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Programmable metasurfaces have attracted significant attention in various

applications such as radar and 6G communications, owing to their ability

freely shape the far-field pattern. However, complex calculations and

simulations are always required when designing specific far-field patterns,

especially when irregular obstacles are outside the metasurface. In this

article, we propose a method using a four-layer artificial neural network to

realize the far-field radar cross section (RCS) prediction of programmable

metasurfaces in an environment with obstacles, and the prediction value

agreed with the simulation data reasonably well. Results show that the

proposed prediction model is characterized by better learning and

generalization capacity. Our work has broad application prospects and value

in complex environment signal transmission, metasurface inverse design, etc.
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Introduction

Metamaterials are arrays of sub-wavelength structures that can interact with the

electromagnetic (EM) wave in a way, which widely used in beam splitters (Ma et al., 2014),

focusing lenses (Pendry, 2000; Smith et al., 2004), etc. However, these devices are

complicated to fabricate. The metasurface is an unconventional method for

controlling the phase, amplitude, and polarization of EM waves based on the

generalized Snell’s law (Yu et al., 2011; Lin et al., 2014; Xie et al., 2020; Hu et al.,

2021a). The subwavelength structure, ultra-thin thickness, and low cost make it widely

used in various fields, such as broad diffusion (Wang et al., 2014; Gao et al., 2015a), beam

steering (Zhang et al., 2018), polarization conversion (Cheng et al., 2014), cloaking (Tan

et al., 2022) and focusing (Cai et al., 2020; Hao et al., 2021; Lu et al., 2021). The processed

traditional metasurface has a single far-field mode and a fixed function, which limits its

multifunctional applications (Chen et al., 2016; Liu et al., 2016). The emergence of

programmable metasurfaces may solve this problem. They can realize more flexible
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regulation of EM waves through different pressure differences

and have made outstanding progress in imaging,

communication, beam steering, and other fields (Cui et al.,

2014; Della and Engheta, 2014; Giovampaola and Engheta,

2014; Gao et al., 2015b; Liang et al., 2015; Cui, 2017; Wu

et al., 2021), which make it possible to achieve free control of

far-field patterns (Xie et al., 2017; Xiao et al., 2020).

Far-field patterns can reflect the scattering characteristics of

objects and play an essential role in the field of communication or

radar. In these fields, it is common for the signal to be blocked by

obstacles, as shown in Figure 1A. When EM waves encounter

obstacles, they will be diffusely reflected, scattering irregular

beams in all directions. Thus, the signal the user receives will

be weakened if there is an obstacle between the signal source and

users. Metasurfaces can solve this problem by allowing signals to

bypass obstacles, as shown in Figure 1B. However, using only

tunable metasurfaces for pattern design require complex

simulations and calculations, and the corresponding phase

and amplitude information have to be recalculated once the

direction map is changed. Furthermore, when the shape of the

obstacle is complex, it is almost impossible to obtain the

corresponding far-field radar cross section (RCS) by

calculation. Therefore, predicting the RCS under this

condition is highly important. In recent years, the

combination of deep learning and metasurfaces has made

breakthroughs in intelligent stealth, intelligent imaging, etc.

(Cui et al., 2019; Qiu et al., 2019; Sensong et al., 2019; Chen

et al., 2020; Huang et al., 2022), and also provides the possibility

to solve this problem.

In this letter, we propose a method to train an artificial

neural network (DNN) to make a fast prediction to the far-field

RCS for various programmable metasurface distributions with

objects. As a demonstration, we design a programmable

metasurface with an array of 41 units and verify it in

simulation. We set up a metal cylinder in front of the

metasurface to simulate the presence of obstacles. When the

distribution of metasurface structures is known, the far-field

RCS pattern formed by electromagnetic waves bypassing

obstacles can be accurately predicted. The results show that

the mean square error (MSE) error of the network prediction

and simulation data is only 0.0336, and the cosine accuracy is as

high as 90%, which shows the correctness and feasibility of the

network. We believe this design will be helpful in various

applications and could be an innovative attempt to solve

communication problems in complex environments such as

multiple obstacles and limited space.

Principle and methods

To meet the conditions for constructing a programmable

metasurface, it is necessary to design a unit cell with wide phase

FIGURE 1
Schematic diagram of communication scenario. (A). Obstacles block user communication. (B). The direct link between the signal source and
users is blocked by obstacles. Signals can be propagated to User a and User b when establishing an “S-PM” link between the signal source and
metasurface.
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coverage. Figure 2A shows that the unit cell we designed

consists of a 9 × 9mm2 substrate (εr � 2.65) with 2 mm

thickness, a fully reflective metal patch attached to the back,

and a specially designed metal structure with a varactor diode.

The varactor diode model is ma46h120, whose capacitance can

be tuned between 0.14 and 1.1 pF with a parasitic resistance of

about 2 Ω. The equivalent circuit diagram is shown in

Figure 2B. The RC model is used as an equivalent diode so

that adjusting the value of the capacitance can equivalently

change the working state of the diode. The metal sheet attached

to the front is a center-symmetrical figure, and the diode is

placed in the center.

The commercial software CST is used to simulation and the

exciting electrical field is along the gap direction. The result of

S-parameters is shown in Figure 2C. Observing the co-

polarization related parameter at 6 GHz, the reflection phase

reaches 320°, and the amplitude is greater than −4 dB. Meanwhile

the cross-polarization reflections are at least 4 dB less than the

co-polarization reflection, which shows the cross-polarization

has little effect on the final results. Six kinds of capacitors

(corresponding to six phases) are selected as characteristic

units, and the capacitance values are 0.18, 0.25, 0.28, 0.31,

0.36, and 1 pF, respectively. For the convenience of

representation, the six types of feature units we defined are

marked as unit one to unit 6.

