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Acoustic metasurfaces have been widely explored and attracted great attention for
their extraordinary wavefront manipulation abilities. In this paper, we propose a
simple acoustic metagrating with periodic grooves that can split a normally incident
beam into two or three reflected beams. The amplitudes and power flows of different
reflected beams can bemanipulated by changing the groove parameters. Themirror
reflected wave is suppressed for equal two-beam splitting case and allowed for
three-beam splitting case. Theoretical analysis and numerical simulations are
performed to demonstrate the perfect two- and three-beam splitting
performances based on local power conservation. Our research work provides a
simple method for designing acoustic beam splitters and has extensive applications
in acoustic sensing and communication.
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Introduction

Acoustic metasurfaces (Cummer et al., 2016; Assouar et al., 2018) are artificially designed
structures composed of periodic subwavelength elements including groove structures (Shen
et al., 2018), Helmholtz resonators (Li et al., 2018), labyrinthine structures (Xie et al., 2014),
space coiling-up structures (Li et al., 2013; Chen et al., 2021), membranes (Ma et al., 2014), etc.
In recent years, acoustic metasurfaces have attracted significant attention for their great
potential applications in many fields attributed by their interesting and extraordinary
acoustic properties (Zhao et al., 2022), such as anomalous reflection and refraction
(Memoli et al., 2017; Zhu and Lau, 2019), acoustic focusing (Qi et al., 2017; Lombard et al.,
2022), acoustic cloaking (Faure et al., 2016; Jin et al., 2019), sound absorption (Aurégan, 2018;
Song et al., 2019), one-way acoustic propagation (Liang et al., 2010; Li et al., 2017; Song et al.,
2019), beam splitting (Ding et al., 2021), etc. Particularly, acoustic beam splitters have attracted
growing interest recently due to their applications in acoustic communication (Prada et al.,
2007) and acoustic sensing (Dowling and Sabra, 2015) fields.

Acoustic beam splitters (Ni et al., 2019) are devices that can effectively split the incident
beam into two or more beams. Acoustic metasurfaces capable of manipulating the amplitude
and phase of acoustic waves provide a good method for realizing beam splitting. (Díaz-Rubio
et al. 2019) proposed a power flow-conformal acoustic beam splitter by manipulating the
surface impedance distribution of metasurface to split the incident wave into two reflected
beams propagating along two different directions. Beam splitting with arbitrary energy ratios
can be realized by non-local grooved metasurfaces by using deep learning algorithms (Ding
et al., 2021). Bianisotropic metasurface was developed for near-perfect arbitrary beam splitting
by introducing self-induced surface waves into scattered field (Li et al., 2020). In addition,
coding acoustic metasurfaces are widely used for designing acoustic beam splitters. Reflection-
type coding acoustic metasurfaces were designed for realizing broadband acoustic splitter by
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encoding the sequence of logical units (Zhang et al., 2022). Coding
acoustic metasurfaces composed of hornlike helical unit were
theoretically and experimentally demonstrated for realizing acoustic
splitting (Fang et al., 2019). However, we can find that the beam
splitters based on acoustic metasurfaces are inevitably limited in
element resolution, manipulation efficiency, and operating angle.
Furthermore, the most commonly used microstructures including
resonator structures (Shen et al., 2018) and space coiling-up
structures (Jia et al., 2018) have complex configuration, which may
result in large intrinsic loss and low efficiency. In order to solve the
above-mentioned problems existing in beam splitters based on
acoustic metasurfaces, simple and high-efficiency acoustic
metagratings (Torrent, 2018; Fan and Mei, 2021) based on
diffraction theory provide a reliable method for achieving good
acoustic performances. High-efficiency anomalous acoustic splitters
based on genetic optimization algorithm and acoustic metagratings
are designed to split the incident wave into different directions (Ni
et al., 2019). Perfect beam splitting with unitary efficiency (Fan and
Mei, 2020) was demonstrated by using acoustic metagrating composed
of periodic iron cylinders and a sound soft plane placed in water. Beam
splitter based on acoustic binary metagrating was designed to split an
acoustic wave into two directions (Liu et al., 2022). A transmitting
beam splitter with grooves was designed to split the incident wave into
two waves with arbitrary amplitude ratio and phase differences (Cao
and Hou, 2019).

