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Laser butt welding of thin steel sheets without filler material was widely used in

many industrial fields. However, it was very difficult to focus the small laser spot

on the narrow gap between the sheets during the laser butt welding process. In

this study, a new method to weld thin steel sheets using a high-speed laser

cladding technique is proposed. Stainless steel sheets with a thickness of

0.5 mm were welded using the high-speed laser cladding process. The

results illustrated that good weld joints could be obtained without obvious

cracks and pores in most of the specimens. The joints were well formed even if

the sheets were not spliced together entirely. The average tensile strength of

the specimens was about 500 MPa, which is almost the same as that of the

substrate. The results also showed thatmost of the failures did not happen in the

welding region, which could be concluded that the strength of joints was higher

than that of the substrate. The microstructure was determined using an optical

microscope (OM) and scanning electronmicroscope (SEM). The results showed

that it may be a good choice to use the high-speed laser cladding technique for

butt welding of stainless steel sheets.
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Introduction

Welding of lightweight materials is difficult in industrial fields (Xie et al., 2022a; Meng

et al., 2021). The laser welding technique illustrated obvious advantages compared with

traditional welding methods including low heat input, minimal weld distortion, and high-

welding speed (Cheng et al., 2022; Khan et al., 2022; Wang et al., 2022). It was widely used

in a lot of industrial fields such as welding of thin sheets (Tomashchuk et al., 2017; Gao

et al., 2021; Gao et al., 2022). However, it was very difficult to focus the small laser spot on

the narrow gap line between the two sheets during the laser butt welding process, and this

always led to incomplete weld penetration and other defects such as gaps and pores

(Ahmad et al., 2020; Chludzinski et al., 2021). The mechanical properties of the weld head

were always decreased owing to those defects (Xie et al., 2022b; Liu et al., 2022; Shin et al.,

2022).

In order to solve these problems, a new method for steel sheets welding using the

high-speed laser cladding technique is proposed in this article. High-speed laser
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cladding was developed by Fraunhofer Laser Technology

Research Institute, and the purpose of this technique was

mainly to increase the cladding efficiency (Cui et al., 2020;

Yang et al., 2021; Chen et al., 2022). High-speed laser cladding

illustrated excellent advantages compared with the traditional

cladding process (Zhang et al., 2013; Xiao et al., 2021; Gao

et al., 2022). For example, during the traditional laser cladding

process, the laser irradiated the substrate surface and created

the molten pool on the surface. Therefore, part of the substrate

was melted to form the pool. However, during the high speed

laser cladding process, molten pool was formed upon the

substrate surface; in other words, the laser beam was not

directly in contact with the substrate. The melted powders

were formed into small droplets and sprayed on the substrate

surface to form the clad (Cheng et al., 2021; Xu et al., 2021;

Meng et al., 2022). This could reduce the heat input obviously

compared with the traditional laser cladding process.

However, for this article, high-speed laser cladding was

used to weld the thin steel sheets, and the droplets were

sprayed in the gap region between the two sheets. Weld

joint was formed after the droplets filled the gap. The size

of the droplets was obviously larger than the width of the gap,

so the droplets were easily sprayed on the gap domain and to

form the joint. Even if the gap was large or the two sheets were

misplaced, the joint could be also well formed, and this was

confirmed by the experiments completed in this study.

FIGURE 1
SEM micrographs of SUS316L stainless steel powders used in
this research.

FIGURE 2
(A) Schematic of the welding process in this study, (B) welding fixture, and (C) experiment system.
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According to the results, the joints also illustrated good

microstructure and mechanical properties.

Experimental procedure

Materials

The metal powders used in this research were SUS316L

stainless steel alloy powders with a size distribution of

50–150 μm. Figure 1 illustrates the morphology of the

powders in this study. SUS304 stainless steel sheets with a

thickness of 0.5 mm were used as the substrate materials in

this study.

Method

Two stainless steel sheets are fixed and spliced together. A

fiber laser with an incident beam diameter of 1.5 mm was used to

melt the powders. The melted powders were formed into the

droplets, and then the droplets were sprayed on the gap region.

