the velocity profile
(f′(η)). It is observed that the increasing M reduces f′(η)
significantly. Physically, when we increase M, an opposing
force in the direction of fluid is created. This force is actually
the Lorentz force, which resists the fluid particles’ motion. This
force slows down the motion of the flow particles and, thus, f′(η)
reduces. So, the velocity profile reduces with the increasing M.
The effect of the suction/injection factor S on the velocity profile
f′(η) is depicted in Figure 4B. When S> 0, f′(η) decreases. The
heated fluid is physically forced away from the surface by the
increased blowing factor, which causes the viscosity to drop and
the fluid to accelerate. The momentum boundary layer is,
however, thinned by the wall suction S> 0, which imposes a
drag force near the surface. The impact of λ on the velocity
profile f′(η) is shown in Figure 4C. f′(η) shows increasing
conduct via λ. This is due to the fact that increasing λ

decreases the viscous influence on the flow. As a result, rising

FIGURE 2
Flow chart of HAM.

FIGURE 3
-−curves of f″(0), θ′(0), and φ′(0).
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λ reduces the thickness of the momentum boundary layer, and
hence, f′(η) increases. The effect of the porosity factor γ on f′(η)
is shown in Figure 4D. It has been seen that f′(η) reduces with the
upsurge in γ. This causes the motion of the fluid to reduce, which
consequently reduces the thickness of the velocity boundary layer.
So, f′(η) declines with the inclement in γ. The consequence of M
over the temperature profile θ(η) is shown in Figure 5A.
According to this figure, the impact of the magnetic parameter
results in the rise of θ(η) as M increases. It is also important to
note that the application of M has a positive impact on the
thickness of thermal boundary layers because the thickness
increases in the presence of M. Figure 5B depicts how the
injection/suction factor S affects the temperature profile θ(η).
It is understandable that when S increases, the thickness of the
thermal boundary layer decreases. In addition, the rate of
deformation from the wall towards the fluid accelerates with
the increasing S. The effect of the Brownian motion factor Nb
on θ(η) is displayed in Figure 5C. Increasing Nb improves θ(η).
Additionally,Nb has an increasing effect on the thermal boundary
layer. According to the definition, when Nb grows, θ(η) rises
because the fluid particles have more kinetic energy. The influence
of Nt on θ(η) is shown in Figure 5D. From Figure 5D, we can see
that θ(η) increases due to the rising Nt. Figure 5E displays the
variation in the temperature profile θ(η) due to Ec. It is seen that
θ(η) rises as Ec increases. To understand the thermal performance
of fluid flow, Ec is important. By raising Ec, the rising
intermolecular interaction will increase the kinetic energy,
which will increase θ(η) and allow Ec to be utilized as a hot
agent. Figure 5F and Figure 5G show how the radiation factor Rd
and the temperature ratio factor θw affect the temperature profile θ(η).
By increasing θw and Rd, the fluid temperature rises significantly.

Physically, the fluid particles are supported and activated by the rise in
θw and Rd as a result of obtaining thermal energy. The temperature of
the boundary layer rises as a result of this. Increasing the thermal
diffusion and thermal distribution, in turn, causes the boundary layer
thickness to grow and its temperature to rise. Figure 5H shows how the
temperature profile θ(η) is influenced by the space-dependent heat
source parameter Qe. θ(η) increases when we raise Qe. Physically,
whenQe > 0, the thermal boundary layer produces energy which causes
augmentation in θ(η). Figure 5I illustrates the influence of the thermal
Biot number BiT on the temperature profile θ(η). When BiT increases,
θ(η) also increases. Physically, an enhancement in BiT results in more
supported convection, which causes the increasing conduct in θ(η).
Therefore, higher values of BiT increase the thermal boundary layer
thickness, which, in turn, results in higher θ(η). The influence ofNb on
the concentration profile φ(η) is shown in Figure 6A.φ(η) significantly
decreases with higher values of Nb. Physically, the increasing Nb
produces the random movement of the nanoparticles in fluid; as a
result, φ(η) reduces. Figure 6B portrays the impact of the
thermophoresis factor Nt on φ(η). It is observed that the
increasing Nt increases φ(η). Physically, a rise in Nt is followed by
an upsurge in the thermal energy, which promotes the liquid’s
temperature. As a result, the kinetic energy increases, and more
collisions happen, which is enough to make the distribution of the
concentration of nanoparticles large under the influence of Nt. The
effect of activation energyE on the concentration profile φ(η) is seen in
Figure 6C. φ(η) increases when E increases. Increasing values of E
diverge from the modified Arrhenius function, which increases the rate
of generative chemical reactions. The concentration is increased as a
result. The impact of the Schmidt number Sc on the concentration
profile φ(η) is exhibited in Figure 6D. φ(η) decreases as Sc increases.
The concentration boundary layer gets thinner because higher values of

