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Small-angle X-ray scattering (SAXS) is a useful technique for nanoscale

structural characterization of materials. In SAXS, structural and spatial

information is indirectly obtained from the scattering intensity in the spectral

domain, known as the reciprocal space. Therefore, characterizing the

structure requires solving the inverse problem of finding a plausible structure

model that corresponds to the measured scattering intensity. Both the choice

of structure model and the computational workload of parameter estimation

are bottlenecks in this process. In this work, we develop a framework for

analysis of SAXS data from disordered materials. The materials are modeled

using Gaussian Random Fields (GRFs). We study the case of two phases, pore

and solid, and three phases, where a third phase is added at the interface

between the two other phases. Further, we develop very fast GPU-accelerated,

Fourier transform-based numericalmethods for both structure generation and

SAXS simulation. We demonstrate that length scales and volume fractions

can be predicted with good accuracy using our machine learning-based

framework. The parameter prediction executes virtually instantaneously and

hence the computational burden of conventional model fitting can be

avoided.

KEYWORDS

machine learning, Gaussian random field, regression, porous material, disordered material, small

angle X-ray scattering, boosted trees

1 Introduction

For heterogeneous, disordered materials, the microstructure i.e. the geometry
of the different phases substantially influences the performance of a material, e.g.,
thermal, electric, mechanical, andmass transport properties (Torquato, 2010). Therefore,
characterizing the microstructure is a crucial step towards understanding the material
and optimizing its design. A vast number of applications of advanced materials

Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2022.956839
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2022.956839&domain=pdf&date_stamp=2021-10-15
https://doi.org/10.3389/fmats.2022.956839
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2022.956839/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.956839/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.956839/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.956839/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Röding et al. 10.3389/fmats.2022.956839

rely on precise control of physical and chemical processes
within a microstructure with length scales in the nanometer
range, like batteries, chemical separation techniques, and
chromatography (Gommes, 2018). To characterize detailed
random porous structures, high-resolution 3D imaging
techniques e.g., micro/nano X-ray computed tomography (X-
ray CT), focused ion beam scanning electron microscopy
(FIB-SEM), and transmission electron microscopy tomography
(TEMT) can provide high quality information on morphological
features. Nevertheless, imaging techniques are frequently time-
consuming and require advanced sample preparation methods
or sample environments. Moreover, the attainable contrast is
strongly sample-dependent and can be prohibitively low.

Complementary to imaging approaches at the nanoscale,
small-angle X-ray scattering (SAXS) is a powerful technique
that characterizes the nanostructure via a scattering intensity
measured in the spectral domain (reciprocal space). More
precisely, the spatial distribution of electron density is indirectly
observed through the elastic scattering behaviour of X-rays
passing through the material. The interaction with the sample
forces the X-rays to change direction with a certain angle (the
scattering angle). The intensity as a function of scattering angle
is related to the electron density distribution through a Fourier
transform. With a modern 2D pixel-array detector, SAXS can
easily provide structural information for sub-micron length
scales and all the way down to a few Ångström, by changing
the sample-to-detector distance from meters to millimeters
accordingly. In addition, owing to the high penetration power
of X-rays, the sample can be studied in different states of
matter e.g. gas, solution, or solid, and in other conditions
coupled with thermal, mechanical, electrical and magnetic fields
(Li et al., 2016). With the latest X-ray detection techniques,
SAXS measurements become rather fast, in particular at
synchrotron facilities offering high photon flux where hundreds
of measurements per second can be performed. This enables
so-called in situ/in-operando characterization of continuous
nanostructure development. SAXShas been applied to numerous
types of materials including nanostructures (Li et al., 2016),
biomacromolecules (Blanchet and Svergun, 2013), polymers
(Chu and Hsiao, 2001), and porous materials (Welborn and
Detsi, 2020).

However, a major challenge of SAXS is that the electron
density distribution is in general not uniquely determined by the
scattering intensity, owing to the ‘phase problem’ (Taylor, 2003):
as X-rays are electromagnetic waves having two important
parameters, amplitude and phase, the intensity recorded on
the detector is the modulus of the wave’s Poynting vector and
proportional to the square of the amplitude of the scattered wave,
while the phase information is lost in the experiment. In addition,
for isotropic systems, the scattering intensity can be presented
in a one-dimensional curve that constitutes spherically-averaged
spectral magnitudes, further compressing the information. In

effect, the SAXS data contains much less information than
the corresponding full, three-dimensional Fourier transform.
Limited prior knowledge warrants the fitting of multiple SAXS
models in a trial-and-error fashion, which can be a daunting
task even for an experienced investigator (Archibald et al., 2020;
Do et al., 2020). Further, fitting of non-analytical models can be
computationally prohibitive.

