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In this study, we use numerical methods to study the acoustic streaming effect

of the acoustic black hole (ABH). Firstly, we build an ABH model to study the

acoustic streaming effect. By deriving the waves equations and solving the

Navier–Stokes equations, we obtain the flow field, sound field, and temperature

field under the acoustic excitation. Secondly, the simulation result reveals the

mechanism of acoustic streaming effects on the sound transmission

characteristics of cavity ABH. The numerical results show that the abrupt

decrease in the sound pressure is caused by the great changes in the

velocity gradient caused by the catastrophe of cross section. The energy of

the sound waves can also be dissipated by the thermal viscous layer at low

frequencies. Finally, based on the acoustic streaming effects of the acoustic

medium in the ABH, we propose feasible methods to enhance the sound

insulation. Increasing the cross section of the cavity in ABH can get a better

sound insulation effect at high frequencies, and decreasing the cross section

can improve Sound Transmission Loss (STL). Through optimization, STL can

reach more than 25 dB at low frequencies.
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1 Introduction

Designing an acoustic black hole (ABH) structure is a method to suppress the sound

waves (Denis et al., 2016; Gao et al., 2020; Gao and Lu, 2020). A flexural wave propagating

in a power-law wedge at the end of a beam would progressively slow down and

concentrate the wave energy at the tip of the wedge, which is affected by ABH

(Mironov, 1988; Ma et al., 2021; Gao et al., 2022; Ma et al., 2022). In contrast, a

small truncation end thickness at the tip of ABH can break the ABH effect, especially for

low-frequency sound waves (Gao et al., 2019; Gao et al., 2021a; Gao et al., 2021b).

The ABH has attracted many researchers’ attention. They analyzed the effects of defects

at the truncated thickness to find ways to decrease the effect. One popular way is to add the
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nonlinear geometry into the ABH, which can enhance the ABH

effect (Denis et al., 2017; Li et al., 2019). The nonlinear geometry

causes the energy cascade and wave turbulence, which can transfer

energy from low frequency to high frequency to reduce the cut-off

frequency and enlarge the ABH effect frequency range. It can

improve the global passive vibration and sound radiation

mitigation characteristics (Denis et al., 2017; Li et al., 2021).

Another popular way is to use the cavity ABH structure. One

cavity ABH is called a sonic black hole (SBH), which is a series of

rings with a power-law decaying inner radius installed in a duct.

When the end is open, the Sound Transmission Loss (STL) at

high frequency can reach more than 30 dB and even has good

sound absorption performance. However, there is a large

reflection at low frequency, and the STL is also lower than

10 dB (Mi et al., 2021; Zhang and Cheng, 2021). Many studies

have been conducted on sound absorption and insulation in view

of acoustics. Many cavity ABH structures have been designed to

achieve a better sound insulation effect (Mironov and Pislyakov,

2002; EI-Ouahabi et al., 2015a; EI-Ouahabi et al., 2015b; Mironov

and Pislyakov, 2020). Xiao Liang purposed a comparatively large

model of ABH and calculated the flow field in the cavity. Results

reveal that the turbulence of the acoustic medium affects the

acoustic transmission mechanism and illustrate that the acoustic

streaming effects decide the acoustic transmission characteristics

(Liang et al., 2019; Liang et al., 2021a; Liang et al., 2021b; Liang

et al., 2022). Inspired by those excellent jobs, we proposed a

cavity ABH to analyze its acoustic streaming effects and the

sound transmission mechanism. In the study, we deeply explore

the relationship between the acoustic streaming effects and the

sound transmission mechanism, which has been rarely

researched.

In this study, we propose a numerical simulation model and

derive the governing equations. We get the flow, sound, and

temperature fields by solving the governing equations in Section

2. In Section 3, by analyzing the numerical results, we explore the

influence of streaming effects on the acoustic characteristics of

the cavity ABH. By studying the flow, sound, and temperature

fields, we discuss the relation between the acoustic streaming

effects and the sound field. The conclusion is given in Section 4.

2 Numerical simulation model

2.1 Geometric model

A numerical simulation model is established to study the

acoustic streaming effect and sound transmission mechanism of

cavity ABH, as shown in Figure 1A. The spatial shape can be

FIGURE 1
The simulation model of the cavity ABH.