FIGURE 4
Impact of M on f′(η). Impact of S on f′(η). Impact of λ on f′(η). Impact of γ on f′(η).
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FIGURE 5
(A) Impact ofM on θ(η). (B) Impact of S on θ(η). (C) Impact of Nb on θ(η). (D) Impact of Nt on θ(η). (E) Impact of Ec on θ(η). (F) Impact of Rd on θ(η). (G)
Impact of θw on θ(η). (H) Impact of Qe on θ(η). (I) Impact of BiT on θ(η).(a)(b)
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Sc result in a faster mass transfer rate. So, φ(η) shows a decreasing
impact against Sc. Figure 6E shows how the chemical reaction factorKr
affects the concentration profile φ(η). It is obvious that φ(η) decreases
asKr increases. The effect of the temperature difference parameter δ on

the concentration profile φ(η) is seen in Figure 6F. φ(η) shows
diminishing behavior when the temperature difference values are
increased. Physically, a greater δ causes a decrease in molecular
diffusivity, which lowers φ(η). Table 1 shows the thermophysical

FIGURE 6
(A) Impact of Nb on φ(η). (B) Impact of Nt on φ(η). (C) Impact of E on φ(η). (D) Impact of Sc on φ(η). (E) Impact of Kr on φ(η). (F) Impact of δ on φ(η).

TABLE 1 Thermophysical properties of the base fluid and nanoparticles (Acharya, 2021).

Base fluid/nanoparticles ρ
�[kgm−3] C

�
p[Jkg−1K−1] k

�[Wm−1K−1] σ
�[Ω−1m−1]

H2O 997 4180 0.6071 0.05

Fe3O4 5180 670 9.7 25000

GO 2250 2100 2500 1×107

TABLE 2 Numerical comparison of the present results of −θ9(0) with published results for different values of Pr.

Pr 0.07 0.2 0.7 2.0 7.0

Reddy Gorla and Sidawi (1994) 0.0656 0.1691 0.4539 0.9114 1.8905

Hamad (2011) 0.06565 0.16909 0.45391 0.91136 1.89540

Present analysis 0.0655603 0.1690911 0.4539129 0.9113608 1.8954075
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properties of the base fluid and nanoparticles. The comparison of the
present results with published results are shown in Table 2. The values
of Cfx are shown in Table 3 for different stretching ratio parameters λ
and magnetic field parameters M. We determined the negative values
for Cfx. When friction force is negative, it indicates that the sheet is
causing the fluid to movemore slowly. In terms of quality, the effects of
λ andM onCfx caused by the flow are equivalent. In other words,Cfx

is the decreasing function of M and λ. The numerical values of the
Nusselt numberNux and Sherwood number Shx are shown in Tables 4
and Table 5 for various values of Rd, θw, BiT, M, and λ. Nux, in this
case, increases for high values of BiT and λ while decreasing for larger
values ofRd, θw, andM. Shx is the increasing function ofBiT, andM is
a decreasing function of Rd, θw, and λ.

