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Soil-rock mixture is a complex multi-phase composite geotechnical material, and
its strength is determined by the physical properties of constituent multi-phase
materials and their coupling mechanical response between different phases of
materials. Based on the Eshelby-Mori-Tanaka equivalent inclusion average stress
principle, a theoretical model of multi-scale coupled shear strength of soil-rock
mixture considering the interaction effect of rock block and soil is established, and
the rotational freedom reflecting the microscopic motion details of rock block is
introduced. Moreover, a multi-scale coupled constitutive relationship of soil-rock
mixture is derived and compiled into a multi-scale finite element program. Based
on the large-scale direct shear test of soil-rock mixture, the model parameters of
the multi-scale finite element method are determined, and then the multi-scale
finite element program is used to simulate and predict the cross-scale
deformation process of the soil-rock mixture slope. The results show that the
multi-scale finite element method can effectively describe the influence of the
mechanism of the micro motion characteristics of the soil-rock mixture on the
macro mechanical response, and can effectively overcome the pathological
mesh-dependency of the classical finite element method; the rotation
displacement of the rock block is mainly concentrated within the shear zone
of the slope. The maximum rotational displacement of rock blocks inside the soil-
rock mixture slope is 40.7°, and the rotational displacement of rock blocks outside
the shear zone is about 0°. The physical mechanism of the cross scale evolution of
the shear band of the soil-rockmixture slope is that: the rotation of the rock blocks
weakens the strain transmission ability between the rock block and the matrix soil,
thus forming the concentration and development of the plastic strain, and finally
leading to the penetration of the shear bands of the slope and the overall sliding
failure.

KEYWORDS

soil mechanics, soil-rock mixture, finite element program, multiscale, rotation
displacement

1 Introduction

The finite element method is an effective numerical method for solving boundary value
problems in solid mechanics (Strouboulis et al., 2001), and has been widely applied in
geotechnical engineering problems such as foundation pit design, tunnel engineering,
foundation treatment and slope stability analysis (Collinswilliams 2015; Liu et al., 2015; Cai
et al., 2020; Mikkelsen et al., 2022). However, the soil-rock mixture has the heterogeneous and
discontinuous nature of multiphase of solid particles at different scales, water and air. When the
classical elastic-plastic finite element method based on the principle of continuum mechanics is
used to analyze and calculate geotechnical engineering problems, it often produces large
deviations, such as the pathological mesh-dependency of the prediction results and the

OPEN ACCESS

EDITED BY

Jialai Wang,
University of Alabama, United States

REVIEWED BY

Guoping Zhang,
University of Massachusetts Amherst,
United States
Dunja Peric,
Kansas State University, United States

*CORRESPONDENCE

Deluan Feng,
wolfluan@126.com

SPECIALTY SECTION

This article was submitted to Structural
Materials, a section of the journal
Frontiers in Materials

RECEIVED 05 December 2022
ACCEPTED 20 February 2023
PUBLISHED 06 March 2023

CITATION

Liu J and Feng D (2023), A multiscale
finite element method for soil-
rock mixture.
Front. Mater. 10:1116544.
doi: 10.3389/fmats.2023.1116544

COPYRIGHT

© 2023 Liu and Feng. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Materials frontiersin.org01

TYPE Original Research
PUBLISHED 06 March 2023
DOI 10.3389/fmats.2023.1116544

https://www.frontiersin.org/articles/10.3389/fmats.2023.1116544/full
https://www.frontiersin.org/articles/10.3389/fmats.2023.1116544/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2023.1116544&domain=pdf&date_stamp=2023-03-06
mailto:wolfluan@126.com
mailto:wolfluan@126.com
https://doi.org/10.3389/fmats.2023.1116544
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2023.1116544


difficulty in convergence of the solution process (Broumand and Khoei
2013). The mechanical properties of the particle interface and the
particle interior of the soil-rock mixture are completely different. Even
under uniform stress condition, the deformation across the interface
will be discontinuous. Therefore, the deformation and strength
characteristics of soil-rock mixture are significantly different from
those of the continuous medium. The discontinuity of the
deformation of the soil-rock mixture is caused by the discontinuity
of its internal structure and the physical properties of particle
characteristics, that is, the natural granularity and structure of the
soil-rock mixture make it a discontinuous medium. The mechanical
properties of the discontinuous medium are usually highly nonlinear,
with nonlinear characteristics such as deformation localization,
parameter sensitivity and system catastrophe (Fang and Li 2016).
The classical soil mechanics treats the soil-rock mixture as a
homogeneous continuous medium, which embeds the assumptions
of continuity, material homogeneity and physical mechanism
consistency, and correspondingly neglects the natural granularity,
structure, multiphase and mechanical mechanism couplings of the
soil-rock mixture at different scale structure levels. Only for small
uniform deformation, it is possible to obtain approximately reasonable
theoretical results, and significant errors will occur in the analysis and
prediction of the generation and development of large deformation
shear bands closely related to the particle size and structure of soil-rock
mixture (Tang et al., 2018). For example, when the classical elastic-
plastic finite element method based on the principle of macro
continuum mechanics simulates the evolution of shear bands, its
prediction results strongly depend on the size of the mesh and show
significant pathological mesh-dependency (Soltani andMaekawa, 2015;
Chang et al., 2021). Therefore, the simulation and prediction results
of the mechanical response of the soil-rock mixture with natural
multiscale coupling characteristics by the classical elastic-plastic
finite element method cannot conform to the physical reality and
lose objectivity. The reason is mainly reflected in two aspects. At
the physical level, the classical elastic-plastic finite element method
regards the soil-rock mixture as a uniform continuous medium,
and neglects the influence of the mechanism of the physical
details and motion characteristics of the soil-rock mixture at
the micro level on the macro mechanical response; At
the mathematical level, when the softening constitutive relation
is used to describe the cross-scale deformation process of the soil-
rock mixture slope in the classical elastic-plastic finite element method,

its control partial differential equation loses its positive definiteness
(Arriaga et al., 2015).

With the development of the research in the interdisciplinary
field of computer science and computational mechanics, the finite
element method has made great progress in simulating and
predicting the multiscale coupled mechanical response of the
deformation failure process of soil-rock mixtures. Plenty of
previous studies have focused on the use of finite element
method for prediction of the mechanical responses of the soil-
rock mixture. Recently, some finite element methods that can
describe the microstructure characteristics of the soil-rock
mixture by dividing it into rock blocks and soil matrix have
appeared (Guo and Zhao, 2015; Guo et al., 2021). The ideas of
these macro and micro finite element analysis methods can be
divided into two categories. One is to theoretically construct
various representative elements that can reflect the
microstructure characteristics of rock blocks and soil matrix. For
example, Goodman et al. (1968) constructed a joint element that
describes the discontinuity of rock mass and evaluated the impact of
mechanical properties of joints on the strength and stability of rock
mass; Ling and Ye (2005) constructed a plane coordinated manifold
soil element to describe the consolidation characteristics of soil and
predicted the settlement and pore water pressure distribution of the
riverbed; Li and Wan (2011) constructed a micropolar element
reflecting the rotational displacement of soil particles and analyzed
the micromechanism of soil strain localization; Liang and Zhao
(2019) constructed a representative element reflecting the micro
structure characteristics of soil particles and simulated themultiscale
coupled evolution process of large deformation of soil-rock mixture.
The other is to directly capture the micro physical details of the soil-
rock mixture by various imaging methods and reconstruct them into
files recognizable by the finite element program by digital image
processing technology. For example, Xu et al. (2008) obtained the
material information of the soil-rock mixture by using an optical
camera and analyzed the influence of the micro structure
characteristics of the soil-rock mixture on its macro strength
characteristics through the combination of digital image
processing technology and finite element method; Zheng et al.
(2014) used nuclear magnetic resonance technology to
characterize the material composition and combined with finite
element method to simulate and predict the nonlinear mechanical
response of materials; Bubeck et al. (2017) used CT scanning
technology to determine the shape characteristics of pores in
rocks, and combined with finite element method to study the
influence of different pore shapes on the strength of geomaterials.