Because data analysis constitutes a bottleneck in the
use of SAXS, numerous approaches based on machine
learning have been proposed in recent years, with the aim of
accelerating the data analysis and providing decision support
for the operator. Most also focus on biomacromolecules and
nanoparticles, which are usually characterized in dilute solution
by SAXS. For example, Franke et al. (Franke et al., 2018) use
k-nearest neighbors to classify SAXS data based on particle
shapes, diameters, and molecular mass; Archibald et al.
(Archibald et al., 2020) use weighted k-nearest neighbors and
Gaussian processes for classifying SAXS data and determine the
most probable type of structure; He et al. (He et al., 2020) use
a convolutional neural network-based autoencoder combined
with a genetic algorithm to search for structures that are
consistent with SAXS data; Scherdel et al. (Scherdel et al., 2021)
use machine learning to directly predict effective properties such
as thermal conductivity of silica aerogels; Tomaszewski et al.
(Tomaszewski et al., 2021) evaluate numerous machine learning
approaches to classifying SAXS data.

In this work, we investigate disordered, porous materials
where the electron density distribution is modeled using
thresholded Gaussian Random Fields (GRFs). This serves
as a model system representing continuous multiphase
distributions with irregular geometric shapes; this is different
from many biomacromolecules and nanoparticles characterized
by SAXS which are often treated as isolated systems and
can be modelled ab initio. GRFs are frequently used as
models for materials microstructures, because they realistically
describe phase-separated, heterogeneous materials, originating
from a description of spinodal decomposition by Cahn and
Hilliard (Cahn and Hilliard, 1958). GRFs have been used in
models for scattering data (Berk, 1991; Quintanilla et al., 2007;
Gommes, 2013; Gommes and Roberts, 2018) and as material
models for a wide variety of materials both for SAXS analysis
and otherwise, including microemulsions (Teubner, 1991;
Chen et al., 1996), polymer blends (Jinnai et al., 1997;
D’hollander et al., 2010; Barman et al., 2019), lithium-ion
batteries (Feinauer et al., 2015), porous alloys for energy storage
and catalysis (Geslin et al., 2015; Lu et al., 2018), and gels
(Roberts, 1997; Gommes and Roberts, 2008). We study the case
of two phases, pore (vacuum/air) and solid, and three phases,
where the third phase is an intermediate layer residing by the
interface between pore and solid. We generate a large number of
virtualmicrostructures for a number of cases.We further develop
a Fourier transform-based numerical method for simulating
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realistic SAXS data. Both the structure generation and SAXS
simulation methods are heavily optimized and implemented on
GPU with a combined execution time in the order of 1 s. Using
the simulated SAXS data as input and the known generation
parameters as target output in a machine learning framework,
we demonstrate that length scales and volume fractions can
be predicted with good accuracy. Our framework is a proof of
concept that can be applied to other types of disorderedmaterials
as well, in particular other Gaussian random field-based models
with different covariance structures.

2 Results and discussion

2.1 Simulation of scattering intensity

In SAXS, the sample is irradiated with collimated or
focused X-rays, the incident-radiation wavelength (of the
monochromatic X-rays) being λ. The intensity of the elastically
scattered X-ray is measured as a function of the magnitude
of the scattering vector, q = |q|, where q = 2π(k− k0). Here,
k0 and k are the wave vectors of the X-rays before and
after scattering. The scattering angle 2θ is related to q by
q = 4π sin(θ)/λ (Sorbier et al., 2019). Since the scattering arises
from the interaction between X-rays and the electron clouds of
the atoms, theoretically the scattering intensity can be written as

I (q) = | (Fρ) (q) |2, (1)

where Fρ is the (3D) Fourier transform of the electron
density. In practice, the theoretic intensity may be compared
to the experimental data with a prefactor I0 which depends on
experimental conditions, and is not considered in this work
by assuming that I0 = 1 throughout. The 1D scattering data is
acquired as a spherical mean intensity in q space, I(q), computed
by orientational averaging over the spherical shell formed by
all q with magnitude q (Schmidt-Rohr, 2007). The SAXS curve
consists of measured values of I(q) for a large number of typically
equidistant q values in the range qmin ≤ q ≤ qmax.

Assume that a virtual electron density ρ is simulated on a
periodic cubic domain, i.e. a 3D voxel array, with resolution N3

and voxel size Δx. Then the fast Fourier transform (FFT) can be
used to obtain the discrete counterpart to the scattering intensity,
which we again denote by I(q). It is also defined on a periodic
cubic domainwith resolutionN3, for all qijk = (q

(i)
x ,q
(j)
y ,q
(k)
z ) such

that

q(i)x =
2π
NΔx

i (2)

for i = −N/2,−N/2+ 1,…,N/2–2,N/2–1, and likewise for q(j)y
and q(k)z . An orientation-averaged scattering intensity I(q) (an
“intensity data reduction”) can then be computed as

I (q) = ∑
i,j,k

wq (qijk) I(qijk) , (3)

where wq is a weight function such that

wq (qijk) =
wq,0

q2
ijk

exp[−2(
qijk − q

Δq
)

2
] (4)

for qijk = |qijk|, Δq = 2π/(NΔx) (the grid resolution in q space),
with wq (0) = 0 and wq,0 chosen so that the sum of the weights
is 1. Effectively, wq describes a normal distribution in the radial
direction with mean q and standard deviation Δq/2, all weights
rescaled with 1/q2

ijk to compensate for the fact that the number
of grid points increases in proportion to 4πq2

ijk (the area of a
spherical shell with radius qijk).

In practice, because of the symmetries inq space, theN3 array
I(q) can be folded into a (N/2+ 1)3 array which substantially
reduces the computation time (for the steps corresponding to
Eqs 3, 4). The simulation is implemented on GPU in Matlab
(Mathworks, Natick, MA, US).

2.2 Microstructure model

In the original model by Cahn and Hilliard (Cahn
and Hilliard, 1958), GRFs arose as a solution to a spinodal
decomposition model described as a superposition of cosine
waves,

ψ (x) = √ 2
M

M

∑
m=1

cos(qm ⋅ x+ ηm) , (5)

for M≫ 1, some wave vectors qm and random phase offsets
ηm, 0 ≤ ηm < 2π. The wave vectors follow some probability
distribution Γ (q); if it is radially symmetric and only a function
of |q|, the GRF is statistically isotropic. A disadvantage of
constructing aGRF like this is thatψ(x) is not a periodic function
unless the wave vectors are constrained to axis-aligned directions
and certain magnitudes.

Therefore, we instead use a method based on the Fast
Fourier Transform (FFT) (Lang and Potthoff, 2011). A GRF
can generally be described by a mean value and a covariance
function (Liu et al., 2019).The spectral density of this covariance
function actually equals Γ (q) (Teubner, 1991). Generating a GRF
in a cubic domain with resolution N3 is performed as follows.
Gaussian noise is generated in the spatial domain. Then, it is
Fourier transformed and multiplied by the square root of the
spectral density of the target covariance function. Finally, the
result is inverse Fourier transformed, yielding a GRF ψ(x) with
the specified covariance function. In other words, starting with
Gaussian white noise W(x), where W is N (0,1)-distributed and
independent for all x, the GRF is obtained as

ψ (x) = (F−1Γ1/2FW)(x) (6)

We use the spectral density

Γ (q) = (1+ |aq|8)−2, (7)
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FIGURE 1
Illustration of a single 2D slice of a three-phase model with a =4 nm, ϵ =0.60, and ν =0.50. In (A), the GRF is shown (arbitrary intensity scale). In
(B), a binary structure is shown, obtained from (A) by thresholding at the quantile ϵ. In (C), a smooth structure is shown, obtained from (B) by
smoothing with a 3D Gaussian filter. In (D), the final electron density is shown, obtained from (C) by thresholding at the quantiles ϵ(1−ν) and ϵ.

a special case of a spectral density used before (Matérn, 1986;
Lang and Potthoff, 2011), also in models for materials
microstructures (Röding et al., 2020; Prifling et al., 2021) (note
that the spectral density is not normalized hence not a probability
distribution; this only results in a linear scaling of theGRF, which
is of no concern here). Because FW and Γ are both symmetric,
ψ(x) is real-valued. The parameter a has dimension length
and we refer to it as a scaling parameter, to which the length
scale is approximately proportional. It is important to note that
the length scale is determined not only by a but by the entire
functional form of Γ.