The flat reflective metasurface arrangement comprises a

group of unit cells of various capacitance, as shown in

Figure 3. The proposed flat reflective metasurface

dimensions contain 41 unit cells along the x-direction, and

they all share the same voltage in the y-direction. During

simulation, a cylinder with a bottom diameter of about one

wavelength is used to simulate the obstacle, which is placed at

the position three wavelengths away from the center of the

metasurface. The boundary conditions in simulation for x and

z directions are open, for the y-direction is periodic. Thus the

whole metasurface above forms an infinite plane. For each unit

cell, the reflected phase could be different by adjusting its

diode capacitance when it works at the same frequency, and

these randomly selected capacitance values form the input to

the network.

Each unit cell has six states, which means the state space for

network training is 641. Using MATLAB combined with CST co-

simulation, 10,000 sets of training data are randomly generated

in the form of:

FIGURE 2
The unit cell and S-parameters. (A) 3D view of the designed unit cell. p � 9mm, a � 4mm,w � 2mm, b � 5mm.(B) Equivalent circuit diagram of
the diode ma46h120, diode characteristics could be changed by adjusting the value of the capacitance. (C) The reflection phase of co-polarization,
the amplitude of co-polarization and cross-polarization at different capacitance.
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[Cap1, Cap2...Cap41] ~ [RCS1, RCS2...RCS61] (1)

Figure 3 shows a random example. Among them, RCS has

been normalized. In this data set, the maximum value of the far-

field RCS appears in the directions around 90° and 150°, and the

RCS in the remaining directions is relatively random.

A four-layer fully connected network (DNN) is designed for

forwarding prediction, as shown in Figure 3. The input layer has

41 cells, which are the capacitance values of the 41-unit cells in each

data set. The hidden layers consist of 200 and 150 cells, updating

parameters constantly during training. The output layer consists of

61 cells, corresponding to the result of selecting a value for every 3° of

the output 180° far field. The far-field results during training are

normalized before being fed into the network to remove the effects

of different orders of magnitude on the network’s predictions. The

capacitance variables are encapsulated into a 1 × 41one-

dimensional linear tensor and input to the DNN, and a 1 × 61

one-dimensional linear tensor is output. The loss function of the

network is defined as the MSE as follows:

MSE � 1
N
∑N

i�1(RCSprediction − RCSsimulation)2 (2)

Meanwhile, we define cosine similarity as the measure of

accuracy to ensure the result’s performance on direction

prediction as follows:

Cosine similarity � ∑N
i�1 (RCSprediction i × RCSsimulation i)















∑N

i�1 (RCSprediction i)2
√

×

















∑N

j�1 (RCSsimulation j)2
√ (3)

DNN training adopts the stochastic gradient descent method,

and the learning rate is set to be 0.002.

Results and discussion

80% of the saved 10,000 data are used as training data, and

the rest 20% are testing data. Figure 4 shows that the training loss

decreases and the cosine accuracy increases during the training

process. After training, the MSE of the test dataset is 0.0336, and

the cosine accuracy is about 90%. Results show the effectiveness

of our proposed method. To visualize our results more

intuitively, several predictions are randomly selected from the

testing dataset, as shown in Figure 5. Interpolation is performed

for both the simulated and predicted 61 values. In these data sets,

the maximum values appear in different directions of 30°, 90°,

and 150°, representing various possibilities for the generation of

far-field RCS. In either case, we surprisingly find that these

examples demonstrate the remarkable agreement between the

DNN’s output (red curve) and simulation results (blue curve).

Although most of the predicted data, especially the

maximum value prediction, is relatively accurate, there is still

FIGURE 3
The four-layer artificial neural network. Network input: 1×41 (corresponding to 41-unit-cell states). Network output: 1×61 (corresponding to the
far-field RCS).
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a certain prediction bias in the small value part of the RCS. It

could be found that in the sixth graph of the examples, although

the actual RCS is small in some directions, which is

approximately 0.2 after normalization, the network predicts a

value of around 0.4. It is mainly because that our loss function is

the MSE of all data we input during network training. If most of

the other data have a large value of RCS in this direction, the

influence of individual data with a small value of RCS in this

direction will little affect the results. Generating more training

data, increasing the training dataset’s randomness, or switching

to other networks for training are suitable methods to solve this

problem. It should be noted that, although we only use a

cylindrical object and target on single polarization, this

method can be applied to other objects and more complex

cases where we could also use dual-polarized metasurfaces or

tunable omni-metasurfaces (Hu et al., 2021b; Hu et al., 2022).

Conclusion

We propose a novel approach for far-field RCS prediction of

programmable metasurfaces with the presence of obstacles. A

high reflectivity programmable metasurface is designed and far-

field RCS predictions are performed in the presence of a

FIGURE 4
Training results. (A) The loss function decreases with the increase of training epochs. (B) With the increase in training times, the accuracy rate
increased and tended to be stable when the epoch was about 1100.

FIGURE 5
Far-field prediction results. (A). MSE = 0.0142; Accuracy = 91.26%. (B). MSE = 0.0201; Accuracy = 88.40%. (C). MSE = 0.0222; Accuracy =
88.74%. (D). MSE = 0.0265; Accuracy = 90.14%. (E). MSE = 0.0392; Accuracy = 89.54%. (F). MSE = 0.0161; Accuracy = 87.32%.
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cylindrical obstacle ahead. The capacitance values are fed into a

four-layer DNN network to predict the RCS values, and

prediction results show that the four-layer DNN we used can

achieve almost accurate prediction and has an excellent

performance in both value and direction. Our work creates a

novel path for far-field prediction in obstacle-blocking situations

without using complex computation and simulation, enabling

various future applications, such as solving interference problems

in communications.
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