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A novel flame retardant hexa (4- (9,10-dihydro-9-oxa-10-phosphaphenanthrene-

10 -sulfide)-hydroxymethylphenoxy) cyclotriphosphazene (HAP-DOPS) with

double functional groups was synthesized, and poly (lactic acid) (PLA)

composites were prepared by melt extrusion. The flame retardancy and thermal

degradation behavior of flame retardant PLA composites were studied by limiting

oxygen index (LOI), vertical burning test (UL-94), cone calorimeter test (CCT), and

thermogravimetric-infrared spectroscopy analysis (TG-IR). The experimental

results showed that HAP-DOPS had a good flame-retardant effect on PLA. At

flame retardant content of 5 wt%, the PLA/HAP-DOPS composite achieved a V-0

rating (UL-94, 3.2mm) and a LOI value of 26.6%. The heat release rate (HRR) and

total heat release (THR) of PLA composites were decreased by adding HAP-DOPS.

The flame retardancy index (FRI) of PLA/HAP-DOPS-7.5 wt% was 1.0257, which

showed good flame retardancy. The results of TG-IR showed that HAP-DOPS

mainly had a gas-phase flame-retardant effect in PLA.

KEYWORDS

poly(lactic acid), phosphaphenanthrene, cyclotriphosphazene, flame retardancy,
thermal degradation behavior

Introduction

Poly (lactic acid) (PLA) is an environment-friendly polymer material with good

biodegradability and compatibility. Also, it is widely used in biomedical materials,

packaging materials, automobiles and electronic appliances, and other fields because

of its wide range of raw materials, excellent mechanical properties, and easy processing

and molding (He et al., 2020; Yang et al., 2020; Gong et al., 2020; Tawiah et al., 2020;

Laoutid et al., 2018; Vahabi et al., 2018; Xue et al., 2021; Kervran et al., 2022). However,
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PLA is extremely flammable and accompanied by serious

dripping during combustion, which cannot meet the

requirements of terminal products in the field of automobile

parts and electronic and electrical appliances, thus limiting its

application scope (Xue et al., 2011; Li et al., 2019; Feng et al.,

2020; Muhammad et al., 2020). Therefore, it is essential and

important to improve the flame-retardant properties of PLA, and

great attempts have been made to develop fire-retardant PLA

materials (Liu et al., 2022; Guo et al., 2017; Yu et al., 2022; Feng

et al., 2022; Xu S. et al., 2020; Yang et al., 2021; Rad et al., 2019;

Vahabi et al., 2018).

In the organophosphorus flame-retardant research in

PLA, 9,10-dihydro-9-oxa-phospha- phenanthrene-10-oxide

(DOPO) and its derivatives have been widely and deeply

studied due to their environmental friendliness, high

carbon content, and durable flame retardancy (Salmeia and

Gaan, 2015; Wang et al., 2016). It has been demonstrated that

DOPO and its derivatives exhibit excellent flame-retarding

effects in polymers due to their positive actions in the gas

phase (as a flame inhibitor) and condensed phase (by char

formation) (Wen et al., 2020). 9,10-dihydro-9-oxa-10-

phosphaphenanthrene-10-sulfide (DOPS) was successfully

synthesized by a simple one-step reaction of DOPO and

phosphorus pentasulfide (P2S5). It has been shown that

introduction of sulfur into the DOPO flame retardant can

enhance the flame-retardant effect of phosphorus on the one

hand and provide excellent flame-retardant properties in the

condensed phase (Huo et al., 2018; Xu X. D. et al., 2020); on

the other hand, the reactivity of the P-H bond is increased, and

it is easier to undergo addition reactions with unsaturated

groups, which facilitates the generation of a series of DOPS

derivatives (Rakotomalala et al., 2011; Chen et al., 2017).

Through molecular design, our research group would

introduce the phosphazene group and DOPS into the same

molecule and successfully synthesize the flame retardant hexa

(4-(9,10-dihydro-9-oxa-10-phosphophene-10-sulfide)-

hydroxymethyl-phenoxy) cyclotriphos- phazene (HAP-DOPS)

with double functional groups. The flame retardant efficiency of

DOPS would be improved by using the potential char forming

characteristics of phosphazene compounds, and the flame-

retardant materials with excellent flame retardancy would be

obtained through the synergistic effect of double functional

groups so as to build a new high-efficient flame retardant system.

In this study, the flame retardant HAP-DOPS with double

functional groups was synthesized from hexa-(4-aldehyde-

phenoxy)-cyclotriphosphazene (HAP) and DOPS. The

structure was characterized by Fourier transform infrared (FT-

IR) spectrum, nuclear magnetic resonance (NMR), and high-

resolution mass spectrometry (HR MS). Then, the flame

retardant HAP-DOPS was added into PLA by melt blending.

Finally, the effects of the flame retardant HAP-DOPS on the

flame retardant properties and thermal degradation behavior of

PLA were investigated by limiting oxygen index (LOI), vertical

burning test (UL-94), cone calorimeter test (CCT), and

thermogravimetric-infrared spectroscopy analysis (TG-IR).

Experimental section

Experimental materials

PLA (4032D) was purchased from Natureworks

(United States). DOPS (Chen et al., 2017) and HAP (Bao

et al., 2018) were prepared in our laboratory according to

references. Other reagents of analytical grade were purchased

from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).

Synthesis of the flame retardant HAP-
DOPS with double functional groups

2.32 g (10 mmol) DOPS and 30 ml tetrahydrofuran were

added into a 250 ml three-necked glass flask equipped with a

reflux device and mechanical stirrer and stirred with nitrogen for

20 min. After the DOPS was completely dissolved, 0.86 g

(1 mmol) HAP was dissolved in 10 ml of tetrahydrofuran and

slowly added dropwise to the abovementioned reaction system.

After the dropwise addition, the temperature was increased to

80°C and the reaction lasted for 24 h. After the system was cooled

to room temperature, the supernatant was poured off and washed

several times with ethyl acetate. Finally, 1.6 g of white powder

solid (yield of 71%) was obtained. The synthetic route of flame

retardant HAP-DOPS with double functional groups is shown in

Figure 1A.

Preparation of PLA composites

The flame retardant PLA composites were prepared by the

melt extrusion method. First, both PLA and HAP-DOPS were

dried for 6 h under vacuum at 80 °C before use. Then, PLA and

HAP-DOPS (5,7.5,10 wt%) were mixed uniformly in a high-

speed mixer. Next, the mixture was separately extruded by a two-

screw extruder (CTE 35, Coperion Keya Machinery

Manufacturing Co., Ltd., China) at a temperature of

155–175°C and screw speed of 300 rpm. Finally, the extruded

pellets were molded into standard samples for testing on a

miniature injection molding machine (SZS-20, Wuhan

Ruiming Experimental Machinery Manufacturing Co., Ltd.,

China) at 160–180°C.

Characterization

FT-IR spectra were recorded on a Nicolet 6,700 infrared

spectrometer (thermo, United States), and the samples were
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FIGURE 1
(A) Synthesis of flame retardant HAP-DOPSwith double functional groups. (B) FT-IR spectrum of the compounds HAP、DOPS and HAP-DOPS.
(C) 1H NMR spectrum of HAP-DOPS. (D)31P NMR spectrum of HAP-DOPS. (E) TG-DTG curves of HAP-DOPS. (F) TG curves of PLA and PLA
composites. (G) DTG curves of PLA and PLA composites.
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prepared by KBr pellets. 1H and 31P nuclear magnetic resonance

(NMR) characterized on an AVANCEⅢHD 400 MHz

spectrometer (Bruker, Switzerland) was performed using

DMSO (δ 3.33ppm(H)) as the solvent and neat H3PO4 (δ

0.0 ppm) was used as an internal standard for 31P NMR. In

the MS test, the relative molecular mass of the flame retardant

was determined by MS analysis with dichloromethane as the

solvent.