We model both two phases, pore (vacuum/air) and solid,
and three phases, where the third phase is an intermediate
layer residing by the interface between pore and solid. The
layer can be regarded as a material condensed at the surface
of the solid phase. The microstructures are parameterized by
the scaling parameter a, the porosity ϵ, and the fraction ν of
the pore space filled up by the intermediate layer; for the two-
phase microstructures, ν = 0. The volume fractions are ϵ(1− ν),
ϵν, and 1− ϵ for pore, layer, and solid. In addition, electron
densities need to be specified. We let all electron densities be
between 0 (vacuum) and one for convenience; the scattering
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FIGURE 2
Illustration of a three-phase model with a =4 nm, ϵ =0.60, and
ν =0.50. For an illustration of a single 2D slice from this model,
see Figure 1.

intensity is proportional to the mean squared fluctuation of the
electron density of the material (Welborn and Detsi, 2020) but
also to other experimental factors such as X-ray photon flux.
Therefore, the scattering intensity can always be rescaled. We
choose ρpore = 0, ρlayer = 0.65, and ρsolid = 1. Assuming that the
intermediate layer is water, the electron density ratio between the
layer and the solid phase is fairly close to that of water to cellulose
(density 1.5 g/cm3, ρlayer ≈ 0.69), andwater to hard carbon (Nishi
and Pistoia, 2014) (density 1.45–1.55 g/cm3, ρlayer ≈ 0.69–0.74),
all of which were estimated by using refractive index at around
8 keV (Cu K-alpha X-ray source) from the center of X-ray optics
(Henke et al., 1993).

Microstructures are generated from the GRFs in the
following manner. First, a binary function is obtained by
thresholding,

ψ′ (x) = {
0, ψ (x) ≤ T
1, ψ (x) > T

, (8)

for T such that p(ψ(x) ≤ T) = ϵ. Second, ψ′ is smoothed with a
3D Gaussian filter (accounting for periodicity; σ = 2 voxels, but
this choice is not crucial), yielding ψ′′, 0 ≤ ψ′′ ≤ 1. Two-phase
electron densities can now be defined by

ρ (x) = {
ρ1, ψ′′ (x) ≤ T
ρ2, ψ′′ (x) > T

(9)

for T such that p(ψ′′(x) ≤ T) = ϵ. Three-phase electron densities
can be defined similarly by

ρ (x) =
{{
{{
{

ρ1, ψ′′ (x) ≤ T1
ρ2, T1 < ψ

′′ (x) ≤ T2
ρ3, ψ′′ (x) > T2

(10)

for T1 such that p(ψ′′(x) ≤ T1) = ϵ(1− ν) and T2 such that
p(T1 < ψ′′(x) ≤ T2) = ϵν) (and also p(ψ′′(x) > T2) = 1− ϵ)).

Note that the ‘intermediate’ values of ψ′′ (not equal to 0 or 1)
will be concentrated near what will be the pore-solid interface,
which is the reason for defining it this way. It ensures that with
high probability, the intermediate layer will be adjacent to both
pore and solid. If, on the other hand, ρ(x) would be obtained
by thresholding ψ(x) directly, parts of the intermediate layer
phase might end up in contact only with pore or only with
solid in all directions, which would not be physically plausible.
It is also worth pointing out that by using the 3D Gaussian
filter also in the two-phase model, the two- and three-phase
models are seamlessly integrated into the same framework and
the two-phase model is a special case of the three-phase model.

The generation procedure is illustrated with microstructures
generated on a grid of size 5123 with voxel size Δx = 0.5 nm
(therefore the parameter a also has unit nm). In Figure 1, using
a single 2D slice of a three-phase model with a = 4 nm, ϵ = 0.60,
and ν = 0.50. InFigure 2, a 3D visualization of the same structure
is shown. The simulation is implemented on GPU in Matlab
(Mathworks, Natick, MA, US).

2.3 Dataset generation

For developing a machine learning-based model for
prediction of microstructural parameters, a large number of
microstructures are generated on a grid of size 5123 with voxel
size Δx = 0.5 nm (we reiterate that therefore the parameter a also
has unit nm, whereas ϵ and ν are dimensionless quantities).

We reiterate that two-phase microstructures are generated
using ρpore = 0 and ρsolid = 1; varying ρsolid is unnecessary because
SAXS data can always be rescaled. Three-phase microstructures
are generated using the same values and additionally ρlayer = 0.65.

For all datasets, the scaling parameter a is uniformly
distributed in [0.8,8] nm. The resulting range of length scales
is found to be represented well considering the resolution and
simulation box size and to be accessible in the simulated q
range. We generate four separate datasets: 1) two-phase, low
porosity structures 2) two-phase, high porosity structures, 3)
three-phase, low porosity structures, and 4) three-phase, high
porosity structures. The porosity ϵ is uniformly distributed in
[0.1,0.5] for the low porosity structures and in [0.5,0.9] for
the high porosity structures. For the three-phase structures, the
fraction of the intermediate layer in the pores ν is uniformly
distributed in [0.05,0.5] in both cases. The reason why porosities
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FIGURE 3
Examples of simulated SAXS curves. In (A), a is varied for ϵ =0.3 and ν =0 (two-phase model). In (B), ϵ is varied for a =2.5 nm and ν =0 (two-phase
model). In (C), ν is varied for a =2.5 nm and ϵ =0.3 (three-phase model). For clarity, measurement noise has not been added to these curves.

TABLE 1 List of hyperparameters investigated, with a brief
explanation of their meaning and range of their values.

Name Meaning Range

learning_rate Speed of learning [0.001,0.05]
max_depth Maximum number of branch splits 10–20
min_child_weight Controls minimum leaf size 1–10
subsample Fraction of data used (per tree) [0.1,0.5]
colsample_bytree Fraction of inputs used (per tree) [0.1,0.3]
reg_lambda Amount of (L2) regularization [0.1,10]
max_bin Number of binning levels for inputs {256,512,1024}
n_estimators Number of trees 1–50,000

lower and higher than 0.5 are treated separately is that in
the two-phase case, the values ϵ and 1− ϵ literally cannot be
distinguished because they are ‘mirror images’ of each other;
therefore, approximate information about the porosity needs
to be supplied as an input from e.g. sample contrast. This
symmetry is referred to as Babinet’s principle and is reflected in
the so-called Porod invariant of a two-phase scattering pattern
(Zhang et al., 2012),

Q = ∫
∞

0
I (q)q2dq∝ 2πΔρ2ϵ (1− ϵ) , (11)

where Δρ is the electron density difference between the two
phases, which is one in our case. So, whether the structure has low
or high porosity is information that has to be supplied by the user.
In the three-phase case, the situation ismore complex, and unless
ρlayer = 1/2 there is no exact mirror image. Nevertheless, we treat
two- and three-phase structures consistently in this respect.

For each of the four cases, 219 (524,288) microstructures
are generated for the training dataset, 218 (262,144) for the

validation dataset, and 217 (131,072) for the test dataset. The
scattering intensity is simulated for 500 q values, equidistant
between qmin ≈ 0.04 nm−1 and qmax ≈ 3.00 nm−1; these values
are taken from an in-house experimental setup using an
Anton Paar SAXSpoint 2.0 (Anton Paar, Graz, Austria) and
cover a normal SAXS probing range without losing the
generality. On an NVIDIA A40 GPU, the average execution
time for microstructure generation and simulation of SAXS data
combined is approximately 1 s.

Note that the simulation of the scattering intensity I(q)
described above does not account for measurement noise.
The specifics of the noise are dependent on the experimental
conditions (such as photon flux and quantum efficiency of the
detector) and thereby on the intensity scale determined by
the unknown prefactor I0, as aforementioned. We use a noise
model inspired by the Poisson distributed photon counting
nature of the data acquisition (Sedlak et al., 2017). A Poisson
model would imply that the variance of the noise is σ2(q) = I(q);
however, considering the intensity scales resulting from using
I0 = 1, this model assumption does not produce realistic noise
levels. Instead, we use a lognormal noise model with mean I(q)
and σ2(q) = αI(q), where a value of α is sampled from a log-
uniform distribution in [102,105.5] for each SAXS curve. The
lognormal distribution only produces positive values, whereas
the commonly suggested normal approximation can produce
physically implausible, negative values (which it did, in this case).
Note that whereas we account for measurement noise, we do not
account for the finite instrument resolution which would yield a
slight blurring of the SAXS curves.

Further, analogously to Gommes (2018) (Gommes, 2018),
each simulated SAXS curve is normalized, dividing by a total
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TABLE 2 Errormeasures for the prediction of the parameters, whereMSE andMAPE (in %) is given for the training, validation and test sets.

