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Digital twins in the mechanics of materials usually involve multimodal

data in the sense that an instance of a mechanical component has both

experimental and simulated data. These simulations aim not only to replicate

experimental observations but also to extend the data. Whether spatially,

temporally, or functionally, augmentation is needed for various possible uses

of the components to improve the predictions of mechanical behavior.

Related multimodal data are scarce, high-dimensional and a physics-based

causality relation exists between observational and simulated data. We

propose a data augmentation scheme coupled with data pruning, in order

to limit memory requirements for high-dimensional augmented data. This

augmentation is desirable for digital twining assisted by artificial intelligence

when performing nonlinear model reduction. Here, data augmentation aims

at preserving similarities in terms of the validity domain of reduced digital

twins. In this article, we consider a specimen subjected to a mechanical

test at high temperature, where the as-manufactured geometry may impact

the lifetime of the component. Hence, an instance is represented by a

digital twin that includes 3D X-Ray tomography data of the specimen,

the related finite element mesh, and the finite element predictions of

thermo-mechanical variables at several time steps. There is, thus, for each

specimen, geometrical and mechanical information. Multimodal data, which

couple different representation modalities together, are hard to collect, and

annotating them requires a significant effort. Thus, the analysis of multimodal

data generally suffers from the problem of data scarcity. The proposed

data augmentation scheme aims at training a recommending system that

recognizes a category of data available in a training set that has already

been fully analyzed by using high-fidelity models. Such a recommending

system enables the use of a ROM-net for fast lifetime assessment via local

reduced-order models.
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1 Background

A digital twin (DT), of a system or a component, is an ultra-
realistic model in geometric details Bellinger et al. (2011). These
details include manufacturing anomalies. More precisely, when
consideringmodel-based engineering systems, the DT integrates
ultra-high fidelity simulations, maintenance history, and all
available historical among real data. This information is used
to mirror the life of their respective “flying twin,” as proposed
in Glaessgen and Stargel (2012) for aeronautical applications.
In this article, we consider real instances of mechanical
components (RIMC) that undergo thermo-mechanical loadings
in an experiment that reflects what an aircraft engine imposes on
a high-pressure turbine blade. The as-manufactured geometries
are observed by X-Ray computed tomography (CT) which
generates accurate 3D digital images of RIMC. A numerical
model is a DT only if its corresponding RIMC exists. Making
the best use of existing data while exploiting the information
with classical mathematical models is an important issue. Data-
drivenmodeling is emerging as a powerful paradigm for physical
and biological systems, according to Zhang et al. (2019). In
various industrial fields related to structural mechanics, most
numerical models incorporate scientific knowledge about the
mechanics of materials. Hence, the numerical instance of a
DT incorporates multimodal data. Each modality of data has
its own ambient space related either to material parameters,
geometrical and morphological representation, or boundary
and initial conditions for partial differential equations. One
important modality is related to the synthetic data forecast
by model-based numerical simulations, predicting the lifetime
of the RIMC, for instance, upon observational data. Such
synthetic data support decisions in engineering for maintenance,
operating optimization, or decommission of RIMC. With
the development of non-destructive testing (NDT) in the
manufacturing industry, we can expect a growing activity
on image-based DTs (Seon et al., 2020; Launay et al., 2021a)
for accurate descriptions of as-manufactured geometries and
microstructural properties of structural components. Such
data are crucial for lifetime predictions (Aublet et al., 2022).
Unfortunately, image-based DTs in material science are so
complex and time-consuming, so in practice, this task does not
scale with the frequency of quality inspection in manufacturing.
This is a major scaling issue for online DT of as-manufactured
structural components, where lifetime prediction is strongly
affected by geometrical defects. Another issue is the curse of
dimensionality related to the dimension of the geometrical
ambient space, so a dense sampling of this space is unaffordable.
So, learning regression for lifetime prediction fromobservational
data, as in cross-modal predictions (Launay et al., 2021a), may
not be relevant for such image-based modeling. In this work,
we augment multimodal data in order to train a ROM-net
(Daniel et al., 2020). A ROM-net learns a piecewise linear latent

space for model order-reduction. It incorporates a classifier, in
its first layers, that recommends the selection of a local reduced-
order model (LROM), from a digital image of the RIMC, where
each LROM has its own label. In this article, we assume that
the latent space has a structure of vector bundle that is locally
trivial. This means that LROMs have a validity domain larger
than the support of training data (Ryckelynck et al., 2015). In
the sequel, DTs that have similar validity domains for their
specific LROM are termed ROM-similar. Therefore, ROM-net
predictions should be accurate when the input data have ROM-
similar data in the dictionary of LROM. Unfortunately, the
multimodal data related to image-based DT are very scarce,
compared to the dimension of the ambient spaces of these
data. Furthermore, we need to prove the efficiency of digital
twining assisted by artificial intelligence prior to getting more
data related to manufactured components. Hence ROM-net, or
more precisely, the classifier of the ROM-net, needs augmented
data (Lecun et al., 1998). A review on image-data augmentation
schemes is available in Shorten and Khoshgoftaar (2019). Both
image warping and oversampling augmentations are proposed
in the literature, so labels are preserved. Here, the multimodal
data involved in digital twining are required to account for
the causality relation that exists between the model-based
predictions and observational image data. In data warping
augmentation alone, the causality relation between observational
data and simulated data is not preserved. Hence, labels that refer
to LROM cannot be preserved by data warping. So, we propose
a dedicated oversampling procedure based on ROM-similarity.
A schematic view of the assumed piecewise linear latent space is
shown in Figure 1. In this figure, ROM-similar data are aligned
on the same slope. We consider both experimental data and
simulated data related to the lifetime of a realistic structural
component, composed of CMSX4-PLUS super alloy, undergoing
cyclic loading and plastic strains at high temperatures. The
next section details the proposed scheme for multimodal data
oversampling. In Section 3, two examples are provided. The
first one is an augmentation around a defect in a 2D picture
which affects the local strain fields. In the second example,
we give a detailed description of the considered multimodal
data for an academic example and for a mechanical component
undergoing cyclic loading at high temperature for its lifetime
characterization. The ambient spaces related to the multimodal
data in this article are realistic regarding manufactured parts of
the aeronautics industry (Aublet et al., 2022).

2 Methods

The multimodal data involved in a DT are denoted by μ for
material or metallurgical parameters, μ□ for digital images, p
for the lifetime prediction, and a matrix u ∈ ℝN×nt of model-
based simulated data over nt time steps. The physics-based
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FIGURE 1
Schematic view of augmented data (blue crosses) around digital
twins (red points) in a multimodal ambient space (μ, μ□, u).
Oversampling assumes a piecewise linear latent space (green
slopes). Each linear subset of the latent space has a dedicated
label y. The extent of green segments illustrates the validity
domain of LROMs.

equations read as follows: find the primal variable (or state
variable) u and the simulation outcome p for given k, μ, and μ□
such that,

r(u;k,μ,μ□) = 0, k = 1,…nt, p− ℓ (u) = 0 (1)

where r(⋅;k, ⋅, ⋅) ∈ ℝN , k = 1…nt is a given series of complex
physics-based equations that forecast primal variables u[:,k]
(i.e., displacements in mechanical models) and ℓ is a much less
complex function for lifetime prediction knowing u. Residuals
r set up the causality relation between the multimodal data.
nt is the number of residual vectors required to predict the nt
columns of u. For instance, nt is the number of loading steps in a
mechanical problem.

The solutionmanifold of all u fulfilling Equation 1, for given
μ andμ□, is denoted byE. For reduced-ordermodeling purposes,
we assume that E has a structure that the data augmentation
scheme has to preserve. This structure is a vector bundle of rank
N. It is a family of vector spaces of dimension N parametrized
by a base space denoted byM. In the proposed framework,M is
the manifold of primal variables u for digital twins. The vector
bundle is assumed to be locally trivial, in the sense that the local
vector space is constant on subsets of M. In the sequel, these
subsets of M have a dedicated label y, and this label refers to a
local reduced basisV(y) ∈ ℝN×N. An instance of a DT is denoted
by X(i) = {μ(i),μ(i)□ ,u

(i),p(i)}, with u(i) ∈M. Its label is denoted by
y(i), and V(y(i)) is the local reduced basis attached to the ith DT.
The reduced basis V(y(i)) contains the left eigenvectors of the
truncated singular value decomposition ofu(i). It is an orthogonal

reduced basis. The original set of DT indices is denoted by
Dt0. The set of indices related to augmented data is denoted by
Daug, such that Dt0 ∩Daug = ∅. Augmented data X(a), a ∈Daug,
are admissible, if they preserve the structure of E in the following
sense: it exists i ∈Dt0 such that:

u(a) ∈ span(V(y(i))) (2)

y(a) = y(i) (3)

r(u(a);k,μ(a),μ(a)□ ) = 0, k = 1,…nt, p(a) − ℓ(u(a)) = 0
(4)

This admissibility criteria involve, in Equation 3, the usual
constrains that preserve labels of original data. We acknowledge
that the proposed data augmentation scheme does not improve
the sampling of the base space M. Its purpose is to augment
the number of instances that share the same labels. Figure 1
is illustrating the structure of manifold E. In this figure,
the sampling points on manifold M are the red points.
The local vector spaces are represented as green lines. The
desired augmented data are represented by blue crosses.
The labels have also been represented on each axis of this
plot.