Although the above-mentioned researches have preliminarily
explored the establishment of finite element method considering the
micro motion details and structural characteristics of soil-rock
mixture and achieved certain results, the model parameters
involved do not have clear physical meanings. Meanwhile, the
theoretical basis of these research results is still based on the
phenomenological uniform continuum mechanics at the
macroscale, which fails to break through the limitation that the
classical constitutive model of soil-rock mixture cannot describe the
coupling of mechanical responses of soil-rock mixture at different
scale structure levels. Therefore, it is impossible to scientifically
simulate and predict the cross-scale coupling correlation
characteristics of the influence of the micro motion details of

FIGURE 1
The representative volume element of soil-rock mixture.
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rock and soil particles at different scale on the macro mechanical
response in the deformation process of the soil-rock mixture from
the physical nature and physical mechanism. Therefore, Feng and
Fang (2015a, 2015b) established a multiscale soil cell model of
cohesive soil containing sand based on the coupled stress theory
for the micro motion details of clay particles and sand particles, but
only gave a complex theoretical solution, which has not been
promoted to the engineering application level. In this paper,
based on the idea of the soil cell model, the multiscale coupled
constitutive relationship embedded the rotational freedom of soil-
rock mixture is derived. Using the user subprogram interface of
ABAQUS finite element program UEL, a multiscale coupled finite
element program considering the rotational freedom of the element
is compiled to quantitatively analyze the influence of rock block
content on the cross-scale evolution process of the soil-rock mixture
slope, In order to lay a solid foundation for the direct application of
multiscale coupled finite element method to solve geotechnical
engineering problems closely related to particle size
characteristics of the soil-rock mixture.

2 Theoretical basis of multi-scale
mechanics of soil-rock mixture

2.1 Mesoscopic representative volume
element (RVE) of soil-rock mixture

For geotechnical engineering problems, it is unrealistic and
unnecessary to conduct detailed and complete simulation for each
solid particle on the micro scale. Establishing a new constitutive
relationship under the continuous medium mechanics framework
considering the influence of mesostructure characteristics of soil-
rock mixture has become an effective way to simulate and predict
the shear strength of soil-rock mixture. In fact, the macroscopic
deformation and failure of the soil-rock mixture are mainly
determined by the rock block (Li et al., 2016; Wang et al.,
2020). Therefore, according to the physical and mechanical
effects of the interaction of soil particles and rock blocks of the
soil-rock mixture at different scales, the soil-rock mixture is
divided into soil matrix and rock blocks, and a representative
volume element (RVE) is constructed at the mesoscale, which is
large enough compared with the local microstructure volume
element size but small enough compared with the whole soil-
rock mixture layer in the engineering scale. According to previous
studies (Zhang et al., 2016; Du et al., 2017; Yang et al., 2021), the
soil/rock threshold of 5 mm can be selected. Therefore, particles
with diameters smaller than 5 mm are referred to as soil particles;
those with diameters larger than 5 mm are referred to as rock
blocks. In the RVE, the soil particles interact with the pore water to
form a soil matrix, and the rock block is regarded as a rigid sphere,
as shown in Figure 1.

It is assumed that the rock block is a rigid sphere and is wrapped
by the soil matrix. Each rock block and its adjacent matrix soil form
a cubic cell, as shown in Figure 1. Therefore, the volume of the RVE
is L3 and the volume of the rock block is πd3/6. The side length L can
be expressed as (Feng and Fang 2015c; 2016):

L � π

6α
( ) 1

3d (1)

where d is the particle size of the rock block; α is the rock block
content, and denotes the ratio of the volume of the rock block to the
total volume of the soil-rock mixture sample; Here, in order to make
the soil-rock mixture sample have the soil-rock cell structure, the
length L of the cube cell has to be larger than the diameter d of the
equivalent spherical rock block. According to Eq. 1:
L � (π/6α)1/3d>d, i.e., α< π/6 ≈ 0.52. Therefore, the applicability
of the soil-rock cell model is α< π/6 ≈ 0.52.

2.2 Multi-scale coupled shear strength
theoretical model of soil-rock mixture

Different structural levels of soil-rock mixture show different
mechanical responses. The rock blocks mainly translate and rotate,
while the matrix mainly produces microcracks (Wang et al., 2018;
Zhao and Zhou 2020). Moreover, there are extremely complex phase
to phase coordinated deformation and interface interaction between
the soil matrix and the rock block, which makes the stress transfer,
crack evolution and failure characteristics of the soil-rock mixture
different from those of the pure soil and rock.

When subjected to external loads, the soil-rock mixture, whose
skeleton is composed of mineral particles of cross grain group scale,
shows that the contact bond and cementation bond between the
matrix particles are broken and microcracks are generated at the
microscale (Feng and Fang, 2016); at the mesoscale, it is shown that
the plastic shape distortion of the soil matrix is induced by the
incompatible deformation between the soil matrix and rock block in
the soil-rock cell; at the macroscale, it shows complex engineering
mechanical behaviors such as nonlinear and zigzag stress-strain
relationship of the soil-rock mixture (Xu et al., 2011). Therefore, the
mechanical behaviors of soil-rock mixtures at different scales are not
only coupled and related to each other, but also have certain
independence. As a meso RVE reflecting the basic mechanical
effects and particle characteristics of soil-rock mixtures, the soil-
rock cell is the key factor to establish a multiscale framework for the
soil-rock mixture.

For the soil-rock cell, the natural granular and structural
characteristics of the soil-rock mixture at the microscale cause its
internal deformation to show significant discontinuity and
nonlinearity, which is manifested as the gradient phenomenon of
shear strain of the soil matrix connecting the rock block (Feng and
Fang 2016). Strain gradients occur when the microstructures of the
material undergo plastic shape distortion. Therefore, the strain
gradient theory is used to describe the plastic shape distortion
inside the soil-rock cell in this study, and then the strain energy
of the soil-rock cell can be expressed by the strain and the strain
gradient (Fang 2014; Feng and Fang 2015c):

~U � a

2Gm
τ2s �

a

2Gm
τm

2

RVE + U η( ) (2)
and

U η( ) � bGηη
2/2 (3)

τmRVE � GγmRVE (4)
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where ~U is the strain energy of the soil-rock mixture; γs is the yield
shear strain of the matrix; η is the strain gradient of the soil matrix
adjacent to the rock block, and can be defined as the second order
gradient of displacement of the RVE (Gao et al., 1999); U(η) is the
strain energy corresponding to the strain gradient η generated by the
rock block; τs and τmRVE are the shear yield stress of the soil-rock
mixture and the soil matrix inside the cell respectively; Gm is the
shear modulus of the matrix; Gη is the shear strain gradient
modulus; b and a are the nonlinear coefficients of the soil-rock
cell and soil matrix respectively, the physical meaning of a and b is
shown in Figure 2, where Aarc is the area of the sector (OAB); Atri is
the area of the triangle (OAB); γB is the yield shear strain; ηB is the
strain gradient at yielding; τη is higher-order shear stress, and is
work conjugate with strain gradient η; τA is the yield stress; and τηA
is the higher-order shear stress at yielding.

A concise theoretical model for calculating the shear yield stress of
themeso representative volume elements can be obtained from Eq. 2–4:

τs � τmRVE

��������
1 + l2e · η2
√

(5)
and

le �
������
GmGηb

aτm
2

RVE

√
(6)

and

le �

�������
τ2s

τm
2

RVE

− 1

η2

√√
(7)

where le is the intrinsic length of the soil-rock mixture, which can be
determined by specially designed tests. For the strain gradient η,
considering the small size of cube soil-rock mixture representative
volume element (RVE), it can be approximated by the first-order
difference of mesoscopic representative volume element strain for
simplicity (Fang 2014), namely:

η � Δγ
L − d( )/2 ≈

2
L − d

γ
∣∣∣∣ x�L/2 − γ

∣∣∣∣ x�0( ) ≈ 2γ
L − d

(8)

where L is the side length of the volume element represented by the
meso cube of the soil-rock mixture; d is the particle size of the rock
block; α is the rock block content; γ denotes the shear strain of the
RVE. According to Eq. 8, the strain gradient η of the RVE of the
soil-rock mixture can be further expressed by combining of Eqs
1, 8:

η � 2γ

π/6α( )1/3 − 1[ ]d (9)

In the soil-rock mixture, the diameter of the rock blocks is
varying, therefore, the average strain gradient of the soil-rock

FIGURE 2
Physical meanings of parameters (A, B).

FIGURE 3
The stress state of the soil-rock mixture, RVE and the pure soil matrix. (A) soil-rock cell; (B), RVE ingredients; (C) pure soil matrix.
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mixture can be calculated by the grading function of the rock blocks,
one may find:

�η � ∫dM
dm

g′ d( )ηδd/∫dM
dm

g′ d( )δd (10)

where g′(d) is the first derivative of g(d), and g(d) is the gradation
function of rock block. dM and dm are the maximum and minimum
particle sizes of the rock blocks in the soil-rock mixture, respectively.

Eq 5 is a concise theoretical model of predicting the multiscale
coupled shear strength of soil-rock mixture. However, the
mechanical response of the soil matrix inside the soil-rock cell is
different from that of the pure matrix due to the influence of the rock
block, and the stress-strain relationship of the matrix inside the soil-
rock cell is difficult to determine. According to the purpose of
dividing the soil-rock mixture in to soil matrix and rock block, for
the practical application of Eq. 5, the following two problems still
have to be solved through theoretical analysis: (1) how the shear
stress and shear displacement relationship τmRVE � f0(s) of matrix in
soil-rock mixture can be approximately expressed by the mechanical
response τc � fc(s) of pure matrix material, where τc is the shear
stress of pure matrix material, as shown in Figure 3; (2) The intrinsic
length scale of the soil-rock mixture is a key parameter to describe
scale characteristics of materials, which is related to the content and
gradation of rock blocks, and the soil matrix properties; how to
realize the relationship between the intrinsic length scale and the
classical finite element equation? In the present work, based on the
Eshelby-Mori-Tanaka equivalent inclusion and average stress
principle, we realizes the quantitative correlation between the
matrix shear stress in the soil-rock mixture and the mechanical
response of the pure matrix material, and establishes the constitutive
relationship and finite element equation of the soil-rock mixture
with embedded intrinsic scale parameters through the couple stress
theory.

2.3 Eshelby-Mori-Tanaka equivalent
inclusion average stress principle

Hu et al. (2013) and Fang et al. (2013) have respectively derived
the effective elastic modulus of pebble soil and the equivalent effect
gradient of cohesive soil by using the Eshelby equivalent inclusion
principle, and obtained good theoretical results. According to
Eshelby equivalent inclusion principle (Eshelby 1957), the shear
stress of the soil matrix and the rock block in the representative
volume element (RVE) of the soil-rock mixture can be expressed as:

τmRVE � τc + ~τ � Gm γc + ~γ( ) (11)
τrRVE � τc + ~τ + τpt � Gm γc + ~γ + γpt − γ*( ) � Gr γc + ~γ + γpt( )

(12)
where τrRVE and τmRVE are the shear stresses of rock block and soil
matrix in the representative volume element of soil-rock mixture,
respectively; τc and γc are the shear stress and shear strain of the
pure soil matrix material (without any rock block, α � 0); ~τ and ~γ are
respectively the perturbation shear stress and the perturbation shear
strain of the soil matrix produced by the rock block; τpt and γpt are
the disturbed shear stress and the disturbed shear strain of the rock

block, respectively, which can be determined by the intrinsic strain
γ* of the rock block (Hill 1963; Weng 1984); Gm and Gr are the
material constants of the soil matrix and rock block, respectively.

τpt � Tτ* (13)
γpt � Sγ* (14)

Gm � 3G0 � 3E0 2 1 + υ0( )[ ]−1 (15)
Gr � 3GR � 3ER 2 1 + υR( )[ ]−1 (16)

where S is Eshelby constant, T is hill constant, and S + T = 1 (Hill
1963; Weng 1984); G0 and GR are the shear modulus of the soil
matrix and the rock block, respectively; E0 and ER are the elastic
modulus of the soil matrix and the rock block, respectively; υ0 and υR

are the Poisson’s ratio of the soil matrix and the rock block,
respectively. According to the Eshelby equivalent inclusion
principle (Weng 1984), the relationship between the perturbation
strain ~γ and the intrinsic strain γ* can be established by the Eshelby
constant S, one may find:

~γ � Sγ* (17)
For ellipsoidal rock block (spherical is its special case), Eshelby

constant can be expressed as:

S � 2 4 − 5υ0( )/ 15 1 − υ0( )[ ] (18)
where υ0 is the Poisson’s ratio of the soil matrix.