From above discussion, we find that the beam splitters based on
acoustic metasurfaces suffer from complicated configurations and
inevitable intrinsic loss, which greatly limit their wide practical
applications of beam splitters. The literature on metagrating-based
acoustic beam splitter with changeable beam number also remain
scarce. Therefore, it is necessary to explore new realization methods to
overcome these limitations and design beam splitters with simplified
structures, high efficiency, and good reconfigurability. In this paper,
simple acoustic metagrating with periodic grooves is designed for
realizing perfect two- and three-beam splitting with high efficiency,
broad bandwidth, and easy fabrication, and demonstrating good beam
manipulation performance by changing the groove height. The
proposed acoustic metagrating has potential applications in the
fields of acoustic communication (Prada et al., 2007) and acoustic
sensing (Dowling and Sabra, 2015).

Method and design

In this paper, we propose a simple acoustic metagratings for
realizing perfect two-beam and three-beam splitting with specified
reflected amplitudes and power flows, as shown in Figure 1. As the
proposed acoustic metagrating is a periodic structure, the groove
number will not greatly affect the beam splitting performances.
Without loss of generality, we take the proposed acoustic
metagrating containing 22 periodic grooves as an example, and
incident wave is perpendicularly incident on the acoustic
metagrating. Actually, the groove number can also be set as other
values. Compared with the previously reported beam splitters, our
proposed metagrating could manipulate the number of reflected
beams, the reflected amplitudes, and the power flows by controlling
the groove height based on local power conservation. For perfect two-
beam splitting case, the acoustic metagrating can split a normally
incident beam into two symmetric reflected beams with reflected
angles of θ-1 and θ+1, the corresponding amplitudes are p-1 and
p+1, respectively. For perfect three-beam splitting case, the acoustic
metagrating can split a normally incident beam into three reflected
beams with reflected angles of θ-1, θ+1, and θ0, the corresponding
amplitudes are p-1, p+1, and p0, respectively. The inset in Figure 1
shows the two-dimensional configuration of the proposed
metagrating, which contains periodic grooves. Because the reflected
beams of −1 and +1 diffraction orders are completely symmetric
beams, so it is enough for one unit cell only contains one groove in our
design as demonstrated by Torrent (Torrent, 2018). To generate
reflected beams with different amplitudes and realize more beam
number, one unit cell should contain two or more grooves and the
groove parameters should be changed. The groove width is w, the
groove height is h, the thickness of acoustic metagrating is d, the
period of acoustic metagrating is a. Careful choice of acoustic
metagrating geometrical parameters can in principle scattered all
acoustic energy into different diffraction orders according to the
diffraction theory, so the amplitudes and power flows of reflected
beams can be manipulated. As the metagrating with periodic grooves
does not contain resonant (Shen et al., 2018) or narrow (Jia et al., 2018)
structures, we can expect high efficiency and low intrinsic loss.

When a plane wave impinges on the periodic acoustic metagrating
with the incident angle of θi, the incident wave will be diffracted into
multiple diffraction orders and the scattered filed can be expressed as
(Torrent, 2018):

ps � ∑
n

pne
−jkn ·r (1)

where pn is the amplitude of nth-order diffracted wave, r is the position
vector, kn is the wave vector of nth-order diffracted wave and can be
expressed as kn � knxx + knyy � k sin θnx + k cos θny, k is the
wavenumber in air, θn is the reflected angle of nth-order diffracted
wave. According to the periodicity of acoustic metagrating and the
grating theory, the x-direction wave vector components of incident
and reflected waves should satisfy:

knx � kix + Gn (2)
where knx = ksinθn is x-direction wave vector component of nth-order
reflected wave, kix = ksinθi is x-direction wave vector component of
incident wave, Gn = 2πn/a is the nth-order reciprocal vector.
Therefore, the y-direction wave vector component of nth-order
reflected wave is kny �

�������������������
k2 − (k sin θi + 2πn/a)2

√
, it is noted that kny

FIGURE 1
Schematic view of the proposed acoustic metagrating for realizing
perfect two- and three-beam splitting. The inset shows the two-
dimensional configuration of the metagrating with periodic grooves.
Red and blue arrows indicate the incident beam and the reflected
beams, respectively. The reflected angles of the reflected beams are θ-1,
θ+1, and θ0, the corresponding amplitudes are p-1, p+1, and p0.
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will be a real component only when k2 > k2nx and the nth diffraction
order corresponds to a propagating wave.

In our design, the incident wave is perpendicularly incident on the
acoustic metagrating, so the incident angle is θi = 0°. To realize a beam
splitting acoustic metagrating, we first calculate the period of the
acoustic metagrating based on the Eq. 2 to guarantee the nth
diffraction orders are propagating waves. Therefore, the period of
acoustic metagrating is a = nλ/|sinθ±1|, λ is the wavelength in air. By
setting a = λ/|sinθ±1|, the acoustic metagrating will only have −1, 0, and
+1 diffraction orders as propagating waves for the case of θn > 30°. The
n = −1 diffraction order corresponds to the reflected beam with the
reflected angle of θ-1, n = +1 diffraction order corresponds to the
reflected beam with the reflected angle of θ+1, n = 0 diffraction order
corresponds to the reflected beam with the reflected angle of θ0. As an
example, we choose the working frequency is 4,000 Hz and the
corresponding wavelength is λ = 85.75 mm, the reflected angles or
splitting angles are θ-1 = −60° and θ+1 = 60°, so the period of acoustic
metagrating is a = 99 mm. By simultaneously changing the groove
widthw and groove height h of acoustic metagrating, the amplitudes of
different diffracted waves can be effectively manipulated. For
simplicity, the groove width is fixed to w = 0.6a = 59.4 mm, the
groove height is a variable value. The thickness of acoustic metagrating
is d = 50 mm.

As the groove height of acoustic metagrating could influence the
amplitudes of different diffracted waves, so it is necessary to determine
the groove heights for different beam splitting cases. The amplitude of
incident wave is set to be 1. We separately calculate the amplitudes of
different reflected beams normalized by the amplitude of normally
incident wave, Figure 2A shows the amplitudes of −60°, 60°, and 0°

reflected beams when the proposed acoustic metagratings are
illuminated by a plane wave of 4,000 Hz, and the groove height
gradually increases from 0 to 0.5λ. We can see the amplitudes
of −60° (red line) and 60° (cyan circle) reflected beams remain
same and gradually increase from 0 to 0.999 at the groove height
of h = 0.22λ (point M), then reduce to the minimum amplitude at h =
0.5λ. However, the amplitudes of 0° (blue dotted line) reflected beam
presents opposite variation tendency and reaches the minimum
amplitude at the groove height of h = 0.22λ (point M′), which
means 0° reflected beam is greatly suppressed and two-beam
splitting with the same amplitude is achieved at h = 0.22λ. It is

worth noting that −60°, 60°, and 0° reflected beams have the same
amplitude of 0.707 when the groove height is h = 0.10λ, as denoted by
point N in Figure 2A, which means three reflected beams are all
effectively excited and perfect three-beam splitting with same
amplitude is achieved.