Usually, N is large and can range from 105 to 107.
The higher the resolution of digital images, the higher the
dimensions of μ□ and u. In practice, r and u are related
to a finite element mesh of the digital image μ□. For
such high-dimensional multimodal data, preserving memory
storage capabilities while performing data augmentation is
the main issue to achieve feasible augmentations. The storage
limits of high-dimensional multimodal data were not in the
scope of previous articles on simulated data augmentation
(Daniel et al., 2021; Launay et al., 2021b). Without solving this
issue, no data oversampling is possible here. Therefore, to limit
the memory requirement and computational time, oversampling
is coupled with a data pruning technique (Hilth et al., 2019)
and numerical approximations. The method intends to restrict
Equations (2) and (4) to sets of selected rows among the
complete set of raws. These sets are denoted, respectively, as
F and F . In order to have a consistent selection of these sets
of rows, the data pruning procedure accounts for the finite
element description of the residual r and the spatial interpolation
of the primal variable u. This interpolation uses finite element
shape functions denoted by (φj)j=1,…N . The interpolated primal
variable reads:

ũ(ξ;k,μ,μ□) =
N

∑
j=1

φj (ξ) u [j,k](μ,μ□) ∀ ξ ∈Ω (5)

where Ω is the geometrical domain occupied by the DT,
and ξ is the position vector in this domain. In image-based DTs,
the finite element shape functions and the domain Ω are specific
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FIGURE 2
The finite element mesh of one digital twin (on the left), a focus on the phase field of the void at the center of this mesh (Right), and the mesh of
the reduced domain ΩR (Below).

to each instance of μ(i)□ , for i in Dt0. But this dependence is not
included in notations here, for the sake of simplicity. The data
pruning procedure proposed in Hilth et al. (2019) introduces a
reduced domain denoted by ΩR. This reduced domain is the
support of finite element shape functions related to F :

ΩR = ∪j∈F supp(φj) (6)

and F is the set of indices of the variable u restricted
to ΩR, so that the residual restricted to F can be fully
computed using solely u[F]. For the sake of simplicity,
this restricted residual is denoted by r(u[F , :]; ⋅)[F]. F is
an user-defined pruning parameter. It is important to note
that ΩR must cover the region of interest for geometrical
variations.

For pruned data, approximation errors in Equation 2 must
be tolerated.We propose a two-step augmentation technique that
contains 1) a random sampling step of parameters μ,μ□ in the
vicinity of (μ(i),μ(i)□)i∈Dt0

and 2) a screening step in accordance
with the admissibility criteria for pruned data. The admissibility

of pruned augmented data fulfills the following equations:

γ(a) [:,k] = arg ming∈ℝN‖u
(a) [F ,k] −V(i) [F , :] g‖, k = 1,…nt

(7)

η(a) =
‖u(a) [F , :] −V(i) [F , :] γ(a)‖F

‖u[F , :]‖F
(8)

s = 1− η(a) > stol (9)

y(a) = y(i) (10)

r(u(a) [F , :] ;k,μ(a),μ(a)□ )[F] = 0, k = 1,…nt (11)

u(a) [j, :] = u(i) [j, :] ∀ j ∈ F\F (12)

p = ℓ(V(i) γ(a)) (13)
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FIGURE 3
Multimodal data for digital twin i = 1, on the top left μ(1)□ ; on the right, the 3 components of the strain tensor ɛ(u(1)) at 3 time instants t0, t1, t2.

FIGURE 4
Multimodal data for digital twin i = 2, on the top left μ(2)□ ; on the right, the 3 components of the strain tensor ɛ(u(2)) at 3 time instants t0, t1, t2.

Frontiers in Materials 05 frontiersin.org

https://doi.org/10.3389/fmats.2022.971816
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Aublet et al. 10.3389/fmats.2022.971816

FIGURE 5
Example of augmented multimodal data for digital twin i = 1: on the left, original data; on the right, augmented data; in the first row, μ□; and in
the second row, the shear strain at time t2.

where ‖ ⋅ ‖F is the Frobenius norm. Here, we assume that
V(i)[F , :] is full column rank. The above computation of
the reduced coordinates γ(a) is known as the Gappy POD
(Everson and Sirovich, 1995). Again, we assume that u is
supported by the mesh of the ith DT, so the evaluation of
η(a) makes sense. Equation 9 checks the ROM-similarity of
the augmented data. Equation 12 in finite element modeling
is termed a Dirichlet boundary condition. Other interesting
boundary conditions are proposed in Hilth et al. (2019) for
hyper-reduction. stol is a hyper-parameter of the augmentation
scheme.

Remark: It is possible to update the vector bundle after the
data augmentation. The accuracy of the LROM that we can
compute after data augmentation is not directly related to the
threshold used here for the ROM-similarity. For instance, after
data augmentation, we can aggregate in a matrix û(i) the primal
variable having the same label, for both original and augmented
data. Therefore, a truncated singular value decomposition of û(i)

can give a very accurate reduced basis for the category of data
y = y(i).

3 Results and discussion

3.1 Modeling the local mechanical
response of voids in an elastic material

In a previous work (Ryckelynck et al., 2020), we published
2DDTs of voids in elastic bodies. In this example, we augment the
data around twoDTs from this previous work.The augmentation
ratio is 100 for each DT, prior to fulfilling the constraints for the
construction of Daug. Here, mechanical variables are structured
data similar to digital images (Launay et al., 2021a). But not all
data augmentation techniques proposed in the literature for
digital images are relevant for reduced digital twinning. For
instance, rotation and shear transformations must be consistent
for both geometrical and mechanical data. In this example, the
domainΩ is a square (on the left inFigure 2).Themanufacturing
process creates voids, and each instance of the void is placed
in the center of Ω. The mesh is specific to each DT in order
to capture the geometry of the void (on the right of Figure 2).
In this mesh, a phase field represents the void: if ϕ(ξ) > 0,
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FIGURE 6
Example of augmented multimodal data for digital twin i = 2: on the left, original data; on the right, augmented data; in the first-row, μ□; in the
second row, the shear strain at time t2.

then ξ is in the void; else, ξ is outside the void (1 ≥ ϕ ≥ 0).
In mechanical equations of elasticity for digital twining, the
Young modulus reads E(ξ) = Eo(1−ϕ(ξ)), where Eo is the Young
modulus in the bulk. In this simple example, we restrict our
attention to the prediction of shear strains around each void,
under a macroscopic shear strain. The reduced domain is shown
at the bottom of Figure 2. Here, the cardinal of F is only 30%
smaller thanN . Simulation errors of shear strains are about 18%
when solving Equations 11 and 12 instead of Equation 1. The
mechanical problem has 3 time steps t0, t1, and t2. In the first
time step, longitudinal traction is imposed to the boundaries of
Ω. In the second time step, it is transverse traction. In the last
time step, we impose a shear strain at the boundaries of Ω.

Multimodal data are the 2D image of the void (i.e., the
image of ϕ) and the mechanical shear strain in ΩR. These data
are shown in Figure 3 and Figure 4 for digital twins i = 1 and
i = 2, respectively. Augmented image data are obtained by usual
shear and rotation of the void image. The resulting phase field
is denoted by ϕ′. The mechanical expression of the strain tensor
is the symmetric part of the gradient of the displacement field
u. This strain tensor is denoted by ɛ, ɛ(u) = (∇u+∇uT)/2. The
solution of elastic Equations 11 and 12 forecasts the augmented

value for the shear strain ɛ(u′). We can see in the full order
simulations, in Figure 3 and Figure 4, that the mechanical
strains are highly dependent on the void morphology.

Two examples of augmented data are shown in Figure 5
and Figure 6. In these examples, it is clear that the mechanical
variables do not follow the warping imposed to μ□, especially far
from the void. Local reduced bases have 3 modes. The reduced
basis of the first DT is shown in Figure 7. The ROM-similarity of
augmented data is shown in Figure 8. Only one set of augmented
data in D̃(1) fails to be ROM-similar. They are 28 for the second
DT. The blue and red curves are well separated. None of the
augmented data for one DT is ROM-similar to the other DT.

3.2 Application on fatigue specimen
observed via X-ray computer
tomography

In this subsection, we consider a mechanical specimen
subjected to a mechanical test at high temperature, where as-
manufactured geometrymay impact the lifetime of the specimen.
The DT includes a 3D X-Ray tomography of the specimen
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FIGURE 7
Strain components of the LROM for digital twin i = 1: on the top left, μ□; on the right, ε(V(1)). Here, t0, t1, and t2 stand for the indices of the
vectors that span the LROM.