Combining Eqs. 11–14, one may find:

τ* � −Gmγ* (19)
Substituting Eqs 11, 17 into Eq. 12, yields:

τpt � GmSγ* − Gmγ* (20)
According to the Mori Tanaka average stress method (Mori and

Tanaka 1973), the average stress remains unchanged, the shear stress
of the soil matrix can be expressed as:

τc � α τc + ~τ + τpt( ) + 1 − α( ) τc + ~τ( ) (21)
According to Eq. 21, one may find:

~τ � −ατpt (22)
Substituting Eq. 22 into Eq. 20, yields:

~τ � −Gmα S − 1( )γ* (23)
Substituting Eq 12, 21 into Eq. 11, one may find:

γ* � b

a
γc (24)

and

a0 � − Gr − Gm( ) S 1 − α( ) + α[ ] + Gm{ } (25)
b0 � Gr − Gm( ) (26)

Substituting Eqs 23, 24 into Eq. 11, yield:

τmRVE � τc + ~τ � Gmγc + Gmα S − 1( )γ* � Gmγc + Gmα S − 1( ) b
0

a0
γc

� Gmγc 1 + α S − 1( ) b
0

a0
( )

(27)
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It can be seen from Eq. 27 that the occurrence of rock block
causes stress concentration in the adjacent soil matrix, and the
corresponding stress concentration coefficient χ can be expressed as
(Zhao and Zhou 2020):

χ � τmRVE
τc

� 1 + α S − 1( ) b
0

a0
(28)

Combining Eqs 27, 28, the shear stress-shear displacement
relationship between the soil matrix in the RVE and the pure soil
can be established:

f0 s( ) � χfc s( ) (29)
where τc � fc(s) is the shear stress-shear displacement relationship
of pure matrix material, and τmRVE = f0(s) and τc = fc(s).

Eq 28 gives the stress concentration coefficient of the soil matrix
in the soil-rock mixture with an assumption that all the rock blocks
have the same diameter. For the actual soil-rock mixture, the size of
the rock block is distributed in the sample. In order to consider the
influence of the size of rock blocks on the strength characteristics of
soil-rock mixtures, the number density function f(d) of rock blocks
is introduced (Feng and Fang 2016). Its physical meaning is the
percentage of the number of rock blocks with equivalent diameter d
in the total number of rock blocks in the unit volume of soil-rock
mixture, which can be determined by the grading function g(d) of
rock blocks. Therefore, f(d) can be expressed as (Feng and Fang
2015a; Feng and Fang, 2016):

f d( ) � 6αg′ d( )dd/ N · πd3( ) (30)

whereN is the total number of rock blocks in the unit volume of soil-
rock mixture; dd is the differential of size of rock block.

The strength of the soil-rock mixture sample is provided by the
soil matrix and rock blocks. Therefore, its shear strength can be
expressed as:

τfRVE � ArτrRVE + AmτmRVE
A

� ArτrRVE + A − Ar( )τmRVE
A

� τmRVE +
Ar

A
τrRVE − τmRVE( ) (31)

where τfRVE is the shear strength of the soil-rockmixture;Ar is the area
of rock block in the RVE;Am is the area of soil matrix in the RVE;A is
the area of the RVE, A � L2 � (π/6α)2/3d2. According to Eq. 30, the
area of rock block in the soil-rockmixture sample can be expressed as:

Ar �∑NkA
r
k �∑N · Nk

N
Ar

k �∑N · f d( )Ar
k (32)

whereNk is the number of rock block with particle size dk; Ar
k is the

area of rock block with the size of dk, Ar
k � πd2k/4.

Substituting Eq. 30 into Eq. 32, yields:

Ar � 3
2
α ∫dmax

dmin

g′ d( )dd
d

(33)

For the case where the distribution range of rock block size is small,
the grading curve can be approximately expressed as a linear function of
the size of rock block (Feng and Fang 2015a), one may find:

g′ d( ) � C (34)

where C is a constant.
Simultaneous Eq. 31 into Eq. 33, yields:

τfRVE � τmRVE +
3α ∫dmax

dmin

g′ d( )dd
d

2 π/6α( )2/3d2
τrRVE − τmRVE( ) (35)

Combination Eqs 12, 27, 29, 35, the shear strength of the soil-
rock mixture can be further expressed as:

τfRVE � χτcf +
3α ∫dmax

dmin

g′ d( )dd
d

2 π/6α( )2/3d2
· Gr

Gm
1 + S + α − Sα( ) b

a
[ ] − χ{ }τcf

� Ωτcf

(36)
and

Ω � χ +
3α ∫dmax

dmin

g′ d( )dd
d

2 π/6α( )2/3d2
· Gr

Gm
1 + S + α − Sα( ) b

0

a0
[ ] − χ{ } (37)

where τcf is the yield stress of pure matrix soil; Ω is the equivalent
strength enhancement coefficient of the soil matrix around the rock
blocks.

Combination Eqs 7, 36, the intrinsic length scale of soil-rock
mixture can be further expressed as:

le �

��������
τ2s

Ω2 τc( )2 − 1

η2

√√
(38)

3 Multiscale coupled finite element
method based on the soil-rock cell
model

3.1 Stress-strain relationship of soil-rock cell
model

The classical finite element method treats the soil-rock mixture
as a uniform continuous medium. However, at the microscale, the
soil-rock mixture has significant inhomogeneous and discontinuous
mechanical characteristics (Zhao et al., 2021). Based on the micro
motion characteristics of rock blocks, a shear strength theoretical
model considering the rotation effect of rock blocks is established
based on the soil-rock cell model. According to the coupled stress
theory (Toupin 1962; Borst 1991), under the action of shear stress,
the soil-rock cell generates three translational displacements
ux, uy, uz, and three rotational displacements ωx,ωy,ωz, and the
corresponding work conjugate stress and coupled stress are σ ij and
mij, respectively. Therefore, the strain of soil-rock cell can be written
as (Fang and Li 2016):

γij �
zui

zxj
+ eijkωk � ui,j + eijkωk (39)

γij �
zui

zxj
+ eijkωk � ui,j + eijkωk (40)
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The generalized equivalent strain of soil-rock cell (RVE) can be
expressed by rotational gradient, namely:

γe �
�
2
3

√
γij
′ γij

′ + l2eηij
′ ηij

′( ) 1
2 (41)

where γij′ � γij − γmδij is strain deviation; γm � γii/3 is spherical
strain; ηij′ � ηij − ηmδij is curvature tensor deviation; ηm � ηii/3 is
spherical curvature; ηij � ωi,j is curvature tensor; The intrinsic
length scale le of the soil-rock mixture can be determined by
Eq. 38.

Accordingly, the generalized equivalent stress qe (Mindlin 1963)
of the RVE can be expressed as:

qe �
��
3
2

√
sijsij + l−2e mij

′ mij
′( ) 1

2 (42)

Where: sij � σ ij − pδij is stress deviation; p � σ ii/3 is spherical
stress; mij

′ � mij −mδij is couple stress deviation; m � mii/3 is
spherical couple stress.

Eq 39 can be written in the following matrix form:

ε{ } � B[ ] u{ } (43)
ε{ } � γ11, γ22, γ33 , γ12 , γ13 , γ21 , γ23, γ31, γ32, η11 , η22, η33, η12, η13, η21 , η23, η31, η32( )T

(44)
u{ } � ux, uy, uz,ωx,ωy,ωz( )T (45)

Where: [B] is the flexibility matrix; ε{ } is the strain array; u{ } is
the displacement array.

3.1.1 Elastic stress-strain relationship of soil-rock
mixture

The elastic strain energy density of soil-rock mixture is
defined as w(γij′ , γm, ηij′ , ηm), where the stress deviation is sij,
the couple stress deviation is mi j

′, the spherical stress p and the
spherical couple stress m are respectively work conjugate with
the strain deviation γij′ , the curvature tensor deviation ηij′ , the
spherical strain γm, and the spherical curvature ηm, then the
strain energy density increment of soil-rock mixture can be
expressed as:

δw γij
′ , γm, ηij

′ , ηm( ) � sijδγij
′ +mij

′ δηij
′ + pδγm +mδηm (46)

The elastic stress-strain relationship (constitutive relationship)
of the soil-rock mixture can be obtained from Eq. 46:

sij � zw

zγij′
, mij

′ � zw

zηij′
, p � zw

zγm
, m � zw

zηm
(47)

For elastic strain energy, according to the definition of
generalized equivalent strain given in Eq. 41, the strain energy of
the soil-rock mixture can be simplified as w(γe, γm, ηm). Meanwhile,
γe, γm and ηm are work conjugate with qe, p and m, respectively.
Therefore, the strain energy increment of the soil-rock mixture can
be expressed as:

δw γe, γm, ηm( ) � qeδγe + pδγm +mδηm (48)
Substituting δγe � 2

3γe
(γij′ δγij′ + l2eηij

′ δηij′) into Eq. 48, yields:

δw γe, γm, ηm( ) � 2qe
3γe

γij
′ δγij

′ + 2qe
3γe

l2eηij
′ δηij

′ + pδγm +mδηm (49)

Comparing Eqs 46, 49:

sij � 2qe
3γe

γij
′ � Gγ′

mij
′ � 2l2eqe

3γe
ηij
′ � Gmηij

′

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (50)

G � 2qe
3γe

Gm � 2qe
3γe

l2e � Gl2e

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (51)

where G is the shear modulus; Gm is the curvature shear modulus,
which can be calculated and determined by Eq. 51 according to the
intrinsic length scale le that can be determined by Eq. 38. The
relationship between qe and γe can be determined by conventional
triaxial compression test of soil-rock mixture.

Accordingly, the relationship between elastic spherical stress
and spherical strain of soil-rock mixture and the relationship
between spherical couple stress and spherical curvature ηm can
be expressed as:

p � Kγm
m � Kmηm
{ (52)

Km � Kl2e (53)
where K is the elastic bulk modulus, which can be determined by
conventional triaxial compression test; Km is the curvature bulk
modulus, which can be calculated by Eq. 53 according to the
intrinsic length scale le.

Write Eq. 47 in matrix form:

σ{ } � De[ ] εe{ } (54)
εe{ } � (γe11, γe22, γe33, γe12, γe13, γe21, γe23, γe31, γe32,

ηe22, η
e
33, η

e
12, η

e
13, η

e
21, η

e
23, η

e
31, η

e
32)T

σ{ } � (σ11, σ22, σ33, σ12, σ13, σ21, σ23, σ31, σ32,
m11, m22, m33, m12, m13, m21, m23, m31, m32)T

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (55)

among

De
σ[ ] � Dσ 0

0 I1
[ ]

De
m[ ] � Dm 0

0 I2
[ ]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (56)

Dσ[ ] � G

3

2 + K

G

K

G
− 1

K

G
− 1

K

G
− 1 2 + K

G

K

G
− 1

K

G
− 1

K

G
− 1 2 + K

G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Dm[ ] � Gl2e
3

2 + Gm

G

Gm

G
− 1

Gm

G
− 1

Gm

G
− 1 2 + Gm

G

Gm

G
− 1

Gm

G
− 1

Gm

G
− 1 2 + Gm

G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

I1 � G · I[ ]6×6
I2 � Gl2e · I[ ]6×6{ (58)
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where [De] is the elastic modulus matrix of soil-rock mixture.
It can be seen from Eq. 54–58 that the elastic stress-strain

relationship of soil-rock mixture is a nonlinear stress-strain
relationship.

3.1.2 Plastic stress-strain relationship of soil-rock
cell model

In the soil-rock cell model, the rotation of the rock block will
cause significant plastic shape distortion of its adjacent matrix.
Therefore, the elastic constitutive relationship established by Eq.
54–58 is now extended to the elastoplastic stress-strain
relationship. For simplicity, this paper introduces the Von Mises
yield criterion based on the hardening (softening) law:

f � qe − σy � 0 (59)
where σy is the yield stress of the soil-rock mixture.

The yield stress of soil-rock mixture σy can be linear or
hyperbolic softening function of equivalent plastic shear strain γpe
(Huang et al., 1981), i.e.:

σy γpe( ) � a0γ
p
e + b0

σy γpe( ) � γpe
a0 + b0γ

p
e

(60)

where a0 and b0 are constants.
The elastic stress-strain relationship expressed by Eq. 54 is

rewritten in an incremental form:

dσ{ } � De[ ] dεe{ } � De[ ] dε{ } − dεp{ }( ) (61)
Introducing associated flow laws:

dεp{ } � dλ
zf

zσ
{ } (62)

According to the conformity conditions:

df � zf

zσ
{ }T

dσ{ } + zf

zγpe

zγpe
zεp
{ } dεp{ } � 0 (63)

Simultaneous Eq. 61 into Eq. 63, yields:

zf

zσ
( )T

De[ ] dε( ) + − zf

zσ
( )T

De[ ] + zf

zγpe

zγpe
zεp
( )T⎡⎣ ⎤⎦ dεp( ) � 0 (64)

Combining Eqs 62, 64, one may find:

dλ �
zf
zσ{ }T De[ ]

A + zf
zσ{ }T De[ ] zf

zσ{ } dε{ } (65)

where A is the hardening modulus of soil-rock mixture, which can
be expressed as:

A � zf

zσ
( )T

De[ ] zf

zσ
( ) − zf

zγpe

zγpe
zεp
( )T

zf

zσ
( ) (66)

Substituting Eq. 65 into Eq. 62, the plastic strain expression of
the soil-rock cell model can be expressed as:

dεp( ) � 1
A

zf

zσ
( ) zf

zσ
( )T

De[ ] dε( ) (67)

Combining Eqs 61, 67, the elastoplastic stress-strain relationship
of soil-rock mixture can be obtained:

dσ{ } � Dep[ ] dε{ } (68)
Dep[ ] � De[ ] − Dp[ ] (69)

where [Dep] is the elastic-plastic modulus matrix of soil-rock
mixture; the plastic modulus matrix of soil-rock mixture [Dp]
can be expressed as:

FIGURE 4
The programming framework of the multiscale finite element method based on ABAQUS software.
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Dp[ ] � 1
A

De[ ] zf

zσ
( ) zf

zσ
( )T

De[ ]

� 1
A

De[ ] zf

zσ
( ) De[ ] zf

zσ
( )[ ]T (70)

3.1.3 Element finite element matrix based on soil-
rock cell model

The multiscale coupled finite element method based on the soil-
rock cell model takes the soil-rock cell (RVE) as the basic element,
and considers the translational displacement ui and rotational
displacement ωi of the element, as well as the curvature tensor
ηij and the couple stress tensormij. Therefore, the displacement u{ },
stress σ{ }, strain [Dep] of the RVE based on the soil-rock cell model
are consistent with the framework of the general classical elastic-
plastic finite element method, but the physical meanings and
constitutive model are essentially different. In this paper, the
secondary development platform provided by ABAQUS finite
element software is used to redefine and encode the multiscale
coupled finite element, and the multiscale coupled finite element
program that meets the requirements of the multiscale theoretical
framework of the soil-rock cell model and can be read and solved by
ABAQUS finite element software is programmed.

The element displacement function of the multiscale finite
element method based on the soil-rock cell model can be written as:

u{ } � Ne[ ] ue{ } (71)

where [Ne] is the shape function matrix; ue{ } is the translational
displacement and rotational displacement array of nodes. Using the
geometric equation Eq. 43, the strain expression can be obtained:

ε{ } � B[ ] Ne[ ] ue{ } � Be[ ] ue{ } (72)

FIGURE 5
The test earth embankment and samples preparation. (A) Preparation of test soil-rock embankment, and (B) Preparation of large direct shear
samples.

TABLE 1 The physical parameters of experiment materials.

Material name Density ρ/g/cm3 Water content Liquid limit Plastic limit Plasticity index

Soil matrix 2.00 17 38.0 18.0 20.0

Rock block 2.64 – – – –

FIGURE 6
The gradation curve of rock blocks.
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where [Be] � [B][Ne] is the element strain matrix.
According to the principle of virtual work, one may find:∫

Ve

δ ε{ }T σ{ }dV � ∫
Ve

δ u{ }T fe{ }dV + ∫
Se

δ u{ }T pe{ }dS (73)

where fe{ } and pe{ } are the volume force and area force of the RVE,
respectively. By substituting the stress-strain relationship of Eq. 68
and the stress-strain relationship of elastic (elastic region) or plastic
(plastic region) into Eq. 73, the stiffness equation of the element can
be expressed as:

Ke[ ] ue{ } � Fe{ } (74)
For the step loading (incremental method), the stiffness

equation of the RVE can be expressed as:

Ke[ ] Δue{ } � ΔFe{ } (75)
where Fe{ } is the element node load array; [Ke] is the element
stiffness matrix.

Fe{ } � ∫
Ve

Ne[ ]T fe{ }dV + ∫
Se

Ne{ }T pe{ }dS (76)

For elastic zone:

Ke[ ] � ∫
Ve

Be[ ]T De[ ] Be[ ]dV (77)

For plastic zone:

Ke[ ] � ∫
Ve

Be[ ]T Dep[ ] Be[ ]dV (78)

3.2 Stress-strain relationship of soil-rock cell
model

Since the translation and rotation of the RVEof the soil-rockmixture
are considered in the multiscale coupled finite element method, for the
plane problem, three degrees of freedom need to be set, namely U1,
U2 and R3, where U1 and U2 represent the translational displacement of
the element and R3 represents the rotational displacement of the element;
the material parameters of the multiscale coupled finite element method
include the multiscale coupling parameters such as le, Gm and Km in
addition to the conventional macroscopic physical and mechanical
parameters such as the density ρ of the soil, the elastic modulus E,
Poisson’s ratio υ, the shearmodulusG and the bulkmodulusK. There are
eight material property constants in total. The specific material property
constant value shall be given in the INP file of ABAQUS finite element
program to be transmitted to the user subprogram of UEL to realize the
identification and solution of the multiscale coupled finite element
program prepared by ABAQUS finite element software. The
programming framework is shown in Figure 4.

4 Larger scale direct shear test for
determining the intrinsic length scale le

There are eight material property parameters in the multiscale
coupled finite element method. The elastic modulus E, Poisson ratio,
shear modulus G and bulk modulus K can be determined by the triaxial
compression test of the soil matrix; The micro parameter le can be
determined by the large-scale triaxial compression test or large-scale
direct shear test conducted on the soil-rockmixture samples; The density
of soil-rockmixture can be determined by soil density test. The curvature

FIGURE 7
Photos of assembly of large-scale direct shear apparatus. (A) Reaction an data acquisition system, and (B) Loading of large direct shear samples.

TABLE 2 Scheme of large-scale direct shear tests.

Test group Sample size Water content/% Stone content Normal stress/kPa Number of samples

LS-0 500 × 500×250 17.0 0 36、72、108、144 4

LS-1 500 × 500×250 17.0 0.40 36、72、108、144 4

LS-2 500 × 500×250 17.0 0.47 36、72、108、144 4

Frontiers in Materials frontiersin.org10

Liu and Feng 10.3389/fmats.2023.1116544

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1116544


shear modulus Gm and curvature bulk modulus Km are calculated and
determined by Eq 51, 52 respectively according to the intrinsic length
scale determined by the specially designed tests. In the present work,
three groups of large-scale direct shear tests of the soil-rock mixture
samples with different rock block content are carried out to
quantitatively calculate the key parameter of the model, namely, the
intrinsic length scale, and then Gm and Km can be calculated by Eq 51,
52, respectively.

4.1 Test materials

The soil-rock mixture used in this paper is taken from the north
of Guangzhou, China and mainly consists of silty clay and sandy
mudstone. The soil-rock mixture was taken out from the excavation
area first and fully turned over by a 20-t excavator to make the rock
blocks in the soil-rock mixture evenly distributed in the soil matrix.
The mixed soil and rock blocks were compacted in layers by a 14-t
road roller with a compaction ratio of 92%. The compacted soil-rock
mixture forms a test embankment. As shown in Figure 5, the large-
scale direct shear test samples of soil-rock mixture were prepared
inside the embankment. The physical and mechanical properties of
soil-rock mixture were shown in Table 1. Themaximum particle size
of rock block is 50 mm, and the gradation curve of rock blocks is
shown in Figure 6. For the water content, specific gravity and liquid
plastic limit test of the soil-rock mixture, the tests were carried out
after the solid particles with diameters greater than 2 mm were
removed from the soil-rock mixture.

FIGURE 8
Curves of shear stress and shear displacement of soil-rock mixture samples. (A) Normal stress 36 kPa, (B) Normal stress 72 kPa, (C) Normal stress
108 kPa, and (D) Normal stress 144 kPa.

TABLE 3 The parameters of the mesomechanism based shear strength model
of soil-rock mixture.

α Gm/
MPa

Gr/
MPa

v0 vR S Ω η/
mm−1

le/
mm

0 19.2 — 0.3 — — — — —

0.40 19.2 1,200 0.3 0.25 0.47 1.33 0.13 1.11

0.47 19.2 1,200 0.3 0.25 0.47 1.37 0.34 1.58

Frontiers in Materials frontiersin.org11

Liu and Feng 10.3389/fmats.2023.1116544

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1116544


FIGURE 9
Comparisons of shear stress-shear displacement relationship between test and predicted results. (A)Normal stress 36 kPa, (B)Normal stress 72 kPa,
(C) Normal stress 108 kPa, and (D) Normal stress 144 kPa.

FIGURE 10
The model of the simulated soil-rock mixture slope.
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4.2 Test device

The large-scale direct shear test device was mainly composed of
a shear frame (the inner dimension of the shear frame is 500 mm ×
500 mm × 250 mm), reaction force supplying and loading
application systems and stress and displacement acquisition
system. The photographs of the equipment installation of the
large-scale direct shear test were shown in Figure 7.

4.3 Test scheme

The normal stress of each group of tests was 36, 72, 108 and
144kpa respectively, and each level of normal stress was loaded in
three levels. The large-scale direct shear test scheme was shown in
Table 2. The tests were conducted according to the Specification of
soil test (GB/T50123-2019) Ministry of Water Resources of the
People’s Republic of China, 2019.

4.4 Test results and analysis

The shear stress-shear displacement curves of the samples were
shown in Figure 8.

It can be seen from Figure 8 that the shear stress-shear
displacement curves of pure matrix samples were relatively smooth;
for the soil-rock mixture samples, the shear stress-shear displacement
curve had serrated characteristics, and there was a discontinuous jump

phenomenon of stress, and the overall mechanical response was strain
hardening. Moreover, the shear strength of the soil-rock mixture
samples increases with an increase in the content of the rock blocks
under the all levels of normal stress conditions.

The above phenomenon that the shear strength and deformation
characteristics of the soil-rockmixture changed with the change of the
rock block content reflected the key influence of the rock blocks on the
mechanical responses of soil-rock mixture.

5 Comparison between theoretical
prediction and experimental results

It can be seen from Eqs 5, 9; Eq. 38 that the theoretical model
(soil-rock cell model) of multiscale coupled shear strength of soil-
rock mixture is embedded with the intrinsic scale le and strain
gradient η. Therefore, it can simulate and predict the multiscale
shear strength of the soil-rock mixture.

The matrix equivalent stress enhancement coefficient Ω is
related to the shear modulus, Poisson’s ratio and the content of
rock blocks, and can be determined by Eq. 37.

The intrinsic length scale of soil-rock mixture is related to the
equivalent stress enhancement coefficientΩ and rock block content,
and can be determined by Eq. 38.

The strain gradient of the soil-rockmixture is related to the content
and size of the rock blocks, which can be determined by Eq. 10.

The elastic modulus of the soil matrix is determined by
conventional triaxial compression test of the pure matrix

TABLE 4 Finite element method parameters of the proposed particle rotation theory.

α/mm G/MPa K/MPa le/mm Km/MPa·mm2 Gm/MPa·mm2 ρ/g/cm3

0.0 19.2 41.7 — 0.0 — 2.00

0.40 19.2 41.7 1.11 51.3 23.7 2.13

0.47 19.2 41.7 1.58 104.1 47.9 2.15

FIGURE 11
Color plot of equivalent plastic strain (in %) based on classical FEM. (A) Mesh 1, (B) Mesh 2, (C) Mesh 3, and (D) Mesh 4.
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material, and the elastic modulus of the rock block is determined by
the uniaxial compression test of the rock sample. The strain gradient
and intrinsic length scale are determined by large scale direct shear
test conducted on soil-rock mixture. For simplicity, Gm and ]0 are
simply assumed according to previous studies (Zhang et al., 2015;
Zhao et al., 2021). The specific calculation of the model parameters
of the multiscale coupling soil-rock cell model of soil-rock mixture
are shown in Table 3. Among them, the particle size of the rock
blocks of soil-rock mixture is 5–50 mm. According to Eq. 5; Table 3,
the relationship between shear stress and shear displacement of soil-
rock mixture can be predicted. The comparison between theoretical
results and experimental results is shown in Figure 9.

It can be seen from Figure 9 that the multiscael soil-rock cell
model of soil-rock mixture based on the meso physical
mechanism can simulate and predict the shear stress-shear
displacement relationship and the shear strength of soil-rock
mixture. The relative error (|τth − τte|/τte) between the
theoretical results τth and the experimental results τte of the
shear strength of the soil-rock mixture are less than 10%, which
is acceptable.

6 Multiscale finite element method for
simulation of soil-rock mixture slope

Figure 10 shows the soil-rock mixture slope with a rock block
content of 45%, with a slope height of 10 m and a slope ratio of 1:
1. In the present work, the main physical and mechanical
parameters of the soil-rock mixture are: elastic modulus E =
50MPa, Poisson’s ratio υ = 0.3, and linear softening parameter

H = 30 KPa. The size of rock particles used in the slope stability
analysis is the same as those used in the larger scale direct shear
test, namely, 5–50 mm.

The classical elastic-plastic finite element method and the
multiscale coupled finite element method are respectively used
to analyse the simulation of the stability of a soil-rock mixture
slope. The finite element model is divided into four types of
meshes, namely, 2,508, 2020, 1,660 and 1,286 elements. The
displacement control method is adopted in loading process. The
total vertical displacement loading is s = 0.5 m, the vertical
uniformly distributed load on the top of the soil-rock mixture
slope is p, and the width of the shear band of the soil-rock
mixture slope is d0.

6.1 Parameter determination of the
multiscale coupled finite element method

The parameters of the proposed multiscale finite element
method are shown in Table 4. Herein, G is equal to Gm,
G � E/[2(1 + υ0)], K = E/[3×(1-2]0)]; Gm and Km are determined
by Eqs 51, 52, respectively.

6.2 Finite element simulation results of
deformation characteristics of soil-rock
mixture slope

6.2.1 Classical elastoplastic finite element
simulation results of shear band width of soil-rock
mixture slope

Figure 11 shows the simulation results of the shear band width of
the soil-rock mixture slope by the classical elastic-plastic finite
element method. The scale in the figure is the equivalent plastic
strain of the soil-rock mixture slope, and the unit is %.

It can be seen from Figure 11 that the shear band width d0 of
mesh one to mesh four is 0.62m, 0.76m, 0.98m and 1.31 m
respectively, and the shear band width changes significantly
with the change of the mesh size. The width of shear band
predicted by mesh four is 111.3% higher than that of mesh 2,
when the shear band of soil-rock mixture slope is completely
interconnected. Therefore, the simulation results of the classical
elastoplastic finite element method display significant pathological
mesh-dependency.

Figure 12 shows the p~s curve predicted by the classical elastic-
plastic finite element method.

Figure 12 shows that the denser is the mesh of the finite
element model, the larger is the softening section of the p~s
curve, the stronger is the strain softening behaviour and the
earlier is the calculation termination of the finite element
program due to the difficulty in model solution. The
calculation termination displacement s of mesh 1–4 are
0.168 m, 0.201 m, 0.244 m and 0.319 m, respectively. The
difference of the calculation termination displacement caused
by different mesh division is up to 89.9%, showing a significant
pathological mesh-dependency.

FIGURE 12
The p-s curves simulated by classical elastic-plastic finite
element method.
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6.2.2 Multiscale coupled finite element simulation
results of shear band width of soil-rock mixture
slope

Figure 13 shows the simulation results of the shear band
width of the soil-rock mixture slope predicted by the multi-scale
coupled finite element method. The scale in the figure is the
equivalent plastic strain of the soil-rock mixture slope, and the
unit is %.

It can be seen from Figure 13 that the predicted results of the
shear band width d0 of the soil-rock mixture slope by using the
proposed multiscale coupled finite element program of mesh
1–4 are 3.32m, 3.43m, 3.48m and 3.51 m respectively. Especially,
when the number of elements in mesh four is 48.7% less than that

in mesh 1, the prediction result of shear band width is only
increased by 5.7%, while under the same condition, the
prediction result of classical elastic-plastic finite element
method is increased by 111.3%. It can be seen that the
multiscale coupled finite element method can effectively
overcome the pathological mesh-dependency of numerical
simulation prediction results.

Figure 14 shows the p~s curves predicted by the multiscale
coupled finite element method.

It can be seen from Figure 14 that the p~s curves predicted by the
multiscale coupled finite element method completely coincide at the
stage of uniform linearity, and also approximately coincide at the
stage of plastic and softening deformation. The curves have only a

FIGURE 13
Color plot of equivalent plastic strain (in %) based on multiscale FEM (le = 0.1 mm). (A) Mesh 1, (B) Mesh 2, (C) Mesh 3, and (D) Mesh 4.
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slight difference with the reduction of the number of elements in the
model, which is approximately the same as the shear band width
predicted under different mesh densities in Figure 13A–D.
Especially in the softening deformation stage, the multiscale
coupled finite element method has no difficulty in solving that
occurs in classical elastic-plastic finite element method. It can
reproduce the entire nonlinear and softening deformation process
of the soil-rock mixture slope. The displacement loading is s = 0.5 m,
and the softening characteristics remain unchanged with the mesh
changes. Therefore, the prediction results of the p~s curves of the
multiscale coupled finite element method depend on the physical
and mechanical parameters of the soil-rock mixture and have
nothing to do with the mesh density. It can simulate and predict
the cross-scale evolution of the strain localization of the soil-rock
mixture slope more realistically compared with that of the classical
elastic-plastic finite element method.

For the multiscale coupled finite element method, the
rotation of rock blocks induces the occurrence of stress
concentration at the soil matrix around the soil-rock interface.
When the stress concentration intensifies to a certain extent,
plastic slip occurs at the interface first, and the plastic strain is
constrained in the matrix between the rock blocks. The
introduction of the rotational freedom of rock blocks can
make the concentrated plastic strain transfer smoothly
through the rotation of rock blocks. Moreover, the multiscale
coupled finite element method introduces the intrinsic length
scale le with clear physical meanings and scale characteristics to
regularize the solution of the governing equations of the
multiscale coupled finite element program, and avoid the
occurrence of pathological mesh-dependency of prediction
results.

6.2.3 Simulation results of rock block rotation
displacement of soil-rock mixture slope predicted
by multi-scale coupled finite element method

Figure 15 shows the distribution of rotational displacement of
rock blocks in the soil-rock mixture slope. The scale in the figure is
the rotational displacement, and the unit is radian.

It can be seen from Figure 15 that the rotational displacement
of rock blocks in the soil-rock mixture slope is mainly
concentrated within the shear band, wherein the maximum
rotational displacement of rock blocks is 40.7°, and the
rotational displacement of particles outside the shear band is
about 0°. The rotational displacement of the rock blocks in the
shear band of the soil-rock mixture slope changes the meso-
structures of the soil-rock mixture, which produces
unrecoverable plastic deformation (Ren and Zhao 2021). In
this process, the directional alignment of the rock blocks
caused by their rotational displacement destroys the occlusion
effect between rock blocks, and weakens the ability of rock blocks
to transfer shear deformation to the surrounding soil matrix, thus
leading to the plastic deformation being restrained and the
occurrence of plastic strain localization. The plastic strain
localization gradually evolves into a shear band, and the
gradual penetration of the shear band causes the sliding
failure of the soil-rock mixture slope. Therefore, the plastic
strain concentration of the soil-rock mixture caused by the

FIGURE 14
The p~s curves simulated by multiscale finite element method.

FIGURE 15
The rotation displacement simulated by multiscale FEM (mesh 2, le = 0.1 mm).

Frontiers in Materials frontiersin.org16

Liu and Feng 10.3389/fmats.2023.1116544

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1116544


rotation and directional arrangement of the rock blocks in the
soil-rock mixture slope is the most critical factor for the
formation and development of the shear band of the soil-rock
mixture slope.

7 Conclusion

According to the physical and mechanical effects generated by the
interaction between soil matrix and rock blocks in the soil-rock
mixture, the multiscale coupled elastic-plastic constitutive
relationship of the soil-rock mixture is derived and the
corresponding multiscale coupled finite element procedure is
independently programmed. The cross-scale deformation
characteristics of the soil-rock mixture slope are successfully
simulated and predicted by the proposed multiscale finite element
method. The main conclusions are as follows:

(1) The multiscale coupled constitutive relationship established
based on the micro motion characteristics of soil-rock
mixture is embedded with the rotational freedom of rock
blocks, which can effectively simulate and predict the cross-
scale shear strength of the soil-rock mixture.

(2) Themultiscale finite element program can quantitatively simulate
the rotational displacement of the element and effectively realize
the cross-scale coupling relationship between the micro rotation
of the rock blocks and the macro mechanical response of the soil-
rock mixture. Moreover, the intrinsic length scale that regularizes
the stiffness matrix of the finite element method is embedded in
the multiscale finite element program, which can overcome the
pathological mesh-dependency of the classical finite element
method, and thus objectively and completely describe the
progressive deformation of soil-rock mixture slope from
particle rotation at the microscale to the sliding failure of the
soil-rock mixture at the macroscale.

(3) The maximum rotational displacement of rock blocks inside the
soil-rockmixture slope is 40.7°, mainly concentrated in the shear
band, and the rotational displacement of rock blocks outside the
shear zone is about 0°. The plastic strain concentration of the
soil-rock mixture caused by the rotation and directional
arrangement of the rock blocks in the soil-rock mixture is
the most critical factor for the formation and development of
the shear band of the soil-rock mixture slope.

Finally, it is noted that the proposed soil-rock cell element model
is a preliminary investigation of the derivation of multiscale

coupling theoretical model of the S-RM, only three groups of the
in situ large-scale direct shear tests were carried out to calculate the
parameters of the proposed multiscale soil-rock cell element model
and evaluate the feasibility of the proposed model. Meanwhile, the
shape and breakage of rock blocks have not been considered in the
present work. Therefore, specific and systematic experimental
studies and theoretical enhancements are expected to improve
and validate the proposed multiscale FEMmodel in the future work.
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