FIGURE 2
The mesh division of the cavity ABH.
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swept by two planes and a curve between the two planes. By using

Curve 1, Curve 2, Curve 3, Area 1, Area 2, Area 3, and Area 4, the

complex spatial shape of ABH can be formed. The specific

equations of the curves are shown in Table 1. The detailed

geometrical structure parameters of the cavity ABH are

defined in Figure 1B. The overall length of ABH is 28 mm.

The perfect match layer (PML) and the background sound field

are symmetrical in the model. The lengths of the PML and the

background sound field are 2 and 10 mm, respectively. The

length between Area 1 and Area 2 is 7.5 mm. The shape of

Area 1 and Area 2 is 12.7 × 25.4 mm and 3 × 3 mm rectangles,

respectively. The length of the cavity is 9.5 mm, and the biggest

section in the cavity is Area 3, a 22.9 × 12.2 mm rectangle. The

pipe is 10 mm long; it has a section of 3 × 3 mm rectangle. The

rest of the sizes are performed in Figure 1B.

The schematic diagram of the mesh division of the cavity

ABH model is shown in Figure 2. We use a tetrahedron

element to mesh the ABH model and use a triangle

element to link up the background sound field and the

ABH model. Then, we sweep the background sound field

and the PML by Tetrahedral mesh. To ensure the

accuracy of the simulation, we set the mesh division of

the cavity ABH model with the maximum unit of the grid

lmax as

lmax � 220μm
��������
100Hz/f√

(1)

and the minimum unit of the grid lmin is

lmin �
220μm

��������
100Hz/f√
6

(2)

2.2 Governing equations

The incident sound waves in the background sound field are

pb �
∣∣∣∣pb

∣∣∣∣e−ikb �nkx (3)

kb � ω

c
(1 + iωbtv

ρ0c
2
)−1/2

(4)

btv � 4
3
μ + μB +

(γ − 1)κ
Cp

(5)

�nk � �ek∣∣∣∣∣ �ek∣∣∣∣∣ (6)

FIGURE 3
The velocity fields. (A) f = 40 Hz; (B) f = 200 Hz; (C) f = 1250 Hz; (D) f = 3150 Hz.

TABLE 1 The equations of the curves.

Line Interval Equations

Curve 1 x∈(0,7.5) y = 0

Curve 2 x∈(8.5,12.5) y = 0.3997x3 − 3.1578x2 + 8.6866x − 7.3046

Curve 3 x∈(13.5,18) y = −0.6964x4 + 7.329x3 − 27.544x2 + 42.983x − 21.323
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FIGURE 4
The sound pressure level distribution. (A) f = 40 Hz; (B) f = 200 Hz; (C) f = 1250 Hz; (D) f = 3150 Hz.

FIGURE 5
Temperature field distribution. (A) f = 40 Hz; (B) f = 200 Hz; (C) f = 1250 Hz; (D) f = 3150 Hz.
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FIGURE 6
Thermal-power density distribution of the cavity ABH. (A) f = 40 Hz; (B) f = 200 Hz; (C) f = 1250 Hz; (D) f = 3150 Hz.

FIGURE 7
The sound pressure level at different frequencies in different models. (A) Model 1; (B) Model 2; (C) Model 3.
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where |pb| is the amplitude of the sound pressure, kb is the wave

number of background acoustic field, ω is the frequency of the

incident sound wave, c is the sound velocity, μB is the bulk

viscosity, γ is the ratio of specific heats, κ is the thermal

conductivity of the total field, and �ek is the wave direction.

The sound pressure in a nonlinear thermos-viscous sound

field is

pt � p + pb (7)

where p is the background pressure and p = 1 atm.

The mass conservation equation in the frequency domain is

iωρt + ∇(ρ0 �ut) � 0 (8)

where ρt is the density to be solved, ρ0 is the initial density, and �ut
is the velocity to be solved:

ρt � ρ0(βTpt − αpTt) (9)

βT � 1
ρ0

γ

c2
(10)

αp � 1
c

��������
Cp(γ − 1)

T0

√
(11)

�ut � �u0 + �ub (12)

where βT is the coefficient of isothermal compression, αp is the

thermal expansion (isobaric) coefficient, �u0 is initial velocity, and
�u0 � 0, �ub is the oscillation velocity:

�ub �
ω(βTpb − αpTb)

kb
�nk (13)

Tb � iωαpT0

iωρ0Cp + κκ2b
pb (14)

where Tb is the temperature to be solved, T0 is the equilibrium

temperature, and T0 = 293.15 K.

