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Shape memory polymers (SMP) are the smart materials that have received the most
attention and are the most commonly employed. SMP can be 4D printed to create
prefabricated components with transform shapes, properties, or functions under
different external excitations. Although smart equipment assembled from these
prefabricated components is extensively used in various fields, a systematic
overview summary of their design ideas still needs to be provided. This paper
briefly analyzes current trends in the design ideas and application of SMP-based
prefabricated components. By summarizing two different design ideas: structural
combination and material modification, it demonstrates the application of smart
equipment assembled from SMP-based prefabricated components in medical,
industrial, and aerospace fields. Furthermore, current challenges with both design
ideas are discussed.
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1 Introduction

Tibbits. (2014); Tibbits. (2016) first proposed the concept of 4D printing technology in
2014, which was innovative and integrated technology based on smart materials, excitation
response, and additive manufacturing (Khalid et al., 2022a). Through different printing
methods combined with smart materials, prefabricated components with dynamic
adaptability under predetermined structural excitation were developed, allowing for more
creativity and freedom in the structure design of smart equipment, with numerous advantages
over conventional manufacturing (Arif et al., 2022a).

Shape memory polymers (SMP), an excitation-responsive smart material with shape
memory properties, could change from a temporary shape to an initial shape in response
to external excitation and complete a shape memory cycle (Khalid et al., 2021a). SMP was
initially developed by the French company Cdf Chime and was a polynorbornene sheet (Li et al.,
2018). SMP has shown great potential in many applications because of its lightweight,
adjustable transition temperature, biocompatibility, distinguishable actuating mode, low
cytotoxicity, and large deformation, compared with other smart materials, such as shape
memory alloys and shape memory ceramics (Khalid et al., 2021b; Khalid et al., 2022b). As a
result, many technology prototypes and early commercial practices have been proposed and
implemented in medical devices, flexible electronics, textiles, self-healing materials, information
carriers, aerospace, soft robotics, and microdrives (Kim et al., 2020; Adam et al., 2021; Demoly
et al., 2021; Koch et al., 2021; Schönfeld et al., 2021). Despite its excellent application potential,
SMP’s conventional molding process was highly mold-dependent and severely limited by the
demolding process (Wu et al., 2017), which caused the prefabricated components with sketchy
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and low precision. It also made assembling smart equipment with high
precision and complexity intricate.

The use of 4D printing technology, based on the SMP
properties, and manufacturing of prefabricated components, will
effectively overcome the shortcomings of the conventional SMP
molding process and bring new opportunities for developing smart
equipment. Fused deposition modeling (FDM) (Przekop et al.,
2020; Sharma and Rai, 2022), stereo lithography apparatus
(SLA) (Al Rashid et al., 2021), digital light processing (DLP)
(Nguyen and Kim, 2020), multiphoton lithography (MPL) (Liao
et al., 2020), and direct ink writing (DIW) (Wan et al., 2020) were
the primary methods for 4D printed SMP. Self-assembling,
versatile, pre-programmable, variable stiffness, high precision,
and structurally complex prefabricated components could be
prepared using diverse 4D printing methods combined with
SMP material properties. These prefabricated components could
be assembled into more complex, high-precision, and sophisticated
smart equipment (see Figure 1).

Although SMP prefabricated components with excitation
response properties based on 4D printing have been widely
applied in some smart equipment (Arif et al., 2022b). However,
an overview of their design ideas was lacking. Therefore, this paper
summarized the design ideas based on 4D printed SMP
prefabricated components with excitation response properties
into the structural combination and material modification,
starting from two primary perspectives of material and
structure. The design idea of structural combination utilized the
inherent properties of SMP and other materials (including other
types of smart and non-smart materials) to design prefabricated
components with specific deformation patterns or varying degrees
of deformation via structure arrangement and combination. For
instance, Datta et al. (2020) assembled a hybrid propeller
amphibious robot with thermal deformation responsiveness
using a hub prepared of SMP and a blade prepared of non-
smart resin material. The design idea of material modification
utilized improvements in SMP properties to design prefabricated
components for unique application scenarios and special functions.
For instance, Cui et al. (2022) proposed the introduction of
dynamic thiocarbamate bonds into light-cured methacrylate to
prepare light-cured 4D printed polyurethane materials (4DP-
TPU) with processable, self-healing properties. Because of their
unique self-healing qualities, the prefabricated components
prepared from 4DP-PTU have a wide range of applications in
the assembly of bio-implanted smart equipment.