FIGURE 8
ROM-similarity for all instances of augmented data in D̃(i).
Augmented data related to digital twin 1 have indexes ranging
from 1 to 100, and augmented data related to digital twin 2 have
indexes ranging from 101 to 200. The dashed line is the
constrain η(i)(u′) < α ϵtol.

(Figure 9), the related finite element mesh (Figure 10), and the
finite element predictions of thermo-mechanical variables that
are modified at several time steps during the test (on the pruned
mesh in Figure 13). The problem of data scarcity is particularly
pronounced for this kind of DT. In this example, N > 3.105,
m = 20, and the target reduced dimension of LROM is set up to

FIGURE 9
X-Ray computer tomography image of the mechanical
specimen.

FIGURE 10
3D finite element mesh based on the X-Ray computer
tomography image.
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FIGURE 11
Example of node displacements along axial direction for mesh morphing according to augmented data for geometrical variations Δμ□.

FIGURE 12
Finite element mesh restrained to ΩR (N /card(F) = 2). Most removed elements are located around the hole.

FIGURE 13
Shear strain forecast by the finite element model, in ΩR, at the maximum mechanical loading of the specimen.
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FIGURE 14
ROM-similarity for all instances of augmented data in D̃(i).
Augmented data related to digital twin 1 have indexes ranging
from 0 to 9, and augmented data related to digital twin 2 have
indexes ranging from 10 to 19.

N = 6 in order to have stol = 0.99. In this example, μ is a vector of 3
angles related to the single crystal CMSX4-PLUS of the specimen
as presented in Aublet et al. (2022).This parameter is augmented
randomly using angle variations below 12o. Usual image warping
techniques are not relevant to the 3D tomographic image of
DT. Hence, a random mesh morphing has been applied to
the mesh of the DT in order to augment observational data
μ□. The geometrical variations were generated around a DTi

using a Gaussian perturbation on geometrical parameters with
the following model. For a parameter q, the new value p′ was
randomly chosen in the vicinity of q with a common log-normal
X law centered on q with a standard deviation of 0.2∗ q such
as p′ ∈ X (q,0.2 ∗ q). We generated 10 meshes around each DT,
and 10 cycles of triangular thermo-mechanical loading were
applied. An example of node displacement for this morphing
step is shown in Figure 11. Most finite elements removed for the
data pruning are located around a cooling hole in the specimen
(Figure 12). To ensure the consistency of HROM in Equation 11
under Neumann boundary conditions, some sets have to be
preserved during the pruning. Card(F) is twice as small as
N , so the memory saving factor is 2. The prediction error of
finite element simulation using the pruned mesh is 10% in ΩR.
Data augmentation has been performed for two DTs X(1) and
X(2). After augmentation, the ROM-similarity is computed twice
for all augmented data. This enables us to check the labels of
augmented data. The original DTs are quite ROM-similar, so
values of s are close to 0.99. They are reported in Figure 14.
Labels of augmented data are consistent with the ROM-
similarities. However, all ROM-similarities are very high in this
example.

Here, we consider a time-dependent problem due to
plasticity computed with a crystal plasticity model developed
by Méric et al. (1991). This kind of problem implies a temporal
analysis with an initial important spread on the domain (low
values with importation gradients) the first time, and then,
a localization due to a mechanical defect such as a hole as
shown in Figure 10. This localization implies local variations of
displacement fields around the defect which needs a higher value
of N to catch the information in LROM. As we performed a
truncature with N = 6, we cannot gather the local information
on plasticity. The development of ROM-similarity criteria is still
a work in progress in plasticity. Here, V(y(1)) and V(y(2)) seem
pretty similar, hence the close ROM-similarities reported in
Figure 14.

4 Conclusion

Theproposed data augmentationmethod is very versatile for
multimodal data that includes simulated data in the framework
of image-based digital twinning. It requires access to the finite
element model used for digital twinning. The method assumes
that the latent space hidden in the multimodal data is piecewise
linear, so the nonlinearmodel reduction uses local reduced bases.
The validity domains of these reduced bases enable the definition
of similarities, termed ROM-similarity, between multimodal
data. The pruning technique, used to limit memory requirement
for high-dimensional augmented data, has a hyper-parameter
ΩR. The larger the domain ΩR, the more accurate the evaluation
of ROM-similarities.The smaller the ΩR, the higher the memory
savings. The development of ROM-similarity criteria is still a
work in progress in plasticity.
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