Dataset Parameter Error Training Validation Test

Two-phase a MSE 7.452 10–4 4.172 10–3 4.215 10–3

low porosity MAPE 0.389 0.701 0.707
ϵ MSE 2.624 10–6 3.729 10–4 3.766 10–4

MAPE 0.485 4.180 4.190
Two-phase a MSE 3.750 10–4 4.185 10–3 4.195 10–3

high porosity MAPE 0.306 0.702 0.702
ϵ MSE 2.434 10–6 3.735 10–4 3.736 10–4

MAPE 0.168 2.023 2.026
Three-phase a MSE 6.248 10–5 4.374 10–3 4.324 10–3

low porosity MAPE 0.158 0.731 0.727
ϵ MSE 3.163 10–7 1.175 10–4 1.171 10–4

MAPE 0.171 2.811 2.793
ν MSE 2.106 10–7 1.328 10–5 1.317 10–5

MAPE 0.189 1.292 1.280
Three-phase a MSE 5.249 10–5 3.160 10–3 3.199 10–3

high porosity MAPE 0.144 0.614 0.617
ϵ MSE 4.084 10–7 2.601 10–4 2.606 10–4

MAPE 0.070 1.582 1.583
ν MSE 2.674 10–7 8.150 10–5 8.144 10–5

MAPE 0.211 2.882 2.879

intensity approximated by

4πQ̃ =∑
i
I(qi)4πq

2
i δq. (12)

where Q̃ is a discrete approximation of the Porod invariant. Note
that this is a summation of the intensities weighted by spherical
shells with thickness δq, the distance between consecutive values
in the vector of q values. Effectively, 4πQ̃ equals the total intensity
in a spherical shell with inner and outer radii qmin and qmax. In
Figure 3, examples of simulated SAXS curves are shown. Note
that for some parameter values (specifically for some scaling
parameters) the low-q plateau is very long and carries very little
information for parameter prediction. However, when selecting
a q range appropriate for the entire data set, it is unavoidable that
some SAXS curves exhibit a long plateau.

2.4 Prediction of model parameters

The classical approach to estimating parameters in a model
would be some variety of curve fitting, using e.g. least squares
to find a scattering intensity curve that deviates minimally from
the data and extract its parameters. However, predicting the
model parameters can alternatively be considered a nonlinear
regression and supervised learning problem: given a set of inputs
i.e. the scattering intensities and the corresponding outputs i.e.
the model parameters, find a function that approximates the
mapping from input to output. Virtually any machine learning
method for regression can be used in this setting. We rely on
XGBoost (Chen and XGBoost, 2016), a specific implementation
of gradient boosted trees. XGBoost has proven useful and

accurate in another recent SAXS study where it was found to
be superior to several other methods (Tomaszewski et al., 2021).
Conveniently, and contrarily to some other candidate methods,
XGBoost provides support for GPU acceleration. The orders-
of-magnitude speedup delivered by the GPU acceleration
makes XGBoost a particularly pragmatic choice for experiments
involving large amounts of data, as it significantly shortens the
experimentation time. The prediction model is a tree ensemble
that combines a large number of weak, decision tree-based
prediction models to produce a single, stronger prediction
model. Each regression tree is constructed by recursively splitting
the input data space into partitions or “branches”. After a
sufficient amount of splitting, the space is divided into “leafs”,
where each leaf corresponds to a single, scalar value which
is the prediction of the output. Whereas a single regression
tree is a poor approximation to the function mapping input
to output, combining a large number of regression trees is a
very powerful approach with performance on par with artificial
neural networks.While deep neural networks dominatemachine
learning for computer vision and natural language processing,
tree ensemblemethods are generally the recommended approach
for tabular data (Shwartz-Ziv and Armon, 2022).

The inputs of the training set are first preprocessed by
transforming to logarithmic scale.Then, they are standardized by
computing the mean and variance for each dimension separately
on the training set, and then rescaling to zero mean and
unit variance. Finally, the same rescaling (using the mean and
variance of the training set) is applied to the validation and test
sets (and also to new data once the prediction model is finalized
and used).Theoutputs are not preprocessed.During training, the
trees of the XGBoost model are optimized with respect to mean
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FIGURE 4
Scatter plots showing prediction results on the test set for both two-phase datasets. In (A,B), predictions of a and ϵ are shown for the two-phase
low porosity structures. In (C,D), predictions of a and ϵ are shown for the two-phase high porosity structures.

squared error (MSE) loss,

MSE = ⟨(ŷ− y)2⟩ , (13)

where y is a target value and ŷ is a predicted value. Note
that regression trees can inherently only be used to produce
scalar predictions; hence, separate models are trained for each
of the (scalar) outputs. The performance of XGBoost is affected
by a number of hyperparameters. Refraining from going into
too much detail, the parameters control the speed of learning,
size and detail of the trees, random subsampling of both
samples and input dimensions for each tree, regularization,
and the number of trees. We list the ones that we explore
further in Table 1, together with a concise explanation of
their meaning and the ranges we investigate. The effect of
the hyperparameters is investigated using a random search
optimization, jointly for all hyperparameters (Bergstra and
Bengio, 2012).The choice ofwhich hyperparameters to study and
their ranges are selected after an initial investigation. Because
of the computational workload, this is performed only for
the ϵ parameters (ϵ and ν are the hardest to predict, and of

those only ϵ is present in all datasets). The results led to the
following hyperparameters being used for all cases: learning_rate
= 0.005, max_depth = 15, min_child_weight = 3, subsample =
0.15, colsample_bytree = 0.15, reg_lambda = 0.2, and max_bin =
1,024. Then, for all 10 outputs, training is performed with these
values and n_estimators = 50,000. Further, for every output, 10
training runs are performed and the best-performing model is
selected. We also use an early stopping rule that finalizes the
training if no improvement is found for the last 1,000 added trees,
and the best-performing model (best value of n_estimators)
is selected. Therefore, in practice, the values of n_estimators
in the final models vary from 6,060 to 48,841. Other than
the hyperparameters stated, the default XGBoost settings are
used. The training is run on NVIDIA A100 GPUs. The average
execution time is approximately 3 h.

The results for the final selected XGBoost models is shown in
Table 2. In addition to MSE, we also use the more intuitive mean
absolute percentage error (MAPE) loss,

MAPE = 100 ⋅ ⟨|
ŷ− y
y
|⟩%. (14)
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FIGURE 5
Scatter plots showing prediction results on the test set for both three-phase datasets. In (A–C), predictions of a, ϵ, and ν are shown for the
three-phase low porosity structures. In (D–F), predictions of a, ϵ, and ν are shown for the three-phase high porosity structures.

FIGURE 6
Histogram of estimated values for 500 simulated SAXS curves for a = 4 nm, ϵ = 0.70, and ν = 0.20. In (A–C), the distribution of estimated values
of a, ϵ, and ν are shown. The true values are also indicated (vertical black lines).
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FIGURE 7
Results for a single structure in the case study. In (A), the simulated SAXS curve for a =4 nm, ϵ =0.70, and ν =0.20 (blue), and a (noiseless) SAXS
curve of a structure generated using the predicted parameters â = 3.982 nm, ϵ̂ = 0.706, and ν̂ = 0.195 (red) are shown. In (B,C), single slices from
the true structure and the reconstructed structure are shown, showing pore (black), water (gray), and solid (white).

Further, in Figures 4, 5, we show scatter plots of the
predictions of all parameters for the test sets. We note that the
scaling parameter a is consistently the easiest to predict in terms
of MAPE (considering the substantial impact of the value of
a on both the length and magnitude of the low-q plateau as
seen in Figure 3, this is no surprise), but evidently a bit more
difficult for increasing values of a because the relative error
increases (not shown).Thismight be partly because of resolution
limitations for low values of q (the simulated values of I(q) for
low q is based on a very small number of grid points in q
space; and large length scales i.e. large a correspond to low q).
Also, the porosity ϵ is consistently the most difficult to predict.
Finally, the fraction ν of the pore spaced filled up by intermediate
layer is predicted a bit better than ϵ, but has more pronounced
outliers in the low porosity case, in particular for low ν. This
is likely because the fraction of the third phase is very low for
low values of both ϵ and ν, and therefore the simulated SAXS
data contains very limited information about that phase. For all
parameters, the predictions have a positive bias near the lower
bound of the range of true values. Likewise, the predictions have
a negative bias near the upper bound of the range of true values.
This is simply because the models are not trained to predict
values outside the range and hence are unlikely to make such
predictions. This fact also illustrates very clearly that the models
cannot be expected to extrapolate well, but will rather provide
reasonable predictions only within the domain of applicability
(Sutton et al., 2020), which is determined by the distribution of
inputs and outputs in the training set and the prediction model
itself. It is also worth pointing out that if the prediction model

would have been trained to predict the porosity on the low-
porosity and the high-porosity data jointly, the predicted values
would be nonsensical, and accordingly, the reported accuracy
would be substantially lower.

In this context, it is important to note that the structures
are random and not uniquely defined by the set of parameter
values used to generate them; each set of parameter values can
yield a very large number of different structures that in turn yield
an equal number of different SAXS curves. Therefore, a SAXS
curve cannot be uniquely mapped to a set of parameter values,
even in the absence of measurement noise; their relationship
is inherently random. It follows that the prediction loss is due
to a combination of the randomness of the structures and
the randomness induced by the added measurement noise.
Therefore, there is in practice a lower bound on the attainable
accuracy.This effect is essentially a result of the limited resolution
and field of view of the simulated data and not as such a
fundamental limitation of SAXS.