The momentum equations, which are also Navier–Stokes

equations in the frequency domain, can be expressed

iωρ0 �ut � ∇ �σ (15)

where the term on the right side of Eq. 15 represents the

dispersion of the stress tensor and �σ is

�σ � −ptI + μ(∇ �ut + (∇ �ut)T) − (2
3
μ − μB)(∇ �ut) I (16)

where I is the identity matrix. Based on the assumption that small

harmonic oscillations have steady-state background

properties, the first term on the right of Eq. 16 shows the

pressure, and the second and third terms represent the

viscous force. For three-dimensional flow field, ∇ �ut is

expressed as

∇ �ut �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zux

zx

zux

zy

zux

zz

zuy

zx

zuy

zy

zuy

zz

zuz

zx

zuz

zy

zuz

zz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

The energy conservation equation is

FIGURE 8
The STL of three models.
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FIGURE 9
The sound pressure level at different frequencies in different models. (A) Model 1; (B) Model 2; (C) Model 3.

FIGURE 10
The STL of three models.
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ρ0Cp(iωTt + �ut∇T0) − αpT0(iωρt + �ut∇ρ0) � ∇(κ∇Tt) + Q

(18)
where Q is the heat generated by the cavity ABH. Viscous losses

occur in the model when there is a gradient within the velocity

field, and thermal losses occur when there is a gradient within the

temperature field. Tt is the total temperature, and

Tt � T0 + Tb (19)

The boundary condition on the wall is

�ut � 0, Tt � 0 (20)

By the above equations, the flow, sound, and temperature

fields can be calculated. In Section 3, we will give the detailed

simulation results for further analysis.

3 Results and discussions

We obtain the velocity field at different frequencies by

calculating the governing equations, as shown in Figure 3.

The sound waves propagate to the tip of the cavity at a

relatively high speed (see the red dashed box) but

decelerate in the cavity (see the yellow dashed box). The

waves undergo acceleration and deceleration again as they go

through the pipe and out of the ABH (see the orange dashed

box and blue dashed box). Meanwhile, it can be observed that

the low frequencies waves go through the ABH steadily.

When the frequency increases, the motion of the sound

waves becomes chaotic (see the yellow and orange

dashed box).

The observation of the sound pressure level distribution and

the comparison with the velocity field (shown in Figure 4)

reveal that the acoustic streaming effects determine sound

pressure distribution. Because of the reduction of the tip and

pipe section, the sound waves are compressed. This causes an

increase in velocity and results in a raise of sound pressure (see

the green dashed box). In contrast, the sudden increase in space

inside the cavity broadens the distance between each

streamline, which decreases the sound pressure (see the

purple dashed box in Figures 4A,B). When the waves leave

the ABH, they undergo the procession of wave compression and

rarefaction for the second time. The low-frequency waves are

less affected by ABH because of relatively long wavelengths,

which are longer than the length of the ABH. The sound waves

can easily pass the ABH, and the sound pressure reduces

gradually (see Figures 4A,B). This is how the low-frequency

waves go through the ABH. However, as the medium- and high-

frequency waves enter the cavity, because of their short

wavelength, the nodes of the sound wave are encountered as

they travel to the tip (see the green dashed box in Figure 4D). At

the same time, the waves are compressed in the cavity, lending

the high sound pressure of the cavity (see the purple dashed box

in Figures 4A,B). In the process of the sound wave passing

through ABH, its motion is affected, and the sound pressure is

also changed. Moreover, the result is that the sound pressure at

the exit decreases.

Figure 5 shows the temperature field. We notice an

obvious temperature gradient in the ABH (the black dashed

box in Figure 5). It is mainly due to the dissipation effect of the

boundary layers. Acoustic viscous boundary layers and

thermal boundary layers can dissipate acoustic energy in

the form of heat. The thickness of the acoustic viscous

boundary and the thickness of the thermal boundary layer

can be calculated by the following equation:

δv �
�����
μ

πfρ0

√
(21)

where f is frequency, μ is the viscosity coefficient, and ρ0 is the

initial density of the fluid.

δt �
�������

λ

πfρ0Cp

√
(22)

where Cp is the heat capacity and λ is the coefficient of thermal

conductivity. At 40, 200, 1,250, and 3,150 Hz, the thickness of the

viscous boundary layer is 0.346, 0.155, 0.062, and 0.039 mm,

respectively. With the decrease in frequency, the layer becomes

thicker.

To further explore the acoustic energy dissipation in cavity

ABH, we study the density of thermal-power consumption.

Figure 6 shows that, at low frequencies, the thickness of the

thermal viscous layer is relatively thick at the boundary and

part of the energy is dissipated by the layer (shown in Figures

6A,B). The thermal consumption is mainly situated at a small

scale. As the frequency increases, the thermal viscous layer

becomes thinner, dissipating less acoustic energy. The

thermal-power consumption is distributed in all the ABH

(Figures 6C,D).

Through learning, we find that the cavity with a sudden

change area can alter the velocity in the cavity and then

influence the change of sound pressure. To deeply

investigate this characteristic, we propose three models,

changing the largest area of the cavity and observing the

effect of the area change. The largest areas of Model 1,

Model 2, and Model 3 are 6.8 × 15.2 mm, 12.2 × 22.9 mm,

and 14.6 × 27.4 mm, respectively.

Figure 7 is the sound pressure level at different frequencies

of three cavity ABHs. The sound waves of 40 Hz are less

influenced by the ABH, which causes a small drop in

sound pressure. While the sound waves of 2,000 Hz can be

located in the cavity, the sound waves of 5,000 Hz are

clustered at the tip, resulting in a decrease in the sound

pressure at the exit. By contrasting the three models, we

notice that Model 3 has a greater decrease in the sound
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pressure in the cavity at high frequencies, as shown in

Figure 7C.

We calculate the STL and show the result of three models in

Figure 8. The STL can be defined as

STL � 20 lg(Pin

Pout
) � 10 lg(Pin

Pout
)2

(23)

where Pin and Pout represent the incoming power at the entrance

and the outgoing power at the exit.

The three curves are almost the same at low frequencies,

which supports the conclusion that the area change of the cavity

has a small influence on the low-frequency waves and no

improvement in sound insulation at low frequencies.

However, the motion of the sound waves with high

frequencies is affected more, so the sound pressure drops

more at the exit of ABH. This illuminates that increasing the

cross section of the cavity lend to better sound insulation at high

frequencies.

We also notice that the tip and the pipe of ABH can

effectively insulate the sound waves. Therefore, we change the

cross section of the hole and pipe. The areas of small scale in the

three models are 1 × 1 mm, 2 × 2 mm, and 3 × 3 mm,

respectively.

Figures 9, 10 show the sound pressure level at different

frequencies and the STL of three models. As shown in

Figure 9, with the reduction in the tip and pipe’s cross-

sectional area, the sound pressure drops more at each

frequency. Besides, the smaller cross section of the tip can

also easily focus the high-frequency sound waves on the tip

(shown in Figure 9 at 2,000 and 5,000 Hz). In Figure 10, we

can observe that reducing the cross-sectional area of the

tip and the pipe can improve the sound insulation effect

of the whole frequency band. In the low-frequency band, as

the side length is reduced from 3 to 1 mm, STL can be

increased by about 20 dB. The sound insulation

effect is more significant in the frequency band exceeding

2,000 Hz.

4 Conclusion

We propose a theoretical model of cavity ABH to investigate its

acoustic streaming effects. The flow, sound, and temperature fields at

different frequencies are obtained by governing equations.

From the comparison of the velocity field and the sound

pressure level field, it can be seen that the velocity field is

closely related to the sound pressure level field, and the

reduced cross section causes an increase in velocity,

resulting in an increase in sound pressure. On the

contrary, the decrease in speed caused by the enlarged

cross-section causes a decrease in sound pressure. Thus,

we conclude that the sound flow effect determines the sound

pressure distribution. In addition, when we study the

temperature field, we find that there is an obvious

temperature gradient, which is mainly caused by the

dissipation effect of the thermal viscous boundary layer.

At the same time, combined with the closely related

characteristics of sound flow effect and sound pressure, we

propose methods to improve the sound insulation effect. The

first is to increase the area of cross section in the cavity,

which can improve the isolation of high-frequency sound

waves. The second is to reduce the cross-sectional area of the

small size, which can better isolate the sound waves in the full

frequency band. This provides new ideas for low-frequency

sound insulation.
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