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The rapid growth of photovoltaic installed capacity exacerbates the power management
challenges faced by photovoltaic power stations, emphasizing the importance of accurate and
stable photovoltaic generation forecasting. As a result, researchers conducted research and
developed several photovoltaic power prediction models. However, many prediction models
focus exclusively on the algorithm structure in order to improve model accuracy, oblivious to
how the dataset is constructed and divided for the prediction model. This paper proposes a
comprehensive model to address this gap. To be more precise, the differential evolution
algorithm is constantly looking for optimal values between different populations and
determining the best way to construct datasets for prediction tasks. Multi-task learning
enables the transfer of knowledge between related tasks via parameter sharing layers,
referring to the accuracy and stability of prediction models. Overall, the proposed model
achieves high prediction accuracy and stability. The prediction error of the proposed model is
less than 450W in RMSE, NRMSE is less than 2.5%, and R-Square is greater than 99% in
multiple prediction tasks. Additionally, when compared to other single-task prediction models
with an R-Square greater than 96%, the proposed model further reduces the root mean
squared error by an average of 28% and the standard deviation of root mean squared error
by 54%.
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INTRODUCTION

Background
With the continuous improvement of people’s awareness of green energy, the photovoltaic
generation has garnered widespread attention worldwide due to its mature technology
(Mitrašinović, 2021). Regrettably, it also brings significant uncertainty due to environmental
factors (such as weather, wind speed, and sunshine intensity) (Ramli et al., 2016), which is
detrimental to the power grid’s stability and reliability (Liang, 2017). As a result, accurate
photovoltaic power forecasting research is critical to the power grid and energy utilization industries.

The prediction period mainly divides photovoltaic power prediction research into two models:
ultra-short-term early photovoltaic power prediction (predicting photovoltaic power from minutes
to hours) and short-term early photovoltaic power prediction (predicting photovoltaic power from a
day to weeks) (Rana et al., 2016). They are critical for real-time grid dispatch and the formulation of
daily power generation plans in advance (Al-Shetwi and Sujod, 2018).

Edited by:
Mazeyar Parvinzadeh Gashti,

PRE Labs Inc., Canada

Reviewed by:
Wahri Sunanda,

Bangka Belitung University, Indonesia
Saad Mekhilef,

Swinburne University of Technology,
Australia

*Correspondence:
Jiefeng Liu

jiefengliu2018@gxu.edu.cn

Specialty section:
This article was submitted to
Environmental Degradation of

Materials,
a section of the journal
Frontiers in Materials

Received: 07 May 2022
Accepted: 24 June 2022
Published: 11 July 2022

Citation:
Pang S, Liu J, Zhang Z, Fan X,

Zhang Y, Zhang D and Hwang GH
(2022) A Photovoltaic Power

Predicting Model Using the Differential
Evolution Algorithm and Multi-

Task Learning.
Front. Mater. 9:938167.

doi: 10.3389/fmats.2022.938167

Frontiers in Materials | www.frontiersin.org July 2022 | Volume 9 | Article 9381671

ORIGINAL RESEARCH
published: 11 July 2022

doi: 10.3389/fmats.2022.938167

http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2022.938167&domain=pdf&date_stamp=2022-07-11
https://www.frontiersin.org/articles/10.3389/fmats.2022.938167/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.938167/full
https://www.frontiersin.org/articles/10.3389/fmats.2022.938167/full
http://creativecommons.org/licenses/by/4.0/
mailto:jiefengliu2018@gxu.edu.cn
https://doi.org/10.3389/fmats.2022.938167
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2022.938167


Literature Review and Motivation
Numerous researchers have previously proposed various models
for forecasting photovoltaic energy generation. Physical,
statistical, and integrated methods are the most frequently
used prediction techniques (Sobri et al., 2018). Physical
methods directly calculate photovoltaic energy generation
based on the efficiency of photovoltaic components (such as
photovoltaic modules and inverters) and environmental variables
(such as sunlight intensity) (Ogliari et al., 2017). They are
primarily influenced by the efficiency of various components
involved in the photoelectric conversion process and the physical
location of photovoltaic power plants (Humada et al., 2020).
Previous studies have researched the modeling of the
photovoltaic modules to confirm the operating conditions of
solar cells and to determine their effective parameters
(Humada et al., 2016). However, not only the accuracy of the
model is related to the choice of the model type and the number of
parameters, but also the balance between the accuracy and
complexity of the model has always been challenging for
researchers.

Statistical methods extract the internal relationships
between historical data and establish a specific mapping
relationship between prediction model input and output.
Specifically, statistical methods include the persistence
model, the autoregressive moving average (ARMA) model
(Boland et al., 2016), the regression method (Trapero et al.,
2015), the exponential smoothing method (Dong et al., 2013),
the support vector machine (SVM) (Jufri et al., 2019), and the
artificial neural network (ANN) (Shahsavar et al., 2021).
Integrated methods incorporate multiple models into
physical or statistical methods (Abdel-Nasser and
Mahmoud, 2019), effectively circumventing the limitations
of a single model and increasing the model’s predictive
accuracy. Because of its superior nonlinear fitting ability,
ANN is frequently used as a fundamental model in the
appealing model.

Due to the exceptional ability of recurrent neural network
(RNN) models to extract timing features, researchers have
proposed variant models based on the RNN model to forecast
photovoltaic power generation in ANN (Lin et al., 2018). The
long short-term memory (LSTM) model is frequently used in
time series prediction as a variant of the RNN model (Qu et al.,
2021). However, the method by which datasets are divided has a
significant impact on the model’s prediction performance and
accuracy (Wang et al., 2020). Additionally, the prediction of the
single-task prediction model will be highly unstable. When a
single-task prediction model makes multiple predictions for
distinct prediction tasks, the prediction errors fluctuate wildly,
reducing the predictability of the photovoltaic power generation
prediction model, which is detrimental to photovoltaic power
generation prediction.

This paper aims to address the problem that the division
and construction of datasets rely heavily on the experience of
researchers, as well as the poor prediction and stability of
traditional prediction models. Given these issues, the priori
model consisting of a differential evolution algorithm and
LSTM is proposed for the dataset construction of concrete

prediction tasks. The prediction performance and stability are
further improved by the multi-task learning mechanism
through the process of knowledge transfer between related
and target tasks. Verified on a variety of concrete prediction
tasks, the proposed model further reduces root mean squared
error by an average of 28% and the standard deviation of root
mean squared error by 54% when compared to other single-
task prediction models with an R-Square greater than 96%.

THEORIES AND MOTIVATION

Long Short-Term Memory Networks
Long short-termmemory (LSTM) is a subtype of recurrent neural
network (RNN). Due to its atypical structure, it is capable of
grasping the timing characteristics of photovoltaic power and
resolving the gradient disappearance and explosion problems
associated with long sequence training.

The LSTM introduced the concept of cell state, and three gate
structures (input gate, forget gate, and output gate) are used to
maintain and control the flow of timing information, as
illustrated in Figure 1. Assume that Ct-1 and ht-1 represent the
current state of the cell and hidden layer, respectively. The
LSTM’s status update process for each gate per unit time step
is illustrated in Eqs. 1–6.

ft � σ(Wf · [ht−1, xt] + bf) (1)
it � σ(Wi · [ht−1, xt] + bi) (2)

Ct � tanh(WC · [ht−1, xt] + bC) (3)
Ct � ft ⊙ Ct−1 + it ⊙ Ct (4)

Ot � σ(WO · [ht−1, xt] + bO) (5)
ht � Ot ⊙ tanh(Ct) (6)

where ft is the current state of the forget gate, it is the current
state of the update gate, ~Ct is the cell candidate state, Ct is the
current state of the cell state, and Ot is the current state of the
output gate. The output is calculated by the fully connected layer
whose activation function is the sigmoid function and is
uniformly represented as a function σ (·)

FIGURE 1 | The structure of the LSTM cell.
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Differential Evolution Algorithm
As illustrated in Figure 2, the differential evolution (DE)
algorithm is a global optimization algorithm based on
populations (Bilal et al., 2020). DE algorithm is divided into
two phases: initialization and evolution. The populations are
generated randomly in the first phase. The second phase,
evolution, involves the repeated mutation, crossover, and
selection processes of the generated populations until the
termination criteria are met. Finally, the optimal value is
discovered through evolution.

Multi-Task Learning With Homoscedastic
Uncertainty
Multi-task learning is a type of machine learning in which
multiple related tasks are learned concurrently via parameter
sharing layers. As illustrated in Figure 3, multi-task learning uses
multiple loss functions during the model training process to

improve the models’ generalization ability, whereas single-task
learning uses a single loss function. There are numerous
advantages to multi-task learning over single-task learning,
two of which are particularly significant. Multi-task learning
mitigates the overfitting problem and increases the stability of
models during training. On the other hand, multi-task learning
enhances the predictive accuracy of models through the process
of knowledge transfer, as illustrated in Figure 4.

The weights of each loss function have a significant effect on
the accuracy of multi-task learning models during the training
process. The simplistic approach to combining multi-objective
losses would be to perform a weighted linear sum for each task
illustrated in Eq. 7.

Ltotal � ∑
i

wi · Li (7)

where Ltotal is the total loss function in model training, Li is the
loss function of each subtask, wi is the weight of each subtask’s
loss function. The wi is a fixed value set artificially.

However, model performance is highly dependent on weight
selection, resulting in a high cost of manual parameter
adjustment. Alex Kendall and his colleagues proposed a
method for determining the weight of each task loss function
shown in Eq. 8 by utilizing homoscedastic uncertainty (Cipolla
et al., 2018).

Ltotal � ∑
i

[ 1
2σ2i

li(w) + log(σ i)] (8)

where Ltotal is the total loss function inmodel training, li(w) is the
loss function of each subtask, σ i is the weight of each subtask’s
loss function. Different from wi in Eq. 7, the σ i is a parameter in
the loss function layer and changes autonomously with model
training.

In the model training process, σ i is a parameter within the
model structure and changes with each iteration to train the
optimal value of each subtask loss function of multi-task learning.
It significantly saves the time of manual parameter adjustment.
However, there is a disadvantage in Eq. 8. When σ i is a value from
0 to 1, log(σ i) is negative, so Ltotal may become negative, which

FIGURE 2 | Schematic diagram of differential evolution algorithm.

FIGURE 3 | Comparison between single-task and multi-task learning.

FIGURE 4 | The graph of knowledge transfer in multi-task learning. The
chart only shows the process of knowledge transfer between two tasks.
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will make the model unable to converge and the prediction
performance worse. Therefore, a modified formula is
proposed, shown in Eq. 9 based on (8), to make sure Ltotal is
not negative in any case.

Ltotal � ∑
i

[ 1
2σ2i

li(w) + log(1 + σ i)] (9)

The Priori and Prediction Models: Their
Motivation and Implementation
In data mining, the division of datasets frequently has a
significant effect on the model’s predictive performance.
Historically, researchers have typically divided the entire
dataset into a training set, a verification set, and a test set
based on their proