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The sugar industry produces a huge quantity of sugar cane bagasse ash in India.
Dumpingmassive quantities ofwaste in a non-eco-friendlymanner is a key concern
for developing nations. The main focus of this study is the development of a
sustainable geomaterial composite with higher strength capabilities (compressive
and flexural). Todevelop this composite, sugarcanebagasse ash (SA), glass fiber (GF),
and blast furnace slag (BF) are used. Ash generated from burning sugar cane in the
sugar industry is known as sugar cane bagasse. To check the suitability of this
secondary waste for use in civil engineering and tominimize risk to the environment
in the development of sustainable growth, a sequence of compressive and flexural
strength tests was performed on materials prepared using sugar cane bagasse ash
(SA) reinforced by glass fiber (GF) in combination with blast furnace slag (BF) and
cement (CEM). Theeffects of themix ratios of glass fiber to bagasse ash (0.2%–1.2%),
blast furnace slag to theweight of bagasse ash (10%), cement binding to bagasse ash
(10%–20%), and water to sugar cane bagasse ash (55%) regarding the flexural
strength, compressive strength, density, tangent modulus, stress–strain pattern,
and load–deflection curve of the preparedmaterials were studied. According to the
findings, compressive strength achieved a maximum strength of 1055.5 kPa and
ranged from 120 to 1055.5 kPa, and the flexural strength achieved a maximum
strength of 217 kPa and ranged from 80.1 to 217 kPa at different mix ratio
percentages. The value of the initial tangent modulus for the cube specimens
ranged between 96 and 636MPa. For compression specimens with 20% cement,
the density decreased from 1320.1 to 1265 kg/m3, and the flexural strength
decreased from 1318 to 1259.6 kg/m3. With limitation in lower percentages of
C/SA, the specimen cannot sustain its shape even after curing period. In
comparing the previous research with the present experimental work, it was
observed that the material proposed here is lightweight and can be utilised as a
filler substance in weak compressible soils to improve their load-bearing capacity.
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1 Introduction

The most common building material used globally is cement.
Cement production is influenced by a nation’s level of
industrialization and modernization (Stafford et al., 2016).
However, it generates a significant amount of carbon dioxide,
almost 8% of the world’s total, production, and for
manufacturing purposes, it uses a lot of resources, including raw
materials and energy (Anjos et al., 2020). As a result, academics are
interested in long-term research on the cement industry to utilize
various agricultures wastes and create cement-based sustainable
materials (Talero et al., 2007; Rubenstein, 2012; Saleh et al.,
2020) without compromising cement’s durability, cost, or
mechanical strength. It is possible to cut carbon dioxide
emissions by up to 40%–50% (Cordeiro and Kurtis, 2017;
Martirena and Monzó, 2018). Various common supplemental
cementitious materials, such as blast furnace slag, fly ash,
metakaolin, and natural pozzolans, have been used to lower the
clinker-to-cement ratio (Bahurudeen et al., 2015; Cordeiro et al.,
2018; Rajasekar et al., 2018). Recent research has looked at
pozzolanic geomaterials, such as industrial and agricultural
wastes (Cordeiro et al., 2011; Cordeiro et al., 2016; Andreão
et al., 2019).

Cementitious compounds can be improved by using blast
furnace slag and pozzolanic materials to combine their distinct
physical and chemical properties (Khan et al., 2021). A secondary
surface for hydrate precipitation and nucleation is provided by blast
furnace slag (Bentz et al., 2017); however, the dilution effect
(Rodríguez de Sensale and Rodríguez Viacava, 2018) can reduce
the mechanical strength of this material, making it operate like a
quasi-inert material at a high concentration (Bahurudeen and
Santhanam, 2015). For the cement industry, the mixture of blast

furnace slag and pozzolan is a desirable alternative. Since pozzolan
can improve mechanical performance at advanced ages (Cordeiro
et al., 2018).

Bagasse is the fibrous byproduct that remains after the
sugarcane juice has been extracted (Deepika et al., 2017).
Sugarcane businesses produce sugarcane bagasse ash (SA) as a
byproduct of the auto-combustion procedure in cogeneration
boilers (Rao et al., 2021) as shown in Figure 1. Bagasse was first
primarily utilized in the manufacture of paper (Kuruba et al., 2020).
Due to its sufficient calorific content, bagasse is used as a fuel
feedstock in the cogeneration boilers of the sugar industry to
produce electricity (Bartošek, 2014). Nearly all of the sugar
facilities in India and other nations that produce sugar have
quickly built cogeneration systems due to the significant money
generation connected to this process (Bartošek, 2014). Bagasse is a
suitable feedstock for cogeneration boilers; however, disposing of
the leftover ash causes serious environmental issues (Rodrigues,
2011). The discharge of bagasse ash causes serious contamination to
nearby water bodies and land because of the light unburned fibre
debris that is present and excessive black color (Andreão et al.,
2020). A significant proportion of this agro-waste is being dumped
in nearby regions more and more, which has a negative impact on
the ecosystem and lacks disposal land (Bahurudeen et al., 2015). The
main components of raw SA are coarse/fine fibrous unburned particles
and fine burnt particles (Bahurudeen and Santhanam, 2015). This ash is
irregularly shaped and primarily amorphous silica-rich after suitable
processing to remove unburned components, with lesser amounts of
aluminum, alkali, iron, and magnesium (Setayesh Gar et al., 2017). The
analysis of the literature reveals that processed SA may be viewed as a
supplementary cementitious material (SCM), and it is generally
acknowledged that the fineness of SA enhances its pozzolanic
properties (Le et al., 2018; Zareei et al., 2018).

FIGURE 1
General schematic by-product of Sugar Cane.
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Alkali-activated materials (AAMs) have seen an increase in use as a
Portland cement substitute in recent decades due to their advantages as a
greener method. In-depth analyses of AAMs’ effectiveness when it
comes to mechanical strength, microstructure and durability have
revealed results on par with or even better than those of ordinary
Portland cement (OPC) (van Deventer et al., 2014). Alkaline activators
and decent starting materials are used to create inorganic binders at the
proper temperature. As activated solutions in the binder material,
potassium/sodium hydroxides and/or sodium/potassium silicates are
often favored (Duxson et al., 2006). Slag, fly ash, and coal bottom ash are
examples of industrial by-products that include aluminosilicate and are
widely utilized as precursors (Mugahed et al., 2022). Alkali hydroxide
and/or alkali silicate solutions react chemically with solid aluminosilicate
particles in the mixtures to generate binding gels. Two reaction products
that differ from Portland cement in terms of their level of hydration are
produced in AAMs, depending on the chemical components present in
the starting materials. The reaction result may be N-A-S-H gels for low-
calcium precursors such as fly ash (or similar ashes), and C-A-S-H gels
for high-calcium precursors such as GBFS (Rakhimova and Rakhimov,
2014). Two important factors that significantly affect the compressive
strength of a binder are the SiO2/Na2O molar ratio (also known as the
silicatemodulus, orMs) and theNa2Omolar concentration of the liquid.
Based on the results of the experiments (Zhang et al., 2022a), the fresh
mixtures can be classified as Bingham fluids, and the addition of the right
amount of nano-SiO2 (NS) and water-reducing admixture can improve
the mixtures’ rheology and flowability. However, adding too much PVA
fiber and NS has an negative effect on the mixtures’ workability.
According to reports, increasing the sodium oxide dose or the silicate
modulus of the activator has led to better strength by improving raw
material dissolution. Alkali-activated materials can be heat cured to
increase their early strength and possibly reduce their shrinkage
(Thomas et al., 2017). However, specimens with restricted fractures
that were healed in water at room temperature showed a decrease of
mechanical strength (Kirschner and Harmuth, 2004).

Furthermore, tiny particulates that might cause serious air
pollution are present in the areas of sugar facilities. The majority
of sugar factories are situated in villages, and SA (remaining
sugarcane bagasse ash) from the factories is immediately
deposited onto the arable land in these communities (Deepika
et al., 2017). It is essential to discover another application for
bagasse ash other than disposal. Bagasse ash has been suggested
as a suitable ingredient for blended cement manufacture in earlier

studies (Ganesan et al., 2007). Ashes with reactive silica are
produced by the cogeneration boiler’s carefully regulated
combustion process (Cetin et al., 2004). According to research
using differential scanning calorimetry (DSC), enhanced
production of calcium-silicate-hydrate (C-S-H) gel occurred
when SA is present (Singh et al., 2000). However, the use of
unprocessed SBS as a cementitious material is hindered by the
greater loss on ignition (LOI) value of around 20 percent and the
lower specific gravity of about 1.9. Therefore, the majority of
researchers agree that treating SA is preferred over increasing its
pozzolanicity (Cordeiro et al., 2009).

In comparing SBS-blended concrete to regular Portland cement
(OPC) concrete, it has demonstrated increased strength, decreased
permeability, and low heat of hydration (Ganesan et al., 2007;
Bahurudeen et al., 2015). Due to a lack of proper knowledge of the
material and scalable methodologies, the manufacturing of building
materials using bagasse ash has been prohibited (Mangi et al., 2020).
Most past research studies have concentrated on using bagasse ash in
concrete, and on the basis of thorough experimental plans, acceptable
processing technology for blended cement manufacture has been
recommended (Frías et al., 2011). Numerous studies have been
conducted to determine the potential utility of SA in the major
nations that produce sugar, including Brazil, India, and Thailand
(Chusilp et al., 2009; Wen et al., 2022). The appropriate performance
assessment and processing of bagasse ash for different buildingmaterials,
such as alkali-activated concrete, paver blocks, and unburned bricks,
were not sufficiently studied in previous research investigations. To gain
a scientific understanding and make the most use of SA, performance
evaluation in various applications is also required in addition to material
characterization.

Sustainable concrete is popular as a building material because of its
higher flexural and compressive strengths and lower cost. Due to its
limited elasticity and resistance to fracture, it is naturally vulnerable.
Metal or non-metal fibers have been put into concrete to address these
issues. Fiber-reinforced concrete cracks cannot form or spread if the
fibers are distributed randomly. Because of this, concrete is now farmore
robust andmalleable (Wen et al., 2022). Structures prone to earthquakes,
tunnel linings, and explosions have all made use of this material
(Khawaja et al., 2021). Fibers are made of polyvinyl alcohol (PVA),
polypropylene (PP), hooked-end steel fiber (HKs), crimped steel fiber
(CRs), and others (Najm et al., 2022a).Metallic fibers (HKs and CRs) are
the bestbecause of their strong compressive, tensile, twisting, and
bridging strengths. PVA-reinforced concrete offers higher pull-out
loads and flexural strength than concrete reinforced with metallic
fibers. The inclusion of fiber also highly contributes to enhancing the
fracture (Xu et al., 2018) and fire resistance (Yashwanth et al., 2017) and
seismic load (Channa et al., 2022). According to the findings (Zhang
et al., 2022b), the geopolymer mortar had considerable mass loss when
exposed to temperatures between 25°C and 250°C, however, only a little
amount ofmass loss was observed between 250°C and 700°C and none at
all between 700°C and 800°C. Under wet-thermal and chloride salt
conditions, fiber-reinforced cementitious composites’ fracture
characteristics were enhanced by polyvinyl alcohol (PVA) and nano-
SiO2 (NS). PVA fibre and NS enhanced the porosity, microcracks, and
interfacial transition zone of fiber-reinforced cementitious composites at
themicroscopic level. The fracture characteristics considerably improved
at 1.2% and 0.5%, respectively, of PVA fibre and NS contents (Zhang
et al., 2022c) When the structure of PVA and fiber-reinforced

FIGURE 2
Compaction curve of sugarcane bagasse ash.
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FIGURE 3
Materials used (A) OPC (53 Grade); (B) SA; (C) BFS; (D) GF.

FIGURE 4
Curing of (A) cube specimen; (B) beam specimen.
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cementitious composite samples heated to 600°C and 800°C became
loose and more microcracks formed, it was determined that the macro-
mechanical properties had reduced (Zhang et al., 2022d).

According to the literature review, there have been various
initiatives to use waste materials for sustainable development, such
as coal ash, bottom ash, and stone dust in cement (Ram Rathan Lal and
Badwaik, 2016; Ram Rathan Lal and Nawkhare, 2016). Very few works
carried out with sugar cane bagasse ash in this direction. Consequently,
the main goal of this work was to evaluate the effects of various
quantities of geomaterial composites with glass fibres on the
mechanical properties and classify them into geomaterials per the
design standards for usability. Therefore, a detailed investigation into
the compressive, flexural, density, tangent modulus, stress–strain
pattern, and load–deflection curve of newly prepared materials was
conducted. This in-depth analysis of sugar cane bagasse ash and blast
furnace slag was done with the goal of finding the ideal ratio in terms of
mechanical qualities and cost, reducing environmental stress, and
pursuing sustainable growth. In the numerous studies in the
literature, experimental works have been used to predict the
behavior of sugar cane bagasse ash (Channa et al., 2022). However,
there has been no experimental work to evaluate the effect of using
sugar cane bagasse ash (SA) and blast furnace slag (BF) reinforced by
glass fiber (GF) on themechanical properties of mortar, which is crucial
to calibrate under different loadings (compressive and flexural) and can

be used as an indication for future studies based on sugar cane bagasse
ash. In addition, several scholars used different variants of concrete in
their numerical and experimental research works performed under
quasi-static, static, and extreme loading conditions (Khan and El
Rimawi, Forthcoming; Khan and Ali, 2016; Khan et al., 2017a; Khan
et al., 2017b; Khan et al., 2017c; Khan et al., 2018; Khan and Ali, 2019;
Ahmed et al., 2021; Anas et al., 2021; Anas et al., 2022a; Ahmed et al.,
2022; Anas et al., 2022b; Khan et al., 2022; Mansouri et al., 2022; Qaidi
et al., 2022; Anas et al., 2023; Iman et al., 2023).

2 Materials and methods

The performance of sugar cane bagasse ash reinforced with glass
fiber (GF) in comparison to blast furnace slag (BF) and cement is
examined in the current study. The compressive and flexural
strength, density, tangent modulus, stress–strain pattern, and
load–deflection curve of concrete are evaluated.

2.1 Materials

The research materials used consist of ordinary Portland
Cement (OPC) 53 grade, sugar cane bagasse ash (SA), blast

FIGURE 5
(A) Cube specimen (100 mm × 100 mm × 100 mm). (B) Beam specimen (400 mm × 50 mm × 50 mm).

TABLE 1 Mix ratios and quantity of materials used for preparing cube and beam specimens.

No. Mix
ratio
(%)

Weight of
SA

WSA (gm)

Weight of
BF slag W
BF slag (gm)

Weight of
glass fiber W
GF (gm) 10%

cement

Weight of
cement
10%

Wc (gm)

Weight of
cement
15%

Wc (gm)

Weight of
cement
20%

Wc (gm)

Water, Vw
(mL)
(55%)

Curing
duration in

days

1 0.2 859.05 85.90 1.72 85.90 128.5 171.81 429.52 7, 14, 28

2 0.4 857.0 85.70 3.43 85.70 128.5 171.4 428.50 7, 14, 28

3 0.6 854.94 85.49 5.15 85.49 128.24 170.98 427.47 7, 14, 28

4 0.8 852.88 85.29 6.86 85.29 127.93 170.57 426.44 7, 14, 28

5 1.0 850.91 85.09 8.10 85.09 127.63 170.18 425.45 7, 14, 28

6 1.2 848.34 84.83 10.11 84.83 127.20 169.66 424.16 7, 14, 28
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furnace slag (BFS), and glass fiber (GF). Bagasse ash was collected in
a dry state from the Khambata Sugar Cane Factory, Bhandara
(District), India. Blast furnace slag was collected in dry
conditions from Varthi Steel Industries, Bhandara (District),
India, and glass fiber was obtained from Jaipurkar Construction
Pvt. Ltd., Nagpur (District), India.

The sugarcane bagasse ash used in this investigation had a

chemical make-up of 45% cellulose, 27% hemicellulose, 20%

lignin, and 8% ash, obtained from the Soil Science and

Chemistry Department, Nagpur University, India. In the

laboratory, the sugar cane bagasse ash’s material characteristics

were calculated. According to the Unified Soil Classification

System (USCS), the sugar cane bagasse ash is categorized as

analogous to fine sand and silt. Sugar cane bagasse ash may also

be classified as non-plastic material that affects the granulometric

behavior of clay particles (ASTM C1585-13, 2013). In accordance

with the ASTM D 698 (ASTM D1557, 2021), the standard proctor

experiment was used to determine the compaction characteristics of

the material. The dry density of the sugar cane bagasse ash was

940 kg/m3, and the moisture content was 20%. The compaction

curve of the SA is plotted in Figure 2.
The blast furnace slag was determined to have a fineness

modulus of 2.89, as per IS 383–1970 (BIS:383, 1970), and
classified into a medium sand category. Glass fiber was used in
the experiment for reinforcing the prepared material. Alkali-
resistant (AR) glass fiber (dimensions: length of 12 mm and
diameter of 19 μm) was used in the present work for an X-ray

TABLE 2 Material testing mechanisms.

Tests Equipment Sample Curing condition Formula

Slump Abram cone Fresh concrete Quickly after mixing -

Compressive Strength (ASTM C39) (2000 KN) Compressive testing machine at axial Hardened concrete 28 Days CS � P
A

Flexural Strength (ASTM C78) Two-point load test Hardened concrete 28 Days FS � PL
b d2

CS, compressive strength, A = cross-sectional area, FS, flexural strength, P = maximum load from load deflection curve, L = span length, b = width of specimen, d = depth of specimen.

FIGURE 6
Compressive strength machine.

TABLE 3 Density of beam materials after 7, 14, and 28 days for 10%, 15%, and 20% cement to SA materials.

Mix ratio 7 Days 14 Days 28 Days

Cement % Cement % Cement %

10% 15% 20% 10% 15% 20% 10% 15% 20%

0.2 1187.2 1225.4 1261.5 1237.2 1269.0 1291.0 1265.8 1292.1 1318.0

0.4 1172.1 1209 1241.9 1226.6 1255.0 1280.0 1257.1 1280.0 1305.0

0.6 1167.0 1198.3 1228.2 1217.8 1243.6 1268.9 1243.0 1268.2 1292.7

0.8 1153.1 1187 1217.9 1205.0 1231.8 1255.7 1231.3 1255.9 1280.0

1.0 1143.3 1173.9 1205.0 1192.3 1217.8 1242.0 1219.8 1243.0 1268.9

1.2 1136.9 1165.7 1197.4 1185 1205.0 1231.1 1207 1231.7 1259.6
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fluorescence (XRF) trial and was executed using an X-ray
fluorescence spectrometer at the Indian Bureau of Mines,
Nagpur. As per ASTM C618 (ASTM C618-17a, 2017), sugar cane
bagasse ash is classified as a Class F type of material, and blast
furnace slag is classified as a Class C type of material. Figure 3 shows
the materials used in the research work: OPC (53 grade), sugar cane
bagasse ash, blast furnace slag, and glass fiber.

