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The tremendous attention of researchers has been attracted to the unusual

properties of quasicrystals in coatings. In this paper, the exact solutions of the

functionally graded multilayered two-dimensional quasicrystal coating

structures in a thermal environment are derived for advanced boundary-

value problems with mixed boundary conditions. The state space method is

formulated to the thermal coupling with quasicrystal linear elastic theory that

derives the state equations for functionally graded quasicrystal coating

structures along the thickness direction. The mixed supported boundary

conditions in the x-direction and the simply supported boundary conditions

in the y-direction are subjected to time-harmonic temperature loadings, which

are represented by means of the differential quadrature technique and Fourier

series expansions, respectively. Traction on both the bottom and top surfaces is

free, and perfect thermal and mechanical contacts between constituents are

incorporated at the internal interfaces. A global propagator matrix, which

connects the field variables at the top interface to those at the bottom

interface for the whole coating structure, is further completed by joint

coupling matrices to overcome the numerical instabilities. Finally, three

application examples are proposed to throw light on various effects of the

power law index, frequency, and different boundary conditions on the field

variables in three-layer coating structures. The present solution can serve as a

benchmark for the modeling of functionally graded quasicrystal coating

structures based on various numerical methods.
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Introduction

Multilayered quasicrystal (QC) composites possess huge potential applications in the

aeronautical and aerospace industries, manufacturing of semiconductor and electrical

devices as well as some modern high-technology sectors due to their unique quasi-

periodic structure and excellent physical properties (Fan, 2011; Guo et al., 2020). In

addition, due to the high hardness, good chemical stability, high temperature resistance,
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and corrosion resistance of QCmaterials, QC coating technology

has been tremendously developed (Beardsley, 2008; Mora et al.,

2020), which proposed new ways to improve the aeroengine

performance. Compared with monolithic samples, artificially

designed layered QC coating structures can provide better

combinations of strength and ductility, strength-to-weight

ratios, and stiffness-to-weight ratios. Meanwhile, the

temperature deformation and thermal stress of the plates and

coatings are also important factors that must be considered in the

engineering structure design. Thus, the responses of the QC

composite material structure in the thermal environment have

always been a research hotspot, including static response

[residual stress caused by high temperature (Polishchuk et al.,

2012)], steady state response [stress problem in the heat

insulation process (Li and Liu, 2018)], and dynamic response

(instantaneous thermal stress in the impact state).

In addition, QC materials as multilayered structures have

some weaknesses, such as they may crack at low temperature or peel

off at high temperature, which will reduce the life-time and reliability

of the devices. For instance, QC composite thermoelectric converters

are exposed to thermal environments, including severe temperature

gradients, which can generate interlayer thermal stresses that affect the

structure in practice (Maciá, 2004). Thus, in order to improve thermal

and mechanical material properties, various kinds of models have

been proposed to overcome these cark and problems. Li (2013) and Li

et al. (2015) obtained the fundamental solutions for the one-

dimensional (1D) QC medium subjected to two identical thermal

loadings on the upper and lower crack lips. Under surface heat

loadings, the interlayer stress for 1D hexagonal piezoelectric QC

simply supported nanoplate (Zhang et al., 2019) decreases

continuously with the increase of the functional gradient factors.

Based on the QC nonlocal theory, Yang et al. (2018) obtained the

thermo-elastic analysis solution for the two-dimensional (2D) QC

simply supported nanoplates subjected to a temperature change.

According to the pseudo-Stroh formalism, the deformation of a

conductive elliptic hole embedded in the 2D decagonal QC plane

(Guo et al., 2016) was derived under a remotely uniform heat flow. In

FIGURE 1
(A) An M-layered FG 2D QC structure. (B) Material property variation in terms of volume fraction of exterior material.

TABLE 1 Material properties (C, K, and R in 109 N/m2, β in 106 N K/m2, k in W K/m, T0 in K, Ce in J kg/K, ρ in kg/m3).

C11 C12 C13 C33 C44 K1 K2 K4 R1

QC1 234.33 57.41 66.63 232.22 70.19 122 24 12 8.846

QC2 166 77 78 162 43 65 13 6 5.417

β1 β3 k11 k22 k33 T0 Ce ρ

QC1 1.383 1.798 5.3 5.3 6.89 293 1.187 4,186

QC2 1.644 2.226 3.672 3.672 4.972 293 1.228 5,800

FIGURE 2
Normalized displacements and stresses for the QC plate.
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addition, the case of the thermal conductivity measurement

along with periodic and quasi-periodic directions in

decagonal QCs (Matsukawa et al., 1999; Dolinsek, 2012)

and the thermo-elastic response of 2D QC plates (Yang

et al., 2014; Huang et al., 2021) were investigated.

For many years there has been considerable interest in the

static and dynamic response in multilayered crystal and QC

media due to its many applications in composite materials,

nondestructive evaluation, geophysics, surface acoustic wave

devices, etc. (Bak, 1985a). The propagator matrix method is

one of the most effective methods to analyze these media

(Huang et al., 2019). The exact solutions of vibration

frequency (Sun et al., 2021) and buckling load (Zhang et al.,

2022) for 2D decagonal QC multilayered nanoplates can be

derived by using the propagator matrix method, which

connects the field variables at the upper and lower interfaces

of each layer. However, propagator matrix method

implementation may suffer from numerical instabilities (Chen

et al., 2003; Lü et al., 2006) when the frequency is high, the

thickness is large, and the discrete point number exceeds a certain

value for the differential quadrature methods (DQM). Various

techniques and methods have been proposed to overcome this

problem of the propagator matrix method. Dunkin (1965)

derived the delta operator technique to alleviate the problem

for isotropic materials. Although this method has been developed

for the anisotropic material (Castaings and Hosten, 1994), it

requires the computation of large-order delta matrices. In

addition, Mal (1988) presented the direct global matrix

method by reducing the transfer distance. But this method

occupied substantial memory storage and computation time.