The LOI test was performed on a JF-3 oxygen index meter

(Nanjing Jiangning Analysis Instrument Company, China)

according to the GB/T 2406.1–2008 standard with a sample

dimension of (80 ± 5) mm × (10.0 ± 0.5) mm × (4.0 ± 0.25) mm.

The UL-94 test (CZF-5, Jiangsu Zhuoheng Measurement &

Control Technology Co., Ltd., China) was carried out according

to the GB/T 2408–2021 standard, with a sample size of (125 ± 5)

mm × (13 ± 0.3) mm × (3 ± 0.2) mm.

CCT (VOUCH 6810, Suzhou Yangyi Volchi Company Co.,

Ltd, China) was conducted with the ISO 5660-1-2002 standard.

The specimens were prepared with sizes of (100 ± 5) mm× (100 ±

5) mm× (6 ± 0.5) mm and tested under a heat flux of 50 kW/m2.

TG-FTIR analysis was performed on the TG

209F3 thermogravimetric analyzer (Netzsch, Germany) and

TENSOR27 infrared spectrometer (Bruker, Germany). The

sample of 5–10 mg was heated from room temperature to

700°C with a heating rate of 20 °C/min under a nitrogen

atmosphere, and the gas flow rate was 60 ml/min. The real-

time FT-IR spectra were recorded.

The flame retardancy index (FRI) (Vahabi et al., 2019) is a

simple and universal, dimensionless criterion defined from cone

calorimetry data for thermoplastic composites and quantifies the

flame retardancy of different polymer composites on a reliable set

of data. Its calculation formula is as follows:

FRI �
[THRp(PHRR

TTI )]Neat Polymer

[THRp(PHRR
TTI )]Composite

.

THR—total heat release rate; PHRR—the maximum heat

release rate; TTI—the ignition time.

Results and Discussion

Structural characterization and thermal
stability of HAP-DOPS

The chemical structure of HAP-DOPSwas characterized by FT-

IR, 1H, 31P NMR, and HRMS. The FT-IR, 1H, and 31P NMR spectra

of HAP-DOPS are shown in Figures 1B–D, respectively. FT-IR

(KBr) ] (cm−1) 3,388.71 (O—H), 3,061.60 (CAr —H), 1,581.37

(P— Ph), 1,473.35–1,428.99 (C—CAr), 1,199.51–1,160.94 (P =

N), 954.10 (P = S). 1H NMR (400MHz, DMSO - d6): δ (ppm)

8.25–7.99 (m, 12H), 7.98–7.32 (m, 24H), 7.32–7.09 (m, 24H), 6.97

(d, J = 36.0 Hz, 12H), 6.70–6.27 (m, 6H), 5.25 (d, J = 61.1 Hz, 6H)

ppm. 31P NMR (160MHz, DMSO - d6): δ (ppm) 83.27, 7.91.

MS(ESI) (m/z): [MH]+calcd for C114H84N3O18P9S6 2,255.

Found:2,255. All the abovementioned characterization results

with the FT-IR, NMR, and MS confirmed that HAP-DOPS had

been synthesized.

The thermal stability of flame retardants affects the thermal

stability and flame-retardant effect of the substrates to a certain

extent. Figure 1E shows the TG-DTG curve of HAP-DOPS

under a nitrogen atmosphere. The TG curve shows that the

initial decomposition temperature (T5%) of HAP-DOPS is

336.8°C, which indicates that HAP-DOPS has good thermal

stability indicates that HAP-DOPS has good thermal stability.

HAP-DOPS has only one thermal weight loss stage, which

occurs from 330 to 600°C. The maximum decomposition

temperature (Tmax, DTG peak maximum) of the compounds

occurred at 446.5°C. It may be due to the dehydration cross-

linking reaction of intramolecular and intermolecular

hydroxyl groups and the breakage of P-C bonds resulting in

the phosphaphenanthrene group decomposing to generate

some volatile substances. When the temperature reaches

550°C, the TG curve tends to level off, and the char residues

at 700°C were 54.14%. It can be seen that HAP-DOPS has good

char forming ability and meets the processing requirements

of PLA.