2.2 Preparation of specimen

The quantities of various constituents of the mix were
calculated based on a method used by previous researchers
(Nikhade and Lal, 2021). The weight ratio of glass fibre to
sugarcane bagasse ash is known as the mix ratio %. In the
current study, the dry weight of SA is calculated using
formula WSA = γdmax X VSA, where γdmax maximum dry unit
weight of sugar cane bagasse ash and VSA is volume of SA,
VSA = V-VBF–VGF, V the total volume to specimen (1000 cm3),
and VBF is taken 70 cm3 and volume of VGF glass fiber is taken
2.3 cm3 to achieve the mix ratio 0.2%.The ratios were 0.2, 0.4,
0.6, 0.8, and 1.0% for the cube specimens and 0.2, 0.4, 0.6, 0.8,
1.0, and 1.2% for the beam specimens. To achieve a mix ratio of
0.2, the volume of the blast furnace was 70 cm3 and that of the
glass fiber was 2.3 cc. After mixing the materials, i.e., the SA, BF
slag, GF, and cement, the materials were formed into a
homogeneous slurry with an optimum moisture content of
20%, and the water to sugar cane bagasse ash ratio was
maintained at 55% for the present work.

2.3 Curing method adopted

Curing is a process used to control the hydration that occurs in
concrete due to the presence of Portland cement. The majority of the
time, it entails controlling the loss of moisture and, in some instances,
temperature (ASTM Standards C-293, 2002). Examples of curing
techniques include using shade during concrete work, covering
concrete surfaces with hessian or gunny bags, water spraying, the
ponding process, immersion in water, membrane curing, and steam
curing (Maroliya, 2012). Immersion curing was chosen for this project
(Figure 4) at room temperature (25°C–30°C), where the samples were
submerged entirely in water. This is a suitable approach that satisfies all
curing requirements, including hydration promotion, shrinkage
elimination, and heat absorption during hydration.

2.4 Mix proportions

In the container, the required amounts of SA, BF slag, and
cement were obtained and mixed thoroughly with the required
amount of water. After that, glass fiber was added to the mix to
prevent it from clustering. The casting of the specimens was
performed immediately after the mixing was completed. A total
of 135 cube specimens (100 mm × 100 mm × 100 mm) and
162 beam specimens (400 mm × 50 mm × 50 mm) were
prepared. After 24 h, the specimens were taken out from the
molds, and air dried again for a period of 24 h, as shown in
Figure 5A, B. The mix ratios and material amounts needed to
make the cube and beam specimens are shown in Table 1.

FIGURE 7
Dimensions of the fabricated tool for flexural test. (A) Real Dimensions; (B)Sketch Dimension.
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2.5 Tests on mechanical properties

2.5.1 Compressive strength test
The compressive strength of a geomaterial is defined as its ability

to withstand failure when subjected to compressive pressures. The

load applied at the point of failure is divided by the cross-sectional
area of the sample to determine the hardened concrete’s compressive
strength (Table 2). The samples were tested using a compressive
strength testing device in accordance with ASTM C39 after 28 days
of curing (ASTM C39, 2016) (Figure 6).

2.5.2 Flexural strength test
As per ASTM C78, this flexural strength test was performed

(ASTM C78, 2016). Figure 7A, B shows the experimental setup of a
2-point bending problem fabricated for flexural testing; the base
support was 100 mmwide and 400 mm long, and it was attached to a
metal block. Three hundred 50 mm was the effective length between
the metal blocks arranged in a grid.

FIGURE 8
Density of prepared materials for (A) 7 days and (B) 28 for cubes;
(C) 7 days and (D) 28 days for beams with respect to the mix value.

FIGURE 9
Compressive strength of prepared materials for (A) 7 days; (B)
14 days; and (C) 28 days with respect to mix value.
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2.6 Tests on microstructural analysis

2.6.1 Scanning electron microscopy
Scanning electron microscopy (SEM) uses image analysis to

measure and evaluate minute details by repeatedly scanning the
surface of a material with a concentrated electron beam. The
signals generated when electrons collide with atoms in a sample
reveal clues about the surface’s topography and composition.
Using an SEM, one can look into component failures, find
particles, and examine substance–substrate interactions
(ASTM C78, 2016). A JEOL JSM6380 LV scanning electron
microscope with an accelerating voltage of 30.0 kV was used
for this work. The materials were gold-plated in order to conduct
energy dispersive spectroscopy (EDS).

2.6.2 X-ray diffraction
In order to learn about and identify the atomic and

crystallographic nature of a material, X-ray diffraction (XRD)
is performed as a microstructural analysis test. Exiting X-rays are
irradiated onto a sample, and their intensities and scattering
angles are measured. The material’s composition is ascertained
by examining the position, angle, and intensities of the scattered
intensity peaks, which are presented as a function of the
scattering angle. In geological research, XRD is frequently

FIGURE 10
Flexural strength of prepared materials for (A) 7 days; (B) 14 days;
and (C) 28 days with respect to mix value.

FIGURE 11
Stress–strain curve of SA and BF slag reinforced with glass fiber
under compressive stress for mix ratios of 0.4% for (A) 7, (B) 14, and (C)
28 days.
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combined with other microstructural techniques, such as
electron microprobe microscopy, scanning electron
microscopy and optical light microscopy particularly when the
sample to be investigated is a combination. XRD data can be used
to identify each mineral present in the sample and their relative
abundance (Maroliya, 2012).

3 Result and discussion

The failure pattern, stress and strain pattern, density, initial
tangent modulus, compressive strength, flexural strength, and
load–deflection curve pattern of the cube and beam specimens
were evaluated, and the results obtained are discussed.

3.1 Density of specimen

The cube and beam specimens were weighed after air drying,
and the densities were calculated before the compressive strength
tests. It was observed that for all mix ratio percentages, the
density of the materials decreased with increases in the mix
ratio percentages for all curing periods, as shown in Figure 8.
For each mixing ratio, the density of the compression cube
specimens increased with the percentage of the cement to
sugar cane bagasse ash ratio increasing from 0% to 20%. The
density of the material used for the cube specimens varied
from 1140.0 kg/m3 to 1320.1 kg/m3 and for the beams, it
varied from 1136.9 to 1318 kg/m3. The density of the materials
was higher at a 0.2% mix ratio and lower at a 1.2% mix ratio. At a

FIGURE 12
Load vs. deflection curve of prepared materials for all curing periods at GF/SA mix ratios of (A) 0.2%; (B) 0.4%; (C) 0.6%; (D) 0.8%; (E) 1.0%; (F) 1.2%,
and CEM/SA ratio of 15%.
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10% cement-to-bagasse ash mix ratio, the density of the material
used to prepare the cube specimens ranged from 1195.7 kg/m3 to
1140.0 kg/m3 and the percentage change at 7 days of curing was
4.65%. For the beam material, the density varied from 1187.2 kg/
m3 to 1136.2 kg/m3, and the percentage change in density at
7 days of curing was 4.29%. Table 3 summarizes the density of the
beam materials after 7, 14, and 28 days for 10%, 15%, and 20%
ratios of cement-to-SA materials. The density of the materials
obtained in the present study lies within the range of lightweight
filler materials, i.e., between 700 kg/m3 and 1100 kg/m3, as
indicated by Nikhade et al. (Nikhade and Lal, 2021). The
density of the materials was higher than in the study by
Horvath (Osei et al., 2020), of which it was in the range of
12–32 kg/m3.

3.2 Compressive strength

The compressive strengths of the GF-reinforced SA and BF slag-
based specimens were remarkably influenced by the curing time, mix
rate, and ratios of the cement to SA. The peak magnitude achieved in
the compressive stress curve was taken as the compressive strength. It
was found that the addition of GF to SA improved the compressive
strength until an optimum percentage of fiber mix. For each of the mix
ratios and curing periods, the specimens with a 0.6% mix ratio had the
maximum compressive strength. Similar behavior was observed for the
blast furnace slag material prepared by Nikhade et al. (Mandal et al.,
2018; Nikhade and Lal, 2023). The value of compressive strength ranged
from 120 kPa to 1055.5 kPa. The compressive strength of the material
after 7 days of curing was 140.0 kPa at amix ratio of 0.2% and increased
up to 219.3 kPa with a mix ratio of 0.6%. Further increases in the mix
ratio caused the compressive strength to decrease. The percentage
increase in the compressive strength after 7 days of curing was
36.16%. Figure 9 demonstrates the variation in the compressive
strength of the materials after 7 days, 14 days, and 28 days with
respect to the mix value. A non-linear pattern was observed between
the compressive strength and the mix ratio percentage for the curing
period of 7–28 days. The strength values obtained in the study are
higher than those in the study by Nikhade et al. (Nikhade and Lal,
2021), i.e., 100–500 kPa, which fall under the category of lightweight
filler materials and between those in the study by Mandal D. (Mandal
et al., 2018), i.e., 159 kPa–2500 kPa.