After that, an improved recursive algorithm of the stiffness

matrix method (Tan, 2006; Tan, 2011) is presented for

computing both total and surface stiffness matrices for a

general multilayered anisotropic media. Different from the

stiffness matrix method, the traditional propagation matrix

method was firstly used to continuously connect the interface

variables for multilayered plates with perfect/imperfect

interfaces, which is further completed by the dual variable and

position technique (Li et al., 2021; Vattré et al., 2021; Vattré and

Pan, 2021) to improve the stability of frequency calculation.

According to the continuity conditions, one stable approach that

involves joint coupling matrices (Lü et al., 2008) is used to deal

with the perfect and imperfect interfaces.

As reviewed above, previous analyses for the thermoelastic QC

multilayered structure have been conducted under the assumption of

static deformation, within which the exact solutions have been

evaluated for models with simply supported boundary conditions

only. In this paper, forced vibration analysis is carried out on the

FIGURE 3
Variation of the phonon and phason displacements for QC coating structures: (A) ux, (B) uz, (C) wx, and (D) wy.
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thermoelastic, anisotropic, multilayered, and inhomogeneous QC

coating structures with mixed supported boundary conditions.

DQM is utilized to simulate the simply and/or clamped supported

boundary conditions along the x-direction, and the Fourier series

expansion as the exact closed-form solutions are used to satisfy the

boundary conditions in the y-direction. In addition, the basic

equations of QC material are converted into the state equations

composed of partial differential by utilizing the state-space method.

A global propagator matrix is derived by joint coupling matrices to

overcome the numerical instabilities. Finally, the typical numerical

examples are presented to verify the effectiveness of this method, and

the results are very useful for the design and understanding of the

characterization of the functionally graded (FG) QCmaterials in their

applications to multilayered systems.

Description of thermoelastic
problems of quasicrystal structures

Figure 1A presents the three-dimensionless multilayered

QC thermal barrier coating structure model that is composed

of M-bonded orthotropic, linearly thermoelastic, and FG

layers. The relationship between the global Cartesian

coordinate system and the local material coordinate

system of this model is assumed to be (x, y, z) = (x1, x2,

x3). The arbitrary, finite, and inhomogeneous pth layer (p =

1, 2, 3, . . ., M) is surrounded by zp and zp-1 interfaces,

respectively, and the in-plane x - and y -directions are

aligned with the horizontal edges of the mode boundaries.

In addition, the corresponding thickness is hp = zp − zp−1. It

FIGURE 4
Variation of the phonon and phason stresses for QC coating structures: (A) σyz, (B) σzz, (C) σxy, (D) Hyz, (E) Hyx, and (F) Hxy.
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also follows that the bottom and top surfaces of the laminate

are z0 = 0 and zM = H, respectively.

Figure 1B describes the variation of the material properties

in terms of the volume fraction of external material along the

z-direction for pth layer. The pth layer FG material

properties vary along the thickness direction, and they can

be a combination of 2D QC materials. According to the

multilayered structure theory, the pth layer can be divided

into arbitrary mathematical layers along the thickness

direction. For the material property distribution, the

corresponding models are taken as (Saviz, 2017)

Fp(z) � (F(zp) − F(zp−1))( z − zp−1
zp − zp−1

)n

+ Fp−1, (1)

FIGURE 5
Variation of the temperature and heat flux for QC coating structures: (A) T and (B) qz.

FIGURE 6
Effect of Ω on the phonon displacement uz (10

−7 mm): (A) Ω = 0.05, (B) Ω = 0.1, (C) Ω = 0.15, and (D) Ω = 0.2.
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where F(z) is the material property; n is the non-negative power-

law index.

Basic equation

In this part, the material local coordinate system (x1, x2, x3) is

utilized to describe the basic equations of 2D decagonal QC

materials. To simplify the formula, the non-negative power-law

index is taken as n = 1 in the following equations. QCs exhibit

symmetries that are contradictory to the classical crystalline law

of symmetry (Fan, 2011). Two different elementary excitations

are associated with atomic motion in QCs (Hu et al., 2000; Fan,

2011): phonon and phason. Phonon displacements ui (i = 1, 2, 3)

are related to the translation of atoms whereas phason

displacements wk (k = 1, 2) are related to atomic

rearrangements along the quasiperiodic direction. Both

displacement fields are needed in the analysis of QCs and are

actually coupled with each other. Based on the fundamentals of

QC linear elastic theory (Hu et al., 2000), the generalized

relationship of strain-displacement for 2D QCs is

εij � (ui,j + uj,i)/2, wkj � wk,j, (2)

where j = 1, 2, 3. εij and wkj are the strains in the phonon

and phason fields, respectively. The subscript

comma denotes the partial differentiation with respect to

the axis.

Based on Newton’s second law, the first equation of

motion in Eq. 3 is related to phonon equilibrium

equations. According to the structural fluctuations

attributed to phonon-phason coupling, the second

equation in Eq. 3 follows Bak’s model (Bak, 1985a; Bak,

1985b), as follows

σ ij,j � ρ
z2ui

zt2
, Hkj,j � ρ

z2wk

zt2
, (3)

where σij denote the phonon stresses and Hkj are the phason

stresses; ρ is the mass density.

According to the conventions in crystallography, all the

elastic properties and thermal expansion properties possess

intrinsic centrosymmetry (Hu et al., 2000). Thus, the

constitutive equations with nonlocal and thermal effects

for 2D decagonal QCs with point groups 10 mm, 1,022,

102 m, and 10/mmm can be expressed as follows (Li et al.,

2018)

FIGURE 7
Effect of Ω on the phason displacement wx (10

−9 mm): (A) Ω = 0.05, (B) Ω = 0.1, (C) Ω = 0.15, and (D) Ω = 0.2.
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σ11 � C11ε11 + C12ε22 + C13ε33 + R1(w11 + w22) − β1T,
σ22 � C12ε11 + C11ε22 + C13ε33 − R1(w11 + w22) − β2T,
σ33 � C13ε11 + C13ε22 + C33ε33 − β3T,
σ23 � σ32 � 2C44ε23,
σ31 � σ13 � 2C44ε13,
σ12 � σ21 � 2C66ε12 − R1w12 + R1w21,
H11 � R1(ε11 − ε22) +K1w11 + K2w22,
H22 � R1(ε11 − ε22) +K1w22 + K2w11,
H23 � K4w23,
H12 � −2R1ε12 +K1w12 − K2w21,
H13 � K4w13,
H21 � 2R1ε12 − K2w12 +K1w21,

(4)

where C11, C12, C13, C33, C44 are the elastic constants with the

relationship 2C66 = C11 − C12 in the phonon field; K1, K2, K4, and

R1 represent the phason elastic constants, and phonon-phason

coupling elastic constants, respectively; βi are the thermal

constants with β1 = β2; T represents the variation of the

temperature.

According to the heat conduction theory, the relationships of

the heat fluxes qi and the temperature T (Yang et al., 2014) are

q1 � −k11T,1, q2 � −k22T,2, q3 � −k33T,3, (5)

where k11, k22, and k33 represent the thermal conductivity

coefficients.

Based on the Green–Naghdi generalized thermoelastic

theory (Al-Qahtani and Datta, 2004), the extended dynamic

equations for QC thermoelastic plate in the absence of heat

generations (Yang et al., 2018) are

qi,i − T0βiui,i
z2ui

zt2
� ρCe

z2T

zt2
, (6)

where T0 is the environmental temperatures and Ce denotes the

specific heat capacity at constant strain.

Formulations of state-space method

The Cartesian coordinate system (x, y, z) is utilized to

describe the dynamic response of multilayered QC structures.

Substituting Eq. 5 into Eq. 6, the use of the principle of

conservation of energy obtains, as follows

−k11z
2T

zx2
− k22

z2T

zy2
+ zqz

zz
− T0(β1 z3ux

zxzt2
+ β2

z3uy

zyzt2
+ β3

z3uz

zzzt2
)

� ρCe
z2T

zt2
, qz � −k33zT

zz
.

(7)
According to the state-space method and multilayered

structure theory (Huang et al., 2019), the temperature T and

FIGURE 8
Effect of Ω on the phonon displacement wy (10

−9 mm): (A) Ω = 0.05, (B) Ω = 0.1, (C) Ω = 0.15, and (D) Ω = 0.2.
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heat flux qz in Eq. 7 can be taken as the state variables. Thus,

substituting Eqs 2, 4 into Eq. 3 and combined with Eq. 7, the state

equations can be derived in matrix forms as

z

zz
θ1(x, y, z, t) � Aθ1(x, y, z, t), (8)

where θ1(x, y, z, t) = [ux, uy,wx,wy, σzz, T, σxz, σyz,Hxz,Hyz, uz, qz]
T

is called the basic variables, in which the superscript “T” denotes

transpose, and the state transition matrix A is

A � [ 0 A1

A2 0
]. (9)

The submatrices A1 and A2 in Eq. 9 are

A1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2 0 0 0 − z

zx
0

0 a2 0 0 − z

zy
0

0 0 b3 0 0 0

0 0 0 b3 0 0

− z

zx
− z

zy
0 0 c8

z2

zt2
0

0 0 0 0 0 c1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 z
2

zx2 − a6
z2

zy2 + c8
z2

zt2
−(a3 + a6) z2

zxzy
−b1 z

2

zx2 + b1
z2

zy2

−(a3 + a6) z2

zxzy
−a6 z

2

zx2 − a1
z2

zy2 + c8
z2

zt2
2b1

z2

zxzy

−b1 z
2

zx2 + b1
z2

zy2 2b1
z2

zxzy
−b2( z2

zx2 +
z2

zy2) + c8
z2

zt2

−2b1 z2

zxzy
−b1 z

2

zx2 + b1
z2

zy2 0

a4
z

zx
a4

z

zy
0

−c2c6 z3

zxzt2
−c2c6 z3

zyzt2
0

−2b1 z2

zxzy
a4

z

zx
c2

z

zx

−b1 z
2

zx2 + b1
z2

zy2 a4
z

zy
c2

z

zy

0 0 0

−b2( z2

zx2 +
z2

zy2) + c8
z2

zt2
0 0

0 a5 c3

0 −c3c6 z
2

zt2
c4

z2

zx2 + c5
z2

zy2 − c7
z2

zt2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)

where the coefficients in Eq. 10 are written as follows

a1 � C11 − C2
13

C33
, a2 � 1

C44
, a3 � C12 − C2

13

C33
, a4 � −C13

C33
, a5 � 1

C33
,

a6 � C66, b1 � R1, b2 � K1, b3 � 1
K4

, c1 � − 1
k33

, c2 � β1 −
C13β3
C33

,

c3 � β3
C33

, c4 � k11, c5 � k22, c6 � T0, c7 � ρCe + T0
β23
C33

, c8 � ρ. (11)

The eliminating in-plane variables θ2(x, y, z, t) = [σxx, σyy, σxy,

Hxx, Hyy, Hxy, Hyx, qx, qy]
T can be expressed as

σxx � a1
zux

zx
+ a3

zuy

zy
+ b1

zwx

zx
+ b1

zwy

zy
− a4σzz − c2T,

σyy � a3
zux

zx
+ a1

zuy

zy
− b1

zwx

zx
− b1

zwy

zy
− a4σzz − c2T,

σxy � a6
zux

zy
+ a6

zuy

zx
− b1

zwx

zy
+ b1

zwy

zx
,

Hxx � b1
zux

zx
− b1

zuy

zy
+ b2

zwx

zx
+ b4

zwy

zy
,

Hyy � b1
zux

zx
− b1

zuy

zy
+ b4

zwx

zx
+ b2

zwy

zy
,

Hxy � −b1zux

zy
− b1

zuy

zx
+ b2

zwx

zy
− b4

zwy

zx
,

Hyx � b1
zux

zy
+ b1

zuy

zx
− b4

zwx

zy
+ b2

zwy

zx
,

qx � −c4zT
zx

,

qy � −c5zT
zy

,

(12)

with b4 = K2.

For the rectangular composite materials with ideal constraints at

the edges, Simply supported (S), Clamped supported (C), and zero

temperature boundary conditions are listed in the x- and y-

directions as follows

{ S: uy � uz � wy � σxx � Hxx � 0, T � 0
C: ux � uy � uz � wx � wy � 0, T � 0

at x � 0 and x � Lx,

S: ux � uz � wx � σyy � Hyy � 0, T � 0 at y � 0 and y � Ly,

(13)

where “S” indicates the simply supported boundary condition and

“C” is the clamped supported boundary condition. For example,

“CSCS” denotes the model with the clamped supported boundary

conditions at x = 0 and x = Lx, and others are simply supported

boundary conditions at y = 0 and y = Ly, respectively.

For the simply supported boundary conditions of the FG 2D

QC coating structures in the y-direction, the Fourier series is

sufficiently general to obtain the solutions, as follows
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ux(x, y, z, t)
uy(x, y, z, t)
wx(x, y, z, t)
wy(x, y, z, t)
σzz(x, y, z, t)
qz(x, y, z, t)
σxz(x, y, z, t)
σyz(x, y, z, t)
Hxz(x, y, z, t)
Hyz(x, y, z, t)
uz(x, y, z, t)
T(x, y, z, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ∑∞
l�1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

~ux(x, z) sin(qy)
~uy(x, z) cos(qy)
~wx(x, z) sin(qy)
~wy(x, z) cos(qy)
~σzz(x, z) sin(qy)
~qz(x, z) sin(qy)
~σxz(x, z) sin(qy)
~σyz(x, z) cos(qy)
~Hxz(x, z) sin(qy)
~Hyz(x, z) cos(qy)
~uz(x, z) sin(qy)
~T(x, z) sin(qy)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eiωt,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σxx(x, y, z, t)
σyy(x, y, z, t)
σxy(x, y, z, t)
Hxx(x, y, z, t)
Hyy(x, y, z, t)
Hxy(x, y, z, t)
Hyx(x, y, z, t)
qx(x, y, z, t)
qy(x, y, z, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ∑∞
l�1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

~σxx(x, z) sin(qy)
~σyy(x, z) sin(qy)
~σxy(x, z) cos(qy)
~Hxx(x, z) sin(qy)
~Hyy(x, z) sin(qy)
~Hxy(x, z) cos(qy)
~Hyx(x, z) cos(qy)
~qx(x, z) sin(qy)
~qy(x, z) cos(qy)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eiωt,

(14)

where ω is the angular frequency, and imaginary i =
���−1√

; the

half-wave numbers are taken as q = lπ/Ly with l being the

positive integers so that all Fourier series expansion

coefficients are related to the summations for l.

Incorporating Eq. 14 with Eqs 8, 12 yields

z

zz
~θ1(x, z) � ~A~θ1(x, z), ~θ2(x, z) � ~G~θ2(x, z), (15)

where ~θ1(x, z) � [~ux, ~u y, ~wx, ~wy, ~σzz, ~T, ~σxz, ~σyz,
~Hxz, ~Hyz, ~uz, ~qz]T; ~A and ~G are both the coefficient matrixes;
~θ2(x, z) � [~σxx, ~σyy, ~σxy, ~Hxx, ~Hyy, ~Hyx, ~Hxy, ~qx, ~qx]T.

Although the Fourier series can be used to satisfy the simply

supported boundary conditions in the y-direction, the coating

structures with the clamped supported and mixed boundary

condition cannot be solved in the x-direction. Here, DQM is

used to deal with this problem. DQM is a numerical method for

solving ordinary differential, partial differential, integral, and

integrodifferential equations. And DQM has been approved as

highly efficient for the rapid solution of various typical boundary

value and initial value problems (Lü et al., 2008).

In this paper, Eq. 15 are dispersed using DQM to separate the

dependence on them to the x-direction and convert the partial

differentials Eq. 15 into ordinary differential equations. Here, the

Chebyshev-Gauss-Lobatto grid space model (Lü et al., 2006) is

adopted in the in-plane discrete direction

xr � Lx

2
[1 − cos( r − 1

N − 1
π)] (r � 1, 2, 3,/N), (16)

where N is the number of sampling points.

Based on the DQM, Eq. 15 can be rewritten as

FIGURE 9
Effect of Ω on the temperature T (K): (A) Ω = 0.05, (B) Ω = 0.1, (C) Ω = 0.15, and (D) Ω = 0.2.
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d~uxr

dz
� a2 ~σxzr −∑N

k�1
X(1)

rk ~uzk,
d~uyr

dz
� a2 ~σyzr − q~uzr ,

d ~wxr

dz
� b3 ~Hxzr,

d ~wyr

dz
� b3 ~Hyzr,

d~σzzr
dz

� −c8ω2uzr −∑N
k�1

X(1)
rk ~σxzr + q~σyzr ,

d~Tr

dz
� c1~qzr,

d~σxzr
dz

� −c8ω2uxr − a1∑N
k�1

X(2)
rk ~uxk + a6q

2 ~uxr + (a3 + a6)q∑N
k�1

X(1)
rk ~uyk − b1∑N

k�1
X(2)

rk ~wxk

−b1q2 ~wxr + 2b1q∑N
k�1

X(1)
rk ~wyk + a4∑N

k�1
X(1)