2 Prefabricated components designed
based on structural combination

Some application scenarios required the 4D-printed SMP
prefabricated components to produce specific deformation patterns
or varying degrees of deformation. These scenarios mostly adopted the
design idea of structural combination, which was classified into three
types.

The first type was the design idea of considering SMP and non-
smart materials as components which were arranged and combined to
prepare a whole prefabricated component. By utilizing the property
that SMP produces changes under external excitation conditions while
non-smart materials do not change or produce only minor changes,
4D-printed SMP prefabricated components with controllable
deformation were obtained. For instance, Yang (Yang et al., 2016)
demonstrated the 4D-printed variable stiffness robotic finger
consisting of a soft pneumatic actuator embedded in an SMP
substrate and a pin heater. The significant variation in the elastic
modulus of SMP around its glass transition temperature was used to
achieve the variable stiffness function of the soft finger, which could
potentially be developed as a variable stiffness gripper or hand. Wan
et al. (2020); Bai and Bu, 2022) assembled grasping mechanisms using
the SMP prefabricated components prepared by laminating paper
plates with SMP plates to achieve the function of grasping under
external thermal excitation (Figure 2A). Li et al. (2018) demonstrated a
self-folding composite variable diameter wheel structure by 4D
printing. This structure actuator consisted of a thermoplastic
polyurethane elastomer (TPU) embedded in a polylactic acid (PLA)
sandwich. This structure merged a control system and a variable
diameter mechanical structure into one, enabling drivable self-
adjustment of the wheel diameter size ratio under external thermal
excitation (Figure 2B).

The second type was the design idea of considering SMP and other
types of smart materials as components which were arranged and
combined to prepare a whole prefabricated component. By utilizing
the property that SMP produces changes under external excitation
conditions while other types of smart materials produce different
changes under the same or different external excitation conditions,
4D-printed SMP prefabricated components with controllable
deformation were obtained. For instance, Mao et al. (2016) used
three-layer structures that combined SMP, TPU, and hydrogels in
prefabricated components, each layer having a function. It utilized
water as the excitation source in the setup and heat as the excitation
source in the recovery phase. This combination was developed for

FIGURE 1
The technical overview of 4D printing prefabricated components.
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bidirectional reversible deformation, distinguishing it from
conventional unidirectional irreversible prefabricated components
(Figure 2C). Roudaut (Yicong et al., 2020) developed a consisting
of SMP and shape memory alloy of a prefabricated component. Based
on this component, self-starting, flexible mobile equipment was
assembled, which can adjust its shape according to the usage
environment to provide better bearing force.

Most controlled deformations of 4D-printed SMP prefabricated
components obtained through structural combination were simple
bending. Complex deformation patterns such as twists, spirals, and

waves were difficult to achieve. Therefore, the third type was the design
idea of adjusting the path arrangement and filling gradients in SMP,
non-smart materials, or other smart materials components. Then,
arranging and combining them into a whole 4D-printed SMP
prefabricated component was created to achieve more complex
deformation patterns. Yang et al. (2017); Wang et al., 2019)
proposed designing 4D-printed prefabricated components with
fiber plates compounded with SMP plates by arranging the
continuous fiber plate arrangement equations. Varying degrees of
bending of these prefabricated components was achieved under the

FIGURE 2
(A) 4D printed soft grasping mechanisms (Tolly et al., 2013; Yang et al., 2021) (B) Variable diameter wheel made by Shaanxi University of Science and
Technology (C) 4D printed bidirectional reversible deformable prefabricated components (Mao et al., 2016) (D) 4D printing controlled bending and spiral
deformation prefabricated components (Ding et al., 2017; Duanling and Wencai, 2022a) (E) 4D printed Satellite solar panel with smart structure (Zhang et al.,
2021b) (F) 4D printing of multi-stimuli responsive protein-based hydrogels (Narupai et al., 2021) (G) 4D printed hMSC scaffold (Miao et al., 2016) (H)
Mechanistic simulation of 4D printed prefabricated components for bone tissue repair (Zhang et al., 2019) (I) 4D printed spatial and planarmorphology
controllable mechanisms (Duanling and Wencai, 2022b).
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excitation of environment temperature variations. Ding et al. (2017);
Feng et al., 2020 proposed a design for straight-through combinations
using different filling gradients of elastomeric materials and SMP.
Based on the above design, 4D-printed SMP prefabricated
components may produce various controlled deformation patterns,
such as bending and twisting in the heated excitation (Figure 2D).