On the other hand, the y-direction power flows of −60°, 60°, and 0°

reflected beams are calculated and shown in Figure 2B with the groove
height changing from 0 to 0.5λ. The y-direction power flow Iy is
normalized by the power flow of normally incident wave. It is observed
that the power flows of −60° (red line) and 60° (cyan circle) reflected
beams still remain same and reach the maximum value of 0.5 at h =
0.22λ, while the amplitude of 0° (blue dotted line) reflected beam
reaches the minimum value, which means two-beam splitting with
same power flow is achieved. We can see that −60°, 60°, and 0° reflected
beams have same power flow when the groove height is h = 0.12λ, as
denoted by point P in Figure 2B, which means all three reflected beams
are excited with same power flow and three-beam splitting is achieved.
If the local power flow perpendicular to the acoustic metagrating is
conserved, the incident amplitude and reflected amplitudes should
satisfy pi

2 � p−1
2 cosθ−1 + p+12 cos θ+1 + p0

2 cos θ0, which means the
power flow ratio of reflected beams is
I−1: I+1: I0 � p−1

2 cosθ−1: p+12 cos θ+1: p0
2 cos θ0. From above

analysis, we predict that equal two-beam splitting (p−1 � p+1 � 1 or
I−1: I+1 � 0.5: 0.5) can be achieved at h = 0.22λ, three-beam splitting
with same amplitude (p−1 � p+1 � p0 �

�
2

√
/2) can be achieved at h =

0.10λ, and three-beam splitting with same power flow
(I−1: I+1: I0 � 1

3:
1
3:

1
3) can be achieved at h = 0.12λ. Local power

flow is conserved in both two- and three-beam splitting cases for
realizing perfect beam splitting.

Results and discussion

To intuitively show the two-beam and three-beam splitting
performances, numerical simulations of the proposed acoustic
metagratings are performed in COMSOL Multiphysics software.
The proposed acoustic metagratings are placed in air background
and the intrinsic loss is not considered, all boundaries are set to be
sound hard boundaries, the air density is 1.21 kg/m3, the sound speed
in air is 343 m/s.

FIGURE 2
(A) Amplitude pn and (B) y-direction power flow Iy of −60° (red line), 60° (cyan circle), and 0° (blue dotted line) reflected sound beams when the proposed
acoustic metagrating with groove height ranging from 0 to 0.5λ is illuminated by a plane wave of 4,000 Hz.
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Two-beam splitting

Acoustic metagrating for realizing equal two-beam splitting at h = 0.22λ
is first investigated, as shown in Figure 3A. One-period scattered sound
pressure field distributions in theoretical calculation and in numerical
simulation with real acoustic metagrating at h = 0.22λ are shown in
Figure 3B. The amplitudes of −1, +1, and 0 diffraction orders are 0.999,
0.999, and 0.001. It can be seen that these two field distributions are almost
exactly the same, whichmeans the realized two-beam splitting performance
agrees well with the theoretical expectation. Furthermore, when a Gaussian
beam of 4,000 Hz normally impinges on the acoustic metagrating with a
groove height of 0.22λ, the scattered sound pressure field distribution is
shown in Figure 3C. The width of Gaussian beam is 0.4 m. It can be clearly
observed that the normally incident beam is completely reflected by the
metagrating into two symmetric directions as the white arrows show. As the
theoretical analysis, the excitation of mirror reflected wave with 0° reflected
angle is effectively suppressed. To better quantitatively analyze the two-beam
splitting performance, we plot the far-field radiation pattern with
normalized sound intensity of scattered waves, as shown in Figure 3D.
The reflected angle can be obtained when the normalized sound intensity of
scatteredwaves takes themaximumvalue. The reflected angles of twobeams
are θ-1 = −60.4° and θ+1 = 60.4°, the corresponding amplitudes are 0.999 and
0.998, respectively, which agree well with the theoretical expectation of
p−1 � p+1 � 1. The slight deviation of reflection angle between the theory
and numerical simulation is caused by the width variation of incident wave,
which can be reduced by increasing the width of Gaussian beam. It should
be pointed out that the amplitudes and powerflows of 60° and−60° reflected
beams are almost same, which means this simple acoustic metagrating can
realize equal two-beam splitting.

We can see that the proposed acousticmetagrating with a groove height
of h = 0.22λ can realize perfect equal two-beam splitting at the frequency of
f = 4,000 Hz, it is necessary to investigate the acoustic performances at
different working frequencies. The proposed acoustic metagrating can
realize two-beam splitting within the frequency range of 3,600~5,000 Hz.

As a few examples, the scattered sound pressure field distributions at the
frequencies of f = 3,700 Hz, f = 4,000 Hz, f = 4,300 Hz, f = 4,600 Hz are
shown in Figures 4A–D, respectively. It is noted that two-beam splitting
effects are obviously observed at different frequencies. For all those working
frequencies, the Gaussian beam impinging on the proposed acoustic
metagrating is mainly splitted into two reflected beams that propagate
along two symmetric directions.With the increase ofworking frequency, the
reflected beams propagating along two symmetric directions gradually
approach the normal direction of the metagrating and the reflected
angle gradually decreases. This phenomenon can be explained by
analyzing the reflected angle of nth-order diffracted wave, which can be
expressed as θn � sin−1(2πnak ) � sin−1(nc

af). In addition, the mirror reflected
waves are slightly excited with small amplitudes at 3,700 Hz, 4,300 Hz, and
4,600 Hz. The amplitude of 0 diffraction order almost keeps zero while the
amplitudes of −1 and +1 diffraction orders gradually decreases with the
increase of frequency.

Three-beam splitting

Similarly, the acoustic metagrating for realizing three-beam
splitting with same amplitude at h = 0.10λ or same power flow at
h = 0.12λ are investigated, as shown in Figure 5A. Figures 5B, C show
one-period scattered sound pressure field distributions in theoretical
calculation and in numerical simulation with real acoustic metagrating
at h = 0.10λ and h = 0.12λ, respectively. For h = 0.10λ in Figure 5B, the
amplitudes of −1, +1, and 0 diffraction orders are 0.707, 0.707, and
0.706. For h = 0.12λ in Figure 5C, the amplitudes of −1, +1, and
0 diffraction orders are 0.816, 0.816, and 0.577. We can see the
scattered sound pressure fields with real acoustic metagrating are
almost the same as the theoretical results, which demonstrates the
proposed metagrating can realize three-beam splitting as the theory
expects. When a normally incident Gaussian beam of 4,000 Hz
impinges on the proposed acoustic metagrating with a groove

FIGURE 3
(A) Acoustic metagrating with a groove height of 0.22λ for realizing perfect two-beam splitting with same amplitude and power flow. (B) One-period
scattered sound pressure fields in theoretical calculation and with real acoustic metagrating. (C) Scattered sound pressure field distribution when a Gaussian
beam of 4,000 Hz normally impinges on the proposed acoustic metagrating and white arrows represent the propagation directions of reflected beams.
(D) Far-field radiation pattern with normalized sound intensity of scattered waves.
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height of 0.10λ or 0.12λ, the corresponding scattered sound pressure
field distributions are shown in Figures 5D, E, respectively. We can see
that the normally incident beam is effectively splitted by the acoustic
metagrating into three beams as the white arrows show. The far-field
radiation patterns with normalized sound intensity of scattered waves
are shown in Figures 5F, G to help us quantitatively analyze the three-
beam splitting performance. All intensities are normalized by the
intensity of normally incident wave. When the groove height of
acoustic metagrating is 0.10λ, the reflected angles of three reflected
beams are θ-1 = −60.4°, θ+1 = 60.4°, and θ0 = 0.144°, the corresponding
amplitudes are 0.706, 0.706, and 0.704, respectively, which means
three reflected beams have almost same amplitude as the theoretical
expectation of p−1 � p+1 � p0 �

�
2

√
/2. When the groove height of

acoustic metagrating is 0.12λ, the reflected angles of three reflected

beams are θ-1 = −60.4°, θ+1 = 60.4°, and θ0 = 0.143°, the corresponding
normalized y-direction power flow are 0.331, 0.331, and 0.333,
respectively, which means three reflected beams have almost same
power flow and three-beam splitting with equal power flow is
achieved, which agree well with the theoretical expectation of
I−1: I+1: I0 � 1

3:
1
3:

1
3.