rk ~σzzk + c2∑N
k�1

X(1)
rk

~Tk,

d~σyzr
dz

� −(a3 + a6)q∑N
k�1

X(1)
rk ~uxk − c8ω

2uyr − a6∑N
k�1

X(2)
rk ~uyk + a1q

2 ~uyr+

2b1q∑N
k�1

X(1)
rk ~wxk − b1∑N

k�1
X(2)

rk ~wyk − b1q
2 ~wyr + a4q~σzzr + c2q~Tr,

d ~Hxzr

dz
� −b1∑N

k�1
X(2)

rk ~uxk − b1q
2 ~uxr − 2b1q∑N

k�1
X(1)

rk ~uyk − c8ω
2wxr − b2∑N

k�1
X(2)

rk ~wxk + b2q
2 ~wxr,

d ~Hyzr

dz
� −2b1q∑N

k�1
X(1)

rk ~uxk − b1∑N
k�1

X(2)
rk ~uyj − b1q

2 ~uyr − c8ω
2wyr − b2∑N

k�1
X(2)

rk ~wyk + b2q
2 ~wyr,

d~uzr

dz
� a4∑N

k�1
X(1)

rk ~uxk − a4q~uyr + a5 ~σzzr + c3 ~Tr,

d~qzr
dz

� c2c6ω
2∑N
k�1

X(1)
rk ~uxk + c2c6ω

2q~uyr + c3c6ω
2 ~σzzr + c4 ∑Nx

k�1
X(2)

ik
~Tkj − c5q

2 ~Tr + c7ω
2 ~Tr,

(17)

~σxxr � a1∑N
k�1

X(1)
rk ~uxk − a3q~uyr + b1∑N

k�1
X(1)

rk ~wxk − b1q ~wyr − a4~σzzr − c2 ~Tr,

~σyyr � a3∑N
k�1

X(1)
rk ~uxk − a1q~uyr − b1∑N

k�1
X(1)

rk ~wxk + b1q ~wyr − a4~σzzr − c2 ~Tr,

~σxyr � a6q~uxr + a6∑N
k�1

X(1)
rk ~uyk − b1q ~wxr + b1∑N

k�1
X(1)

rk ~wyk,

~Hxxr � b1∑N
k�1

X(1)
rk ~uxk + b1q~uyr + b2∑N

k�1
X(1)

rk ~wxk − b4q ~wyr,

~Hyyr � b1∑N
k�1

X(1)
rk ~uxk + b1q~uyr + b4∑N

k�1
X(1)

rk ~wxk − b2q ~wyr,

~Hxyr � −bq~uxr − b1∑N
k�1

X(1)
rk ~uyk + b2q ~wxr − b4∑N

k�1
X(1)

rk ~wyk,

~Hyxr � b1q~uxr + b1∑N
k�1

X(1)
rk ~uyk − b4q ~wxr + b2∑N

k�1
X(1)

rk ~wyk,

~qxr � −c4∑N
k�1

X(1)
rk

~Tk,

~qyr � −c5q~Tr,

(18)

whereX(m)
rk (1≤m ≤ N − 1) are the differential quadrature weight

coefficients.

FIGURE 10
Effect of Ω on the heat flux qx (10 W/m2): (A) Ω = 0.05, (B) Ω = 0.1, (C) Ω = 0.15, and (D) Ω = 0.2.
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For a special problem, the boundary conditions should also

be incorporated into the state Eq. 17 so as to obtain the solution.

Two typical supporting conditions at x = 0 and x = Lx can be

rewritten as

Simply supported (S): ~uyd � ~uzd � ~wyd � ~σxxd � ~Hxxd � 0,

~T � 0, (19)
Clamped supported (C): ~uxd � ~uyd � ~uzd � ~wxd � ~wyd � 0,

~T � 0, (20)

where d = 1 or N.

However, the phonon and phason stress boundary

conditions ~σxxd � ~Hxxd � 0 cannot be introduced into Eq. 17

directly and should be considered by virtue of the expressions of

state variables using Eq. 18. In this paper, three boundary

conditions of SSSS, CSCS, and CSSS are considered, and the

updated state equations for the QC multilayered structure with

boundary conditions CSSS are listed in Eq. A1 of Appendix A.

General solutions for 2D quasicrystal
laminate

For the pth layer, the state Eq. A1 that satisfies the

corresponding boundary conditions can be written as the

following unified matrix form

d
dz
δ(p) � T(p)δ(p), (21)

where δ(p) � [~u xr, ~uyr, ~wxr, ~wyr, ~σzzr, ~Tr, ~σxzr, ~σyzr, ~Hxzr, ~Hyzr,

~uzr, ~qzr]T; T(p) is the coefficient matrix.

According to the theory of ordinary differential equation, the

solutions of Eq. 21 are derived at the upper and lower interfaces

of the pth layer

δ(p)(z)� exp[T(p)(z − zp−1)]δ(p)(zp−1) (zp−1 ≤ z≤ zp). (22)

Let z � zp in Eq. 22, we find that

δ(p) � M(p)δ(p), (23)

where M(p)� exp[(zp − zp−1)T(p)]� exp[hpT(p)].
Similarly, we get

δ(p+1) � M(p+1)δ(p+1). (24)

Assume that the interface zp is formed by bonding the

upper surface z+p of the pth layer and the lower surface z−p of
the (p+1)-th layer, and the nearby layers are perfectly

linked.

The field variables are assumed to be continuous, so the

interface conditions are as follows

~u(p)+ir � ~u(p)−ir , ~w(p)+kr � ~w(p)−kr , ~T
(p)+
r � ~T

(p)−
r , ~σ(p)+izr

� ~σ(p)−izr , ~H(p)+
kzr � ~H(p)−

kzr , ~q(p)+zr � ~q(p)−zr , (25)

FIGURE 11
Effect of Ω on the heat flux qy (10 W/m2): (A) Ω = 0.05, (B) Ω = 0.1, (C) Ω = 0.15, and (D) Ω = 0.2.
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where the superscripts “+” and “−” are defined as variables on the

upper surface of the pth layer and variables on the lower surface

of the (p + 1)-th layer, respectively.

However, if the thickness hp (z − zp) in Eq. 22 is large, or the

coefficient matrix T(p) exists maxima or minima values,

numerical instability will be encountered. In addition, when it

comes to the cases of high-order frequencies and large discrete

point numbers (Chen et al., 2003; Lü et al., 2006), the numerical

instabilities will also arise by the conventional propagator matrix

M(p) (hp) in Eq. 23. Several methods have been developed to deal

with this numerical difficulty. In this section, based on the joint

coupling matrices (Lü et al., 2008), a new transfer relation is

established to resolve this problem.

According to interface conditions, field variables can be

rewritten as

J(p)c [ τ(p)+
τ(p)− ] � 0 (p � 1, 2, 3, . . . ,M − 1), (26)

where Jc = [I, −I] is the joint coupling matrix at the interface

zp, and

τ � [~uxr, ~uyr, ~wxr, ~wyr, ~uzr, ~qzr, ~σxzr, ~σyzr, ~σzzr, ~Hxzr, ~Hyzr, ~Tr]T. (27)

Similarly, we can obtain the relationship of the top and

bottom surfaces for the whole QC model, as follows

Jtτ
(M)− � t(H), Jwτ(0)+ � t(0), (28)

where Jt = Jw = [I, 0], and t � [~σxzr, ~σyzr, ~σzzr, ~Hxzr, ~Hyzr, ~Tr]T.
It is assumed that the mechanical boundary conditions on the

top and bottom surfaces of the model are zero, and a top surface

harmonic heat temperature is considered, i.e.,

z � H: ~σxzr � ~σyzr � ~σzzr � ~Hxzr � ~Hyzr � 0, ~Tr � ~T0e
iωt sin qy,

z � 0: ~σxzr � ~σyzr � ~σzzr � ~Hxzr � ~Hyzr � ~Tr � 0,

(29)
where

~T0 � [Ts sin(πx2/Lx), /, Ts sin(πxr/Lx), /,

Ts sin(πxN−1/Lx)]T (2≤ r≤N − 1), (30)

with temperature amplitude Ts.

From Eqs 26, 28, one gets

Jτ � f , (31)
where

J � diag[Jt, Jc, /, Jc, Jw], f � [t(H), 0, /, 0, t(0)]T,
τ � ⎡⎣(τ(M)−)T, ( τ(M−1)+

τ(M−1)− )
T

, . . . ,( τ(1)+

τ(1)−
)T

, (τ(0)+)T⎤⎦
T

.
(32)

τ can be rewritten as

FIGURE 12
Variation of the phonon and phason displacements for QC coating structures: (A) ux, (B) uz, (C) wx, and (D)wy.

Frontiers in Materials frontiersin.org12

Feng et al. 10.3389/fmats.2022.963149

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.963149


τ � ⎡⎣( τ(M)−

τ(M−1)+ )
T

, ( τ(M−1)−

τ(M−2)+ )
T

, . . . , ( τ(2)−

τ(1)+
)T

, ( τ(1)−

τ(0)+
)T⎤⎦T.

(33)
The whole structure can be defined as

τ � Nτ+, (34)
where

N � diag[(M(M)

I
), (M(M−1)

I
), /, (M(2)

I
), (M(1)

I
)],

τ− � [(τ(M−1)+)T, (τ(M−2)+)T, /, (τ(1)+)T, (τ(0)+)T]T.
(35)

Substituting Eq. 34 into Eq. 31 results in

JNτ � f . (36)

Eq. 36 can be rewritten as

τ � [JN]−1f , (37)

where the superscript “−1” represents the inverse of the matrix.

Using Eqs 37, 18, the forced vibration solutions of the whole

QC coating structure are obtained.

FIGURE 13
Variation of the phonon and phason stresses for QC coating structures: (A) σxz, (B) σzz, (C) σxx, (D) Hxz, (E) Hxx, and (F) Hxy.
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Numerical examples

Typical illustrative examples of the fully coupled

thermoelasticity theory in multilayered QC structures are

provided for forced vibration analysis. The multilayered FG

QC coating model is composed of three single layers of the

same thickness, and the dimensions of this laminate are Lx × Ly ×

H = 1 mm × 1 mm × 0.3 mm. Two kinds of QC materials (called

QC1 and QC2) are considered for every single layer, and the

thermoelasticity material properties of QC1 (top) and QC2

(bottom) are listed in Table 1. And two kinds of material

parameters completely match the elastic deformation energy

density of the QC (Hwu, 2010; Fan, 2011), so they can be

used to calculate the relative changes of the dynamic analysis

for the 2D FG QC structures. In addition, the temperature

amplitude Ts is taken as 1 K. The following discussions are

based on calculations with l = 1, and the discrete points are

taken as N = 25. For the convenience of expression, the natural

frequencies of the layered structures are considered to be

dimensionless as Ω = ωLmax/
���������
Cmax/ρmax

√
, where Lmax is the

maximum lateral dimension of the structure model; Cmax and

ρmax represent the maximum elastic constant and density in this

model, respectively.

It is assumed that the tractive force and harmonic heat

temperature on the top and bottom surfaces of the model are

zero. The first-order dimensionless natural frequencies Ω for the

QC1/QC1/QC1 plate with boundary conditions SSSS is Ω =

0.33471. In order to the resonance of the QC laminates, the

dimensionless frequencies for force vibration response are taken

as Ω = 0.05, 0.1, 0.15, and 0.2. It is noted that the static closed-

form solutions of this model can be obtained at Ω = 0.