3 Prefabricated components designed
based on material modification

There were some unique application scenarios, such as high
vacuum or ultraviolet (UV) radiation in the space environment
and cellular non-toxicity, biodegradability, or body temperature
stability in the intra-human environment. These scenarios required
the 4D-printed SMP prefabricated components with specific
properties, such as specific mechanical properties, biocompatibility,
and diverse excitation-response patterns. These scenarios mostly
adopted the design idea of material modification.

4D Printing SMP using UV-curable technology could prepare
prefabricated components with complex geometries and high
resolution. This technology was compatible with 4D printing using
DLP technology and had the potential for development in space
additive manufacturing. However, UV-curable SMP has limitations
in terms of mechanical properties, which significantly constrains their
application fields. Zhang et al. (2021a) modified SMP with tert-butyl
acrylate (tBA) and aliphatic polyurethane diacrylate (AUD) to make it
compatible with DLP-based 4D printing. Using the excellent fatigue
resistance and deformability exhibited by this material, the 4D-printed
prefabricated components could be applied to unfold the smart
structures of satellite solar panels (Figure 2E).

With its stable temperature and complex tissue environment, the
human body’s internal environment placed stringent requirements on
the medical devices implanted. It was required to have significantly
low toxicity and to properly stimulate the body’s appropriate functions
in a given application. Miao et al. (2016) modified plant oil polymers
with high biocompatibility adapted to the human body temperature to
replace the conventional polyethylene glycol diacrylate. This material
was used to prepare a 4D-printed prefabricated scaffold with shape
memory properties capable of implanting into the human body to
support the growth of human bone marrow mesenchymal stem cells
(hMSC). Shape-memory analysis showed that the 4D-printed
prefabricated scaffold could be fixed into a temporary shape
at −18°C and regain its original shape at human body temperature
(37°C) (Figure 2G). Cytotoxicity analysis showed that the 4D-printed
prefabricated scaffold was non-cytotoxic and significantly affected the
adhesion and proliferation of hMSC. Zhou et al. (2022) modified SMP
based on bioactive fillers (hydroxyapatite and alendronate) and
collagen-dexamethasone (Col-Dex) coating. This material was used
to prepare a 4D-printed prefabricated scaffold with shape memory
properties capable of implanting into the human body to fill bone
defects. In addition, the biological studies demonstrated the effective
biological activities and osteogenic effects of the 4D printed
prefabricated scaffolds, with potential applications in bone tissue
regeneration. Narupai et al. (2021) modified hydrogels based on
the 4D printed protein and applied them for prefabricated
components changes under the action of temperature, PH, or an
enzyme, which is appealing for soft robotics, biomedical devices, drug
delivery, and actuators (Figure 2F).

The SMP was modified with magnetic materials to give it a widely
functional behavior, and magnetic field excitation-response patterns
could be used in scenarios controlled in a contactless method, such as
intra-human (Bastola and Hossain, 2021). Moreover, the magnetic
field caused less harm to the human body. Therefore, developing SMP
prefabricated components with magnetic field excitation response
properties provided novel opportunities to assemble medical
devices implanted intra-human controlled in a contactless method.
Zhang et al. (2019) modified SMP by combining PLA and Fe3O4

nanoparticles in solution and prepared magnetic field excitation-
response PLA/Fe3O4 nanocomposites with biodegradability and
biocompatibility. When the mass of Fe3O4 nanoparticles in the
nanocomposites was 20%, the shape recovery and fixation rate
exceeded 95% in a magnetic field of 27.5 kHz, and the response
time was reduced to 8 s. Through simulation, 4D-printed
prefabricated scaffolds with shape memory properties, prepared
using this material, could be implanted in the human body to
support bone tissue repair (Figure 2H). Liu et al. (2023) modified
SMP based on PLA, TPU, and Fe3O4 particles to provide robustly
mechanical properties and magneto-responsive behavior. The
modified materials’ high-load capacity, fast magneto-responsive
behavior, and high recovery performance have great potential in
medical millirobots implanted intra-human controlled in a
contactless method.