6 Conclusion

In this article, the authors have presented an electrically
conducting hybrid nanofluid flow over an extending surface
using a porous medium. The homotopic approach is tackled
for the solution of the modeled equations. The space-
dependent heat source, Joule heating, Brownian motion,
thermophoresis, thermal radiation, and chemically reactive
activated energy impacts are used. The following are the
concluding points of this study:

• The growingmagnetic and suction factors reduced the velocity
profiles, while they enlarged the thermal profiles by magnetic
factor. Additionally, the suction factor has a reducing
impression on the thermal profile.

• Motion of the fluid reduced with the increasing porosity
factor, while it increased with the increasing stretching
factor.

• The thermal profiles increased with the increasing thermal
Biot number, Eckert number, thermophoresis, space-based
heat source, Brownian motion, and non-linear thermal
radiation factors.

• The concentration profiles reduced with the increasing
Brownian motion, chemical reaction, and temperature
difference factors, while they were increased by the
activation energy factor.

• The magnetic and stretching factors augmented the surface
drag coefficient.

• The Nusselt numbers increased with the increasing thermal
Biot number and stretching factor, while they reduced with the

TABLE 3 Numerical values of skin friction for different values of M and λ.

M λ Cfx

0 2.66295

2 3.592403

4 4.361124

6 5.013328

0.5 0.5 2.884460

0.7 3.037357

1.5 3.584330

2 3.887307

TABLE 4 Numerical value of the Nusselt number for different values of Rd, θw,
BiT, M, and λ.

Rd θw BiT M λ Nux

0 0.223108

0.5 0.217800

1 0.212663

1.1 0.219903

2 0.213570

3 0.199832

0.8 0.317610

1.6 0.507121

2.4 0.631193

0 0.229551

2 0.218854

4 0.211617

0.5 0.218854

1.5 0.230718

2.5 0.237256

TABLE 5 Numerical value of the Sherwood number for different values of Rd,
θw, BiT, M, and λ.

Rd θw BiT M λ Shx

0 0.917714

0.5 0.918590

1 0.919767

1.1 0.918178

2 0.919489

3 0.922369

0.8 0.902139

1.6 0.871120

2.4 0.850935

0 1.038050

2 0.919386

4 0.836986

0.5 0.918386

1.5 1.245928

2.5 1.511233
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increasing thermal radiation and temperature difference
factors.

• The Sherwood numbers increased with the thermal Biot
number and magnetic factor, while they reduced with the
increasing thermal radiation, temperature difference, and
stretching factors.
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Nomenclature

a Constant

B0 Magnetic field strength

(Cp)f, (Cp)hnf Specific heat for the base fluid and hybrid nanofluid

DB, DT Brownian and thermophoresis diffusion coefficients

hf Thermal transmission coefficient

kp, kf, khnf Thermal conductivities of the nanoparticles, base fluid,
and hybrid nanofluid

Kp Permeability of the porous medium

Q Heat source coefficient

qm Mass flux at the surface

qw, qr Surface and radiative heat fluxes

Tf, Tw, T∞ Reference, wall, and ambient temperatures

u, v Velocity component

x, y Coordinates

τw Shear stress

λ Stretching parameter

(ρCp)p, (ρCp)f, (ρCp)hnf Heat capacitance of the nanoparticles,
base fluid, and hybrid nanofluid

μp, μf, μhnf Dynamic viscosities of the nanoparticles, base fluid, and
hybrid nanofluid

ρp, ρf, ρhnf Densities of the nanoparticles, base fluid, and hybrid
nanofluid

σp, σf, σhnf Electrical conductivities of the nanoparticles, base fluid,
and hybrid nanofluid

α Angle of inclination

1, 2 Volumetric fraction of the first and second
nanoparticle

Pr Prandtl number

Rd Radiation factor

Nb Brownian motion factor

Nt Thermophoretic factor

Kr Chemical factor

γ Porosity factor

Sc Schmidt number

BiT Thermal Biot number

M Magnetic factor

Qe Exponential heating factor

Ec Eckert number

θw Thermal difference factor

E Activation energy factor

δ Temperature difference parameter
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