Weld joint was formed after the droplets filled the gap. Schematic

of the welding process in this study, welding fixture, and

experiment system are showed in Figure 2A–C respectively.

The surface of the substrate was cleaned with alcohol to

remove the contaminations. In order to research the welding

results under different parameters, scanning speed, laser power,

and powder feeding rate were taken as the variables. Processing

procedures are given in Table 1. The fracture morphology was

observed using optical microscopy (OM) and scanning electron

microscopy (SEM). Chemical composition was carried out using

energy dispersive microanalysis (EDS).

Characterization

After the experiment, all the specimens were cut into small

blocks by wire-electrode cutting machine for morphology

observation. The specimens were polished by sand papers

with 400 #–2000 #, polished using polishing cloth, and

chemically etched by aqua regia to observe the microstructure.

TABLE 1 Specimen designations and process conditions.

Specimen description Layer power (W) Scanning speed Powder feeding rate

S1 2,800 3,000 mm/min 45 g/min

S2 2,800 3,000 mm/min 35 g/min

S3 2,800 3,000 mm/min 25 g/min

S4 2,800 3,000 mm/min 15 g/min

S5 3,100 3,000 mm/min 35 g/min

S6 2,500 3,000 mm/min 35 g/min

S7 2,200 3,000 mm/min 35 g/min

S8 1900 3,000 mm/min 35 g/min

S9 2,800 2,000 mm/min 35 g/min

S10 2,800 2,500 mm/min 35 g/min

S11 2,800 4,000 mm/min 35 g/min

FIGURE 3
Sketch map of the tensile testing sample.
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The morphological study was conducted using the optical

microscope (OM) and scanning electron microscope (SEM).

Tensile tests were completed on a tensile testing machine, and

the sketch map of the sample is given in Figure 3.

Results and discussion

Macro morphology of the joints

Figure 4 shows the front side and back side images of the

joints under different parameters. As the figure illustrates,

most of the joints show well formability, and only few

specimens are burned through such as S4, S5, and S9. Heat

input was one of the most important parameters, which

affected the joint formability (Chukkan et al., 2015; Gou

et al., 2018). When the scanning speed decreased or the

laser power increased while other parameters remain

unchanged, the heat input was added obviously. Therefore,

the sheets were burned through. At the same time, when the

powder feeding rate decreased, the powders converged to the

focus of the laser beam were also decreased, and the laser

beam passed through the gaps between the powders.

Therefore, the substrate surface received large amount of

heat input and melted quickly when the laser irradiated the

substrate surface directly.

Figure 5 illustrates the morphology of the cross section of

the joints and the section was selected randomly along the

weld line. As it can be seen from the figure, the morphology

was influenced by cladding parameters obviously. When the

powder feeding rate was increased, the thickness of the joint

increased apparently. The thickness of the joint could also be

affected by laser powder; when the power increased, the

powders melted in the molten pool were also increased.

Whether the two sides of the sheets were well aligned also

affected the shape of the joint. However, the melted powders

could fill the gap between the two sides of the sheets, and well

joint formation could be achieved as specimen S10 illustrated.

This was very difficult to be realized during traditional laser

welding because the gap between the two sides of the sheets

could cause burn through easily (Prasad et al., 2020; Kadir

et al., 2021).

FIGURE 4
Optical microstructure of the cross section of sample 13.
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FIGURE 5
Optical microstructure of the samples.

FIGURE 6
Characteristics of the weld zone: (A) microstructure near the interface region, (B) microstructure near the center of the weld zone, (C)
magnification of zone 1, and (D) magnification of zone 2.
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Morphology characteristics of the joints

Figure 6 shows the typical characteristics of the joint of

specimen S3. Figure 6A shows microstructure near the

interface region, and Figure 6B gives microstructure near

the center of the weld zone. As the figure illustrates, weld

zone, interface region, and substrate could be obviously found,

and these regions show different microstructure

characteristics. Obvious dendritic crystal characteristics

could be found in the weld zone near the interface as it can

be seen in Figure 6C. Figure 6D is the magnification of zone 2.