4 Current challenges

The design ideas based on 4D-printed SMP prefabricated
components were summarized into the structural combination
based on deformation patterns and material modification based on
unique application scenarios. The two design ideas have been
gradually developed and partially applied in various fields with
promising prospects. However, there were still some challenges and
opportunities with both design ideas.

1) Based on structural combination design ideas, 4D-printed SMP
prefabricated components have achieved specific deformation
patterns (such as unidirectional, bidirectional reversible, and
torsional) or varying degrees of deformation. The excitation
source was mainly thermal stimuli. They have been
preliminarily applied in the fields of industrial robotics and
aerospace. Because of excellent features such as lightweight,
low-cost, and structure-drive integration, these 4D printed SMP
prefabricated components were particularly suitable for use in
smart equipment in the aerospace field, such as SMP composite
flexible solar array systems (Lan et al., 2020).

However, there were still some challenges in applying this design
idea, such as how to achieve more complex topology transformations
for 4D printed SMP prefabricated components through design ideas of
structure combination. And how to achieve finer drive control for 4D
printed SMP prefabricated components through design ideas of
structure combination. In order to address the challenges above,
the following three progressive dimensions of research and one
experimental method will likely provide opportunities for their
development. The first dimension will investigate the stimulus-
response properties of multiple SMPs. The second dimension will
investigate the impact of the print path and fill gradient parameters on
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the deformation of prefabricated components during the 4D printing
of multiple SMPs. The third dimension will investigate the effect of
smart equipment structural morphology on the deformation of
prefabricated components during the assembly. Furthermore,
experimental methods will be used to fit the effect of external
excitation on deformation control. For example, by combining
traditional mechanical structure design, smart materials, and
excitation response experiments, the above research ideas are
effectively used to achieve complex and precisely controlled spatial
and planar topological transformations of 4D printed SMP
prefabricated components (Figure 2I) (Zhongyi et al., 2020; Zhang
et al., 2022).

2) Based on material modification design ideas, 4D-printed SMP
prefabricated components have adapted to some application-
unique scenarios (such as high vacuum or UV radiation and
intra-human environment). The excitation sources mainly
included temperature, magnetic, chemical, and biological
stimuli. They have been preliminarily applied in the field of
medicine and aerospace. Because of the variety of excellent
non-toxicity and biocompatibility, these 4D printed SMP
prefabricated components were particularly suitable for use in
smart equipment in the medical field, such as SMP tracheal
stents (Zhang et al., 2021b).

However, there were still some challenges in applying this design idea,
such as how to respond to diverse excitation sources for 4D printed SMP
prefabricated components through design ideas of material modification.
And how to enhance the mechanical properties of 4D printed SMP
prefabricated components through design ideas of material modification.
In order to address the above challenges and in conjunction with the
research hotspots and directions in the field of SMP, the nanomaterial-
based modified SMP will likely provide opportunities for their
development. SMP nanocomposites have high elastic modulus and
mechanical properties, which can significantly increase their shape
recovery force and obtain new stimulus-response patterns based on
Nano effects (Bhanushali et al., 2021). For example, graphene can
impart superior electrical conductivity to SMP, and boron nitride
nanosheets can improve SMP’s thermal conductivity and shape
recovery speed, carbon nanotubes can impart superior mechanical
strength and multifunctional stimulus responsiveness to SMP (Kuma
and Purohit, 2019; Demoly et al., 2021).

3) Integrate design ideas of structural combinations and material
modifications of prefabricated components. By improving SMP
material properties to meet the needs of unique application
scenarios, complex controlled deformation of prefabricated
components was achieved using structural combinations to
ensure that it meets the design shape and functional
requirements. This integration will likely improve the
deformation patterns of 4D-printed SMP prefabricated
components and broadens the conditions for their practical
applications, which provides new development opportunities for
4D-printed SMP prefabricated components.
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