It is worth noting that we investigate two other techniques
for regression. The first is also based on XGBoost but utilizing
chained regression. This means that the different outputs are
predicted sequentially such that the predictions of the first
are used as input for prediction of the second, and the
predictions of the first and second are used as inputs for
prediction of the third. Also we investigate fully-connected
artificial neural networks. An initial investigation suggests that
neither of these two attempts yield better results than the ‘plain’
XGBoost approach presented, and are therefore not shown
herein.
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2.5 Simulated case study

To illustrate the performance of the method more clearly,
we do a case study on simulated data using the three-phase
model. Because the predictionmodel does not capture variability,
the uncertainty of the predictions cannot be assessed using
a single SAXS measurement. Therefore, we simulate a large
number of measurements using the same parameter values, akin
to performing replicate real measurements. Indeed, for a = 4 nm,
ϵ = 0.70, and ν = 0.20, we generate 500 SAXS curves with the
same noisemodel as before and use the three-phase high porosity
model for prediction. The results are shown in Figure 6. The
combined results are â = 4.004± 0.025 nm, ϵ̂ = 0.701± 0.009, and
ν̂ = 0.201± 0.005 (m ± sd). In this case (for the three-phase
high porosity model), the average execution time for prediction
is 2.5 m for each SAXS curve and all three predicted outputs;
however, this depends on the model complexity (i.e. the value
of n_estimators). Note that this execution time only reflects the
prediction as such and not loading and preprocessing of data and
saving predictions. Further, the results for a single structure are
shown in Figure 7, showing the simulated 1D SAXS curve from
both the true structure and a reconstructed structure using the
predicted parameter values (in this case â = 3.982 nm, ϵ̂ = 0.706,
and ν̂ = 0.195) as well as representative slices from the true and
reconstructed structures. In the high q range, the reconstructed
SAXS curve reasonably well reproduces that of the true structure.
In the low q range, there is a larger discrepancy. However, due to
the simulated SAXS curves being an average of very few values
of I(q) for low q, the random fluctuations between different
structures will be larger in that range.

3 Conclusion

We have implemented a machine learning-based approach
to fast estimation of microstructural parameters from SAXS
data. The microstructure model is based on a periodic Gaussian
random field with variable length scale, which is processed
and thresholded to yield two-phase (pore and solid) and
three-phase (pore, intermediate layer, and solid) structures,
with all phases having different electron densities. We also
develop a Fourier transform-based method to simulate SAXS
data. Both microstructure generation and SAXS simulation
are implemented on the GPU and very fast. We generate
four very large, separate datasets: 1) two-phase, low porosity
structures 2) two-phase, high porosity structures, 3) three-
phase, low porosity structures, and 4) three-phase, high porosity
structures. We demonstrate that by performing regression using
XGBoost, a decision tree-basedmachine learning framework, the
parameters of the models can be predicted with good accuracy.
Given that artificial neural networks did not perform better
than XGBoost, and given that there is no time dependence

or translational invariance in the data to further exploit, it is
unlikely that more advanced architectures such as recurrent or
convolutional neural networks would perform better. Further,
the parameter prediction executes virtually instantaneously.
Hence the computational burden of conventional model fitting
can be avoided, enabling for the SAXS practitioner to efficiently
analyze many measurements.

We observed positive and negative bias in the predictions
observed near the lower and upper bound of the simulated
parameter ranges. This bias could be reduced by using a wider
range of parameters (where possible) for the training set while
maintaining the ranges for the validation and test sets. In this
manner, the performance of the prediction will be assessed in a
smaller parameter space, which should then be considered the
domain of applicability.

Although the microstructure models herein are aimed at
mimicking a certain type of morphology and certain ranges
of the parameters, similar models can be expected to perform
well for other types of microstructures (i.e., fibers, foams,
granules) and other parameter ranges. The only requirement
is that the microstructure model is efficiently implemented
so that a large, representative dataset can be generated, and
that the corresponding SAXS curves are sufficiently informative
regarding the parameters to be predicted. Although the approach
is evaluated on a specific type of morphology, it is a proof of
concept that can be used for other types of materials, both
with regard to spatial structure and electron density values, and
also for other experimental parameters such as other q value
ranges, and non-equidistant q values. Indeed, generalizing this
investigation to multiple classes of Gaussian random field-based
models would be an interesting prospect for further work.

In conclusion, this proof of concept illustrates the usefulness
not only of the machine learning-based approached but also
of the efficient GPU-accelerated scheme for simulating the
materials structures and the corresponding SAXS data and the
new three-phase model. Finally, all the data and codes used
herein are publicly available to facilitate further development in
this field.
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