These dendritic crystals grew from the interface side to the weld

center. However, the center of the weld zone shows apparent

peritectic crystal characteristic with the average diameter of about

10 μm. These characteristics were similar with the welded joints

gained by traditional welding methods (Mishra et al., 2021).

Different from the traditional laser welding process, the fusion

region and heat-affected zone were very narrow owing to low heat

input when using the high-speed laser cladding technique as the

welding method. Figure 7 gives the typical magnification

morphology of specimen S4 (Figure 7C,D), S5 (Figure 7E,F),

and S11 (Figure 7A,B). The crystalmorphology could be clearly

observed. It could be found that remelting happened in the

interface region, and it is difficult to distinguish the fusion zone

and HAZ. The width of the interface region is about 30–120 μm as

the result shows, which is obviously smaller than that of the joint

obtained by traditional laser welding and other arc welding

methods (Harish et al., 2021). The width of the interface region

FIGURE 7
Microstructure of the interface region: (A,B) S11 (C,D) S4, and (E,F) S5.
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is not homogeneous, and the region is alwayswider near the front side

than the region near the back side. Laser power, powder feeding rate,

and scanning speed were the important parameters to determine heat

input and have an obvious influence on the width of the interface

region as the figure shows. Surprisingly, when powder feeding rate

was reduced, the width of the interface region also decreased

obviously as Figures 7C,D shows. Incomplete fusion always

occurred in the back side during the cladding process as it is

showed in Figure 7A and Figure 7E.

Tensile results and fracture characteristics

Tensile test samples were cut from the weld specimens, and at

least three samples were cut from each weld specimen. Figure 8

illustrates the specimens after tensile testing, and as it could be found

in the figure, the fracture always happened in the substrate region

rather than theweld zone, whichmeans that the tensile strength of the

weld zone is higher than that of the substrate. Typical engineering

stress–strain curves are illustrated in Figure 9, and the numbers from

1 to 11 in the figure represent the number of the specimens. It could

be obviously found that most of the test samples show a tensile

strength of about 500MPa, which was close to that of the substrate

material (Shankar et al., 2016). Test sample cut from specimen

S10 illustrates the highest tensile strength and the sample cut from

S2 and S9 shows the highest elongation. Figure 10 illustrates the

fracture surface morphology of the tensile testing samples, which

failed in the substrate and weld zone, respectively. Ductile fracture

FIGURE 8
Specimens after tensile testing.

FIGURE 9
Engineering stress–strain curves of the tensile testing.
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FIGURE 10
Typical fracture surface morphology of the tensile testing samples (A) fracture happened in the substrate (B) magnification of Z1 (C) fracture
happened in the weld zone (D) magnification of Z2.

FIGURE 11
EDS analysis of the fracture region.
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could be found from the fracture characteristic, and it seems that the

dimples are smaller in Figure 10C and Figure 10D. However, defects

which were similar with incomplete fusion and pores in morphology

could be easily found in Figure 10A and Figure 10B, which may be

occurred during the tensile test.

Cracks always happened in the interface region in the tensile test,

as it was illustrated in Figure 11. EDS results showed the element

distribution of the fracture region in Figure 11 and some powders

were not melted completely, and this brought the inhomogeneous

element distribution. Interface regions were always composed of the

partly melted zone (PMZ) and heat-affected zone (HAZ), and they

were typical weak regions during the welding process and cladding

process. In this research article, only few specimens were cracked in

the interface region, and this indicated that the strength of the

interface region was higher than that of the substrate.

Conclusion

Welding of thin stainless sheets was completed using the

high-speed laser cladding technique in this research. The

following conclusions can be drawn:

1) Good jointing could be achieved in most of the specimens

using the high-speed laser cladding process, and no obvious

defects could be found in the joints.

2) The tensile strength of the weld zone was always higher than that

of the substrate.Width of the heat-affected zone was very narrow

when using the high-speed laser cladding process as the welding

method.

3) The high-speed laser cladding technique could be a choice for

the welding of stainless steel thin sheets.
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