The proposed acoustic metagrating with a groove height of h = 0.10λ
can realize three-beam splitting with same amplitude and that with a
groove height of h = 0.12λ can realize three-beam splitting with same
power flow, then we investigate the acoustic performances at different
working frequencies. The proposed acoustic metagrating can realize
three-beam splitting within the frequency range of 3,600~5,000 Hz.
When the acoustic metagrating with a groove height of h = 0.10λ are
normally illuminated by a Gaussian beam, the scattered sound pressure

FIGURE 4
Scattered sound pressure field distributions when the proposed acoustic metagrating with a groove height of h = 0.22λ are normally illuminated by
Gaussian beams of different frequencies. (A) f = 3,700 Hz. (B) f = 4,000 Hz. (C) f = 4,300 Hz. (D) f = 4,600 Hz.

FIGURE 5
(A) Acousticmetagrating for realizing perfect three-beam splitting with same amplitude (h=0.10λ) or same power flow (h=0.12λ). One-period scattered
sound pressure fields in theoretical calculation andwith real acoustic metagrating for three-beam splitting (B)with same amplitude at h= 0.10λ, (C)with same
power flow at h = 0.12λ. Scattered sound pressure field distribution when a Gaussian beam of 4,000 Hz normally impinges on the proposed acoustic
metagrating with a groove height of (D) h = 0.10λ, (E) h = 0.12λ. Far-field radiation patterns with normalized sound intensity of scattered waves for
acoustic metagrating with a groove height of (F) h = 0.10λ, (G) h = 0.12λ.
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field distributions at the frequencies of f = 3,700 Hz, f = 4,000 Hz, f =
4,300 Hz, f = 4,600 Hz are shown in Figures 6A–D respectively.When the
acoustic metagrating with a groove height of h = 0.12λ are normally
illuminated by a Gaussian beam, the scattered sound pressure field
distributions at the frequencies of f = 3,700 Hz, f = 4,000 Hz, f =
4,300 Hz, f = 4,600 Hz are shown in Figures 6E–H, respectively. It can
be clearly observed that three-beam splitting effects happen at all different
frequencies. The Gaussian beam impinging on the acoustic metagrating is
effectively splitted into three reflected beams including mirror reflected
beam and two beams propagating along two symmetric directions at all
those working frequencies. For three-beam splitting case with same
amplitude and same power flow, the reflected angle gradually
decreases with the increase of working frequency. The amplitude of
0 diffraction order keep almost unchanged while the amplitudes of −1 and
+1 diffraction orders gradually decreases with the increase of frequency.

From above numerical simulation results and discussion, we can
clearly see that the proposed acoustic metagrating can realize perfect
equal two-beam splitting and three-beam splitting with same
amplitude or same power flow. In future experiments, we can
expect good two- and three-beam splitting performances, but we
will possibly encounter problems including fabrication errors,
visco-thermal loss, and boundary reflections. The fabrication errors
and visco-thermal loss can be reduced by choosing 3D printing
technology with higher printing accuracy. The effect of boundary
reflections can be appropriately eliminated by using data post-
processing method.

Conclusion

In conclusion, we demonstrate an acoustic metagrating with periodic
grooves can realize perfect two-beam splitting and three-beam splitting
with conserved local power. The proposed acoustic metagrating will only
allow −1, 0, and +1 diffraction orders as propagating waves by setting the
period of acoustic metagrating. By changing the groove height, the
amplitudes and power flows of different reflected beams can be
effectively manipulated. Numerical results clearly show that the
proposed metagrating can split the normally incident beam into two
or three beams by suppressing or exciting themirror reflected wave. Equal

two-beam splitting and three-beam splitting with same amplitude or same
power flow are achieved, numerical simulations agree well with the
theoretical analysis. The reflected angle gradually decreases with the
increase of working frequency. This design method can also be
applied to design beam splitters with other splitting angles and
working frequencies.
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