One numerical example of the QC plate with the boundary

condition SSSS to verify the validity and accuracy of the proposed

method and the numerical solution is presented in Figure 2. The

material parameters, the shape and size of the plate, the

quasicrystal quasi-periodic direction, and the mechanical

quantities used are consistent with those in Ref. (Yang et al.,

2018). The phonon and phason displacements and stresses uy,wy,

σyy, and Hyy are normalized by their maximum values among

these four variables along the thickness direction. The results

obtained by the pseudo-Stroh formalism (Yang et al., 2018) and

the presented method are consistent. This feature indicates that

the method in this paper has high precision and good

convergence and the solutions are stable.

Functionally graded quasicrystal coating
structures with boundary condition CSCS

In this part, the solutions of the FG QC coating structures

with boundary conditions CSCS are presented. The power law

index is set as n = 0.2, 0.6, 1, 2, and 6. The frequency is taken as

Ω = 0.1. The horizontal coordinate is fixed at (x, y) = (0.25Lx,

0.75Ly).

Figure 3 illustrates the effects of the power law index n on the

phonon and phason displacement components of the structures

along the thickness direction. Regarding the displacement

solutions induced by the time harmonic temperature loadings

only, where a complete reversal variation of uy and wy occurs in

Figures 3A,D with increasing n, both displacement components

are sensitive to n. The distribution of uz (Figure 3B) internal

model is nonlinear rather than functional, which is consistent

with the elastic theory of models. wx (Figure 3C) are more

sensitive to n than wy, and the value of wx is greater than that

of wy.

Figure 4 illustrates the effects of the power law index n on the

phonon and phason stress components of the QC coating

structures along the thickness direction. The solution strictly

satisfies the basic equation of 2D QC material, and the

distributions of field variables at any position of the

multilayered structure can also be presented. Since each layer

of the coating structure is inhomogeneous, the distributions of σyz

FIGURE 14
Variation of the temperature and heat flux for QC coating structures: (A) T and (B) qz.
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and σzz along the z-direction are not symmetrical in Figures 4A,B.

σxy, Hyx, and Hxy (Figures 4C,E,F) are similar between layers,

which are discontinuous between internal interfaces. Based on

the classic elasticity theory, only the local stress of the basic

equation of the QC is considered. But in fact, the stress state also

includes the strong interlayer stress between the interfaces. The

high-interlayer stress is considered to be one of the special failure

mechanisms of composite materials in engineering applications.

In addition, if the material properties at the interfaces are the

same, these stresses are continuous for these structure models.

The distribution of Hyz (Figure 4D) is nonlinear, and the value is

zero at the external surfaces. For the above physical variables, if

DQM will be also utilized to discretize domains along the y-

direction, the superposition l will not appear in the formulations

of the exact solution.

Figure 5 illustrates the effects of the power law index n on the

temperature and heat flux of the QC coating structures along the

thickness direction. The vertical heat flux qz (Figure 5B) for

multilayers is more sensitive to n than the temperature T

(Figure 5A). This feature is attributed to qz which is affected

by a linear material constant k33 in Eq. 5. In addition, n has a

significant effect on qz and does not change its magnitude and

direction at the top and bottom surfaces of the QC coating

structures.

Functionally graded quasicrystal coating
structures with boundary condition CSSS

In this part, the solutions of the FG QC coating structures

with boundary conditions CSSS along the thickness direction are

presented. The power law index is set as n = 1. The frequencies

are taken as Ω = 0.05, 0.1, 0.15, and 0.2.

Figures 6–8 present the contour plots of uz, wx, and wy for the

coating structures on the x-z plane with y = 0.75Ly, respectively.

The maximum magnitudes of uz (Figures 6A–D), wx (Figures

7A–D), and wy (Figures 8A–D) exist near the top surface and

increase with the increase of Ω. And Ω has a slight effect on uz,

wx, andwy. Due to the gradient distribution of the material within

the coating structures, the variation of these displacements of this

model is not symmetric at x = 0.5 mm. Different from uz and wy,

the value ofwx is not zero at x = Lx. This feature is consistent with

the linear elastic theory of models. In addition, the variation of uz,

wx, and wy can also prove that the values of any position in the

model can be obtained.

Figures 9–11 present the contour plots of T, qx, and qy for the

coating structures on the x-z plane with y = 0.75Ly, respectively.

The distributions of T, qx, and qy are symmetric at x = 0.5 mm,

and these variables are not affected by boundary conditions. T

(Figures 9A–D) and qx (Figures 10A–D) obviously change with

the different Ω, and they are slightly sensitive to the values of Ω.
qx and qy (Figures 11A–D) are discontinuous at the internal

interfaces, and interlaminar heat fluxes are little affected by Ω.

Interlaminar thermal stress and interlaminar heat fluxes are

attributed to the thermophysical and mechanical properties

mismatching between the sublayers of the QC coating

structures under the time-harmonic temperature loadings,

which would inevitably involve interlayer failure of the

laminate and reduce the carrying capacity.

Functionally graded quasicrystal coating
structures with boundary conditions SSSS,
CSCS, and CSSS

In this part, the solution of the FGQC coating structures with

boundary conditions SSSS, CSCS, and CSSS along the thickness

direction is presented. The power law index is set as n = 1. The

frequency is taken as Ω = 0.1. The horizontal coordinate is fixed

at (x, y) = (0.25Lx, 0.75Ly).

Figure 12 illustrates the effects of the different boundary

conditions on the phonon and phason displacement components

of the coating structures along the thickness direction. It can be

observed that the different boundary conditions have an obvious

influence on uy, uz, wx, and wy (Figures 12A–D). The maximum

magnitudes of uz exist at the top surface of the coating structure.

And the values of uz decrease with the increase of clamped-

supported boundary conditions. This feature indicates that the

clamped-supported boundary conditions have a great effect on

uz, and the rigidity of the coating structure is constantly getting

stronger.

Figure 13 illustrates the effects of the different boundary

conditions on the phonon and phason stress components of the

coating structures along the thickness direction. The

distributions of σxz, σzz, σxx, Hxz, Hxx, and Hxy (Figures

13A–F) are considerably altered by the clamped supported

boundary conditions. It is noted that the values of σxz, σzz,

and Hxz on the bottom and top surfaces are zero (i.e., free

tractions for thermal loadings), which validates the present

formulation and the numerical results by the surface

boundary conditions. The interlaminar stress values of σxx and

Hxx with boundary conditions SSSS are greater than that of σxx
and Hxx with CSCS and CSSS, while σxy and Hxy are the opposite.

Figure 14 illustrates the effects of the different boundary

conditions on T and qz of the coating structures along the

thickness direction. The values and distributions of T and qz
(Figures 14A,B) are insensitive to different boundary conditions,

and the heat fluxes qx and qy possess the same feature as qz.

Conclusion

The exact solutions for time-harmonic temperature loadings

in multilayered anisotropic FG QC coating structures with mixed

supported boundary conditions are derived in a thermal

environment. While different boundary conditions for each
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inhomogeneous layer are satisfied using the DQM and the

Fourier series to obtain the general field solutions, the

multilayered feature is globally handed by improving the

traditional propagation matrix method with joint coupling

matrices. The present framework admits different mechanical

and thermal boundary conditions to derive the exact solutions

and can be applied to thick and thin laminated structures,

without producing numerical instability issues from high

frequency and/or large discrete point numbers. Application

illustrations are proposed to throw light on various effects of

the power-law index n, frequency Ω, and different boundary

conditions on the thermoelastic fields in three multilayered

structures, namely:

1) Different from the conventional propagator matrix method,

the global propagator relation is reestablished to resolve

numerical instabilities in the case of large discrete point

numbers and high frequencies for QC coating structures.

Numerical examples prove that this method has high

precision and good convergence at N = 25.

2) Depending on the input frequency amplitude, severe

oscillating displacements and stresses take place on each

layer and interface that can endanger the safety-related

strength and stiffness of the three-layer coatings. The

remarkable change in the magnitude and distributions of

the induced thermal stresses σxx, σyy, σxy, Hxx, Hxy, Hyy, Hyx

and heat fluxes qx, qy with increasing boundary conditions

and frequency amplitude is exhibited.

3) The internal displacement, stress, and temperature fields due

to time-harmonically forced vibration for QC coating

structures are described using the power law index. The

field variables are sensitive to the power law index except

for temperature T, and their distributions are different with

the change of n.

Overall, the methods and numerical results in this paper can

be utilized to validate the accuracy of other numerical methods

and serve for the analysis and design of multilayered QC samples

with desired time-harmonic thermoelastic responses.
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Appendix A: This appendix contains
some equations cited in the text of
the present paper.

The state equations for CSSS are

d~uxr

dz
� a2 ~σxzr − ∑N−1

k�2
X(1)

rk ~uzk (2≤ r≤N), d~uyr

dz
� a2 ~σyzr − q~uzr (2≤ r≤N − 1),

d ~wxr

dz
� b3 ~Hxzr (2≤ r ≤N), d ~wyr

dz
� b3 ~Hyzr (2≤ r≤N − 1),

d~σzzr
dz

� −c8ω2uzr −∑N
k�2

X(1)
rk ~σxzk + q~σyzr − 1

a2
∑N−1

k�2
f1rk ~uzk (2≤ r≤N − 1), d~Tr

dz
� c1 ~qzr (2≤ r≤N − 1),

d~σxzr
dz

� −c8ω2uxr − a1∑N
k�2

X(2)
rk ~uxk − a24

a5
∑N
k�2

f1rk ~uxk + a6q
2 ~uxr + a1∑N

k�2
fNrk ~uxk + (a3 + a6)q ∑N−1

k�2
X(1)

rk ~uyk

−b1 ∑N−1

k�2
X(2)

rk ~wxk − b1q
2 ~wxr + b1∑N

k�2
fNrk ~wxk + 2b1q∑N

k�2
X(1)

rk ~wyk + a4 ∑N−1

k�2
X(1)

rk ~σzzk

+c2 ∑N−1

k�2
X(1)

rk
~Tk (2≤ r≤N),

d~σyzr
dz

� −(a3 + a6)q∑N
k�2

X(1)
rk ~uxk − c8ω

2uyr − a6 ∑N−1

k�2
X(2)

rk ~uyk + a1q
2 ~uyr

+2b1q∑N
k�2

X(1)
rk ~wxk − b1 ∑N−1

k�2
X(2)

rk ~wyk − b1q
2 ~wyr + a4q~σzzr + c2q~Tr (2≤ r≤N − 1),

d ~Hxzr

dz
� −b1∑N

k�2
X(2)

rk ~uxk − b1q
2 ~uxr − 2b1q ∑N−1

k�2
X(1)

rk ~uyk − c8ω
2wxr − b2∑N

k�2
X(2)

rk ~wxk + b2q
2 ~wxr (2≤ r≤N),

d ~Hyzr

dz
� −2b1q∑N

k�2
X(1)

rk ~uxk − b1 ∑N−1

k�2
X(2)

rk ~uyk − b1q
2 ~uyr − c8ω

2wyr − b2 ∑N−1

k�2
X(2)

rk ~wyk

+b2q2 ~wyr (2≤ r ≤N − 1),
d~uzr

dz
� a4∑N

k�2
X(1)

rk ~uxk − a4q~uyr + a5 ~σzzr + c3 ~Tr (2≤ r≤N − 1),

d~qzr
dz

� c2c6ω
2∑N
k�2

X(1)
rk ~uxk + c2c6ω

2q~uyr + c3c6ω
2 ~σzzr + c4 ∑N−1

k�2
X(2)

ik
~Tkj − c5q

2 ~Tr + c7ω
2 ~Tr (2≤ r ≤N − 1),

(A1)

with f1rk � X(1)
r1 X

(1)
1k , fNrk � X(1)

rNX
(1)
Nr .
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