Thermal stability of PLA and PLA
composites

The effects of HAP-DOPS on the thermal stability of PLA

were investigated using TG. The TG and DTG curves of PLA

and PLA/HAP-DOPS are shown in Figures 1F,G, and the

corresponding data are listed in Table 1. The T5% and Tmax

values of PLA/HAP-DOPS are lower than those of neat PLA.

When the addition of HAP-DOPS reached 10 wt%, the T5%

value of PLA/HAP-DOPS decreased from 332.5 to 318.0°C,

which was about 14.5°C, because the bond energy of the P-C

bond was only 272 kJ/mol and the P-C bond in HAP-DOPS is

first decomposed when heated, producing phosphorus-

containing compounds that promote the thermal

decomposition of PLA, resulting in a T5% reduction of

PLA/HAP-DOPS. With the temperature increasing, the

flame retardant HAP-DOPS further decomposes, releasing

non-flammable gases such as NH3, H2O, and CO2, which

dilute the O2 and combustible materials nearby, producing a

flame-retardant effect in the gas phase. In addition, the

residues of PLA/HAP-DOPS-5 wt%, PLA/HAP-DOPS-

7.5 wt%, and PLA/HAP-DOPS-10 wt% show a slight

increase at 700°C from 0% (neat PLA) to 1.9, 2.1, and

2.4%, respectively. Moreover, according to the DTG curve,

the Rmax values of PLA/HAP-DOPS decrease, indicating that

HAP-DOPS has an inhibiting effect on the decomposition of

PLA composites.
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Flame retardancy and thermal
degradation behavior of PLA composites

To investigate the flame ratardancy of polymer composites, the

LOI and UL-94 tests are usually necessary (Qian et al., 2015; Long

et al., 2018). The results of LOI and UL-94 vertical burning tests are

listed in Table 2. As shown in Table 2, the LOI value of neat PLAwas

21.6% and failed to pass the UL-94 test with the melt dripping

phenomenon. However, with increasing content of HAP-DOPS, the

LOI values of the PLA/HAP-DOPS composites showed an

increasing trend, which reached the UL-94 V-0 flammability

rating. At a flame-retardant content of 5 wt%, the LOI value of

PLA/HAP-DOPS was 26.6%, and the average combustion time for

the first and second flame combustion after the sample was removed

from the fire was 0.61 and 1.20s, respectively, both less than 10 s.

Moreover, the molten droplets produced did not ignite the

absorbent cotton, and it achieved UL-94 V-0 flammability rating.

At this time, the phosphorus content of the PLA/HAP-DOPS

composite was only 0.62 wt%. When the addition of HAP-DOPS

was increased to 7.5 wt%, the LOI value of the composites increased

to 28.2%. But, when the addition was continually increased to 10 wt

%, the LOI values remained unchanged, indicating that theremay be

an optimal addition amount of HAP-DOPS for PLA composites. In

the tests, it was found that PLA/HAP-DOPS composites still

produced molten droplet phenomena probably because the

molten droplets would take away the heat generated during

combustion and thus play a certain flame-retardant role (Long

et al., 2017).

The effect of HAP-DOPS on the combustion properties of

PLA composites was analyzed by CCT, and the heat release

rate (HRR) and the total heat release (THR) curves are shown

in Figures 2A,B. The HRR and THR values of PLA composites

decreased after the addition of HAP-DOPS and showed a

decreasing trend with the increase of HAP-DOPS addition.

When the addition of HAP-DOPS was increased to 10 wt%,

the peak HRR (PHRR) value decreased from 698.50 to

556.77 kW/m2, a decrease of 20.29%. The THR value

decreased from 190.86 to 164.57 MJ/m2, a decrease of

13.77%. It indicated that the flame retardant HAP-DOPS

with double functional groups could promote the formation

of char in the polymer substrate and block the heat transfer

within the material during combustion, reducing the

combustion degree and the THR of the PLA/HAP-DOPS

composites (Sun et al., 2022).