3.3 Flexural strength

The flexural strength of the prepared materials was also
significantly influenced by the curing period, mix ratio, and

FIGURE 13
Association between initial tangent modulus and compressive
strength.

FIGURE 14
Development of cracks in cube specimens (A,B, and C).
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percentage of GF used for the preparation of beam specimens for
flexural tests. The flexural strength was obtained at the maximum
failure load from the load–deflection curve. In all the specimens, the
fracture occurred within the middle third of the span. The flexural
strength was calculated according to ASTMC1609. The lowest value
of flexural strength was 80.1 kPa, obtained at 7 days for the 0.2%mix
ratio. The highest value of flexural strength was 217.2 kPa, obtained
at 28 days for the mix ratio of 0.8%. Figure 10 shows the variation in
the flexural strength with respect to the mix ratio. A non-linear
relationship was found between the mix ratio and the flexural
strength for all mix ratios and curing periods. However, the
flexural strength increased with an increase in the percentage of
glass fiber up to a certain extent. The highest or optimum value of
the mix ratio was found to be 0.8%, at which the flexural strength
was themaximum in all cases (Najm et al., 2022b; Najm and Ahmad,
2022; Nanayakkara et al., 2022).

3.4 Stress–strain curve

The significance of the stress–strain diagram is that the elastic
modulus is calculated at a point on the ascending branch of the
diagram. Figure 11 shows the stress–strain diagram for a mix
ratio of 0.2% for 7, 14, and 28 days at the water-to-SA ratio of 55%

plotted under a sustained strain rate of 1.00 mm/min in
proportion to the BF slag reinforced with glass fiber at
different mix ratios. For all specimens, a non-linear
connection between stress and strain was found. It was
observed that the CEM/SA at 20% had a higher stiffness
compared to that at 10% and 15%. The material behavior of
the geomaterial changed from ductile to brittle in nature for all
the curing periods and mix ratios tested.

3.5 Load and deflection curve

The load–deflection curve was plotted for the cement-to-SA
ratios of 10%, 15%, and 20%. The graph grows linearly up to the
cracking load and then falls rapidly. The maximum load was found
to increase with the curing periods for all specimens. The mid-span
deflection at failure varied from 0.12 to 0.84 mm. Figure 12 shows
the load–deflection relationships for GF/SA with 0.2%–1.2% mix
ratios and the cement-to-SA ratio fixed at 15%. It was observed that
the stiffness increased with the curing period and mix ratio, and
higher stiffness at a 0.8% mix ratio was observed. The stiffness of the
geomaterial for the cement-to-SA ratio of 20% was significantly
higher than the other two combinations of cement percentages,
i.e., 10% and 15%.

FIGURE 15
Development of cracks in beam specimens (A–D).
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3.6 Initial tangent modulus

The initial tangent modulus (Ei) is a significant parameter that
represents the rigidity of the prepared material. It was calculated as the
incline of the tangent line to the rise of the stress–strain pattern. The
(Ei), magnitude ranged from 96 to 636MPa. The values obtained lie in
the range of the lightweight filler category ofmaterials, i.e., 79–555MPa,
as prepared by Liu et al. (Liu et al., 2006). The values are greater than
those of the geofoam blocks prepared by Horvath (Horvath, 1998),
i.e., in the range of 2.2–11.4 MPa. Figure 13 shows the association
between the initial tangent modulus and the compressive strength. The
connection between the (Ei) and the compressive strength (σ) is
effectively represented by a linear relationship as follows.

3.7 Failure pattern

The failure patterns indicate that the cube specimens went
through lateral expansion (bulging) before developing cracks in
distinct planes, as shown in Figure 14A–C and Figure 15A–D. In the
present experimental study, for most of the cube specimens,
horizontal cracks occurred at locations around the bottom third
of the specimen. Specimens tested for compression failed within an
axial strain range of 0.6%–1.21%. For the beam specimen under

flexural loading, vertical flexural crack developed at the pure flexural
region (the span between two-point loads). All the specimens failed
at deflection ranging from 0.16 to.

3.8 Microstructural analysis

The energy dispersive spectroscopy (EDS) test was performed on
SA and BF slag materials to determine the phase composition
materials. The minerals present in the sugar cane bagasse ash were
identified using the database of JCPDS. The predominant minerals
present in the SA and BF slag were quartz (81.13%), potassium
carbonate (11.18%), cristobalite (4.0%), gumbelite (56.12%), and
dolomite (32.12%). The EDS patterns of the SA and BF slag show
the presence of oxygen, silica, and copper, as shown in Figure 16A, B.
The SA materials consisted of irregularly shaped particles, the BF slag
consisted of rounded, semi-spherical, and irregularly shaped particles
and the glass fiber consisted of rounded-shape particles, as shown in
Figure 17A–C. Finally, more or less similar mechanical and
microstructural behaviors of waste material replacements
reinforced by different types of fibers have been reported by
several researchers (Horvath, 1998; Liu et al., 2006; Matsuda et al.,
2008; Landa-Ruiz et al., 2021; Althoey et al., 2022; Najm et al., 2022b;
Memon et al., 2022; Nanayakkara et al., 2022; Prabhath et al., 2022).

FIGURE 16
EDS patterns of (A) sugar cane bagasse ash; (B) blast furnace slag.
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4 Limitation and future scope

Since a lower percentage of C/SA results in a specimen that does
not retain its shape even after the curing period, and this value was
used as 10% while making specimens for the compressive and
flexural tests. Because of this restriction, no samples with cement
contents less than 10% could be cast and analyzed. Further
utilization of larger specimens is impossible because of the
loading frame and testing instrument with the maximum size.
Based on future research, the shear strength of a material can be
determined under various compression and flexure loading
conditions.

Additionally, the inclusion of nano-material admixtures
(Khan et al., 2021) may further me used to enhance the
properties and how the application of external strengthening
(Khan, 2021a; Khan, 2021b; Khan, 2022) will affect failure modes
may also be studied.

5 Conclusion

Sustainable concrete is popular as a building material because of its
higher flexural and compressive strengths and lower cost. Due to its
limited elasticity and resistance to fracture, it is naturally vulnerable.
Metal and non-metal fibers have been put into concrete to address these
issues. However, This study’s primary goal was to evaluate the
performance of various quantities of glass-fiber-reinforced
geomaterial composites on the mechanical properties and classify

them into geomaterials per the design standards for usability.
Therefore, a detailed investigation into the compressive strength,
flexural strength, density, tangent modulus, stress–strain pattern, and
load–deflection curve of newly prepared materials were analyzed. The
intention of such a detailed examination of sugar cane bagasse ash and
blast furnace slag was to obtain the optimum contents in terms of
mechanical properties to reduce environmental stress, and to approach
sustainable development. So, in order to comprehend the behaviour of
geomaterials created utilizing bagasse ash, an experimental investigation
was carried out. From the observations, the findings are as follows.

− The density of the cube specimens decreased with increases in
the mix ratios with values ranging from 0.2% to 1.0%. For the
compression specimens with 20% cement and a water-to-SA
ratio of 55%, the density decreased from 1320.1 to 1265 kg/m3

(about 4.35%).
− The density of the beam specimens decreased with increases in
the mix ratio values from 0.2% to 1.2%. For the flexural
specimens with 20% cement content, the density decreased
from 1318 to 1259.6 kg/m3. The percentage decrease was
about 4.43%.
− As the curing time went on, the compressive strength increased.
The maximum compressive strength of 1055.5 kPa was found at
28 days for a mix ratio of 0.6% with a 20% CEM/SA ratio and a 55%
W/SA ratio. The lowest compressive strength of 120 kPa was found
at 7 days for a mix ratio of 1.0% and a CEM/SA ratio of 10%.
− Additionally, it was discovered that the flexural strength increased
as the curing time increased. The highest flexural strength of

FIGURE 17
Microstructures of (A) SBCA; (B) BFS; (C) GF.
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217.2 kPa was observed for the specimen with a mix ratio of 0.8%
cured for 28 days, and a CEM/SA ratio kept at 20%. The lowest
flexural strength of 80.10 kPa was observed for specimens with a mix
ratio of 0.2% cured for 7 days with a CEM/SA ratio of 10%.
− The uniaxial compressive stress–strain curve shows non-
linear behavior and increases in the compressive strength and
stiffness were observed with an increase in the curing period.
The failure strain ranged from 0.6% to 1.21% for a W/SA ratio
of 55%.
− A non-linear relationship between the flexural load and the
mid-span deflection was also observed. The curve increased
linearly up to the failure load and then fell rapidly. The mid-
span deflection at failure varied from 0.16 to 0.79 mm.
− The initial tangent modulus was found to vary linearly with
compressive stress. The compressive stress varied non-linearly with
themix ratio; therefore, the initial tangentmodulus varied non-linearly
with the mix ratio. The value of the initial tangent modulus for the
cube specimens ranged from 96 to 636MPa for aW/SA ratio of 55%.

The obtained compressive strength in this research is more than
50 kPa as reported by Matsuda et al. (2008) (Matsuda et al., 2008),
would resist liquefaction during an earthquake. Therefore, the newly
developed SA reinforced glass fibermaterial satisfy the criteria and it can
be used as fill materials which can solve the problem of environmental
pollution with an eye on sustainable development. The materials
prepared in this study are under the lightweight category of
materials. Therefore, given the observations and the
recommendations of the design standards, the geomaterial
composite prepared in this study is suitable as a lightweight geomaterial.
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