According to the formula of FRI, FRI(PLA/HAP-DOPS-5 wt

%) = 0.7463 < 1, 1 < FRI(PLA/HAP-DOPS-7.5 wt%) = 1.0257 <
10, FRI(PLA/HAP-DOPS-10 wt%) = 0.9590 < 1, that is, the flame

retardancy of PLA/HAP-DOPS-7.5 wt% is good, while the flame

retardancy of the other two composites is poor. The result is

consistent with LOI and UL-94 tests, which indicate that there

may be an optimal addition amount of HAP-DOPS for PLA

composites to achieve good flame retardancy.

In order to analyze the mechanism of condensed phase

flame retardancy, SEM was used to analyze the microscopic

morphology of the char layer surface. As can be seen from

Figures 2C–E, the char residue of PLA/HAP-DOPS-5 wt% is

broken, with only a small continuous char layer and a rough

surface. When the addition amount of HAP-DOPS was 7.5 wt

%, the char layer began to be continuous with a large number

of pore channels. Meanwhile, incomplete combustion flame

retardant particles covering the surface of the carbon residue

could be observed, which may indicate migration and

TABLE 1 TG and DTG data of PLA and PLA composites.

Sample T5% (°C) Tmax (°C) Rmax (%/°C) Residue at 700°C (%)

PLA 332.5 376.5 3.3 0

PLA/HAP-DOPS-5 wt% 328.6 372.7 2.8 1.9

PLA/HAP-DOPS-7.5 wt% 326.5 371.3 2.7 2.1

PLA/HAP-DOPS-10 wt% 318.0 371.9 2.4 2.4

TABLE 2 LOI and UL-94 test data of PLA and PLA composites.

Sample P(wt)% LOI(%) UL-94

t1/t2 (s) Dripping Ignition Rating

PLA 0 21.6 -/- Yes Yes N.R.

PLA/HAP-DOPS-5 wt% 0.62 26.6 0.61/1.20 Yes No V-0

PLA/HAP-DOPS-7.5 wt% 0.93 28.2 6.52/0 Yes No V-0

PLA/HAP-DOPS-10 wt% 1.24 28.2 4.40/0 Yes No V-0
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accumulation of flame retardants during combustion. When

the amount of the flame retardant reaches 10 wt%, the char

layer becomes denser.

The TG-FTIR was used to study the gaseous small-molecule

compounds during the thermal degradation process of PLA/

HAP-DOPS composites, and the test results are shown in Figures

FIGURE 2
FIGURE 2 (A) HRR curves of PLA and PLA composites; (B) THR curves of PLA and PLA composites; (C), (D), (E) SEM images of char residues of
PLA/HAP-DOPS-5 wt%, PLA/HAP-DOPS-7.5 wt% and PLA/HAP-DOPS-10 wt%; (F) The 3D TG-FTIR spectrum of PLA/HAP-DOPS; (G)The
absorbance of pyrolysis products of PLA/HAP-DOPS at different temperatures.

TABLE 3 Mechanical property test data of PLA and PLA composites.

Sample P (wt%) Bending strength (Mpa) Tensile strength (Mpa) Izod
impact strength (kJ/m2)

PLA 0 94.58 ± 0.61 66.89 ± 2.02 3.54 ± 0.10

PLA/HAP-DOPS-5 wt% 0.62 82.17 ± 4.60 41.78 ± 4.99 3.02 ± 0.08

PLA/HAP-DOPS-7.5 wt% 0.93 81.32 ± 2.47 39.64 ± 1.39 2.41 ± 0.20

PLA/HAP-DOPS-10 wt% 1.24 78.41 ± 3.21 37.99 ± 1.07 2.24 ± 0.16
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2F,G. As can be seen from the figures, there were absorption

peaks of hydroxyl groups in water molecules (3,571 cm−1),

hydrocarbons (2,631~2919cm−1) (Liang et al., 2017), CO2

(2,344 cm−1) (Xu et al., 2016), CO (2,180, 2091cm−1), and

carbonyl compounds (1757 cm−1) (Chistyakov Evgeniy et al.,

2019). The stretching vibration absorption peak of S=O was at

1,371 cm−1 (Yang et al., 2016). The absorption peak of 1,123 cm−1

was from SO2 (Battig et al., 2019), and 923 cm−1 was the

absorption peak of P-O-C. At the initial stage of thermal

degradation, PLA/HAP-DOPS composites showed a weak

CO2 absorption peak. With the increase of temperature, the

thermal degradation reaction began to intensify. When the

temperature reached 352°C, the absorption peaks of

hydrocarbons, carbonyl compounds, S=O, and SO2 appeared.

At about 370 °C, the thermal degradation rate of PLA/HAP-

DOPS reached its maximum, when the characteristic absorption

peaks of various thermal degradation products were the

strongest. When the temperature reached 400 °C, only the

stretching vibration absorption peak of carbonyl compounds

had a weak intensity. When the temperature increased to

450°C, the absorption peaks of thermal degradation gas

basically disappeared, which indicated that PLA/HAP-DOPS

composites had been completely degraded at this time.

Furthermore, the characteristic peak of phosphorus-containing

functional groups appeared at 923 cm−1 (Fang et al., 2017), which

indicated that the phosphorus containing free radicals were

generated in the gas phase, which captured free radicals such

as H•, O•, or •OH. Also, it played the role of free radical

quenching so that the flame retardant HAP-DOPS with

double functional groups played the role of a flame retardant

in the gas phase.

Mechanical properties of PLA composites

The mechanical properties of PLA/HAP-DOPS are shown

in Table 3. With the increase of HAP-DOPS content, the

mechanical properties of PLA/HAP-DOPS showed a

decreasing trend, the bending strength decreased slightly,

and the tensile strength and impact strength decreased

significantly. When the HAP-DOPS content was 10 wt%, the

tensile strength of the PLA/HAP-DOPS composite decreased

from 66.89 to 37.99 MPa, which decreased by 43.20%. Its

impact strength decreased from 3.54 to 2.24 kJ/m2,

decreasing by 36.72%. This may be because the introduction

of HAP-DOPS, a macromolecular flame retardant containing a

large number of rigid groups, into the main chain of the

polymer will lead to a decrease in the toughness of the

material. In summary, when the addition of HAP-DOPS is

5 wt%, PLA/HAP-DOPS reaches a UL-94 V-0 rating and still

maintains good mechanical properties. Its tensile strength,

bending strength, and notch impact strength are 41.78 MPa,

83.02 MPa, and 3.02 kJ/m2, respectively.

Conclusion

A novel flame retardant HAP-DOPS with double functional

groups was synthesized, and its structure was characterized by FT-IR,
1H-NMR, 31P-NMR, and MS. Then, the effect of HAP-DOPS on the

flame retardancy and thermal degradation behavior of PLA was

investigated. The results indicated that HAP-DOPS could decrease

the PHRR, improve the LOI and UL-94 rating, and promote char

formation. At a flame retardant content of 5 wt%, V-0 rating in the

UL-94 test was achieved by PLA/HAP-DOPS. When the amount of

HAP-DOPS was increased to 7.5 wt%, a high LOI value of 28.2% was

obtained. FRI(PLA/HAP-DOPS- 7.5 wt%) was higher than the other

two PLA composites. In addition, the PLA/HAP-DOPS composites

decomposed earlier than neat PLA under N2 conditions. The TG-

FTIR test results showed that HAP-DOPS played a flame-retardant

effect through quenching free radicals in the gas phase. To sum up,

when the addition of HAP-DOPS in PLA is 7.5 wt%, the composite

can obtain better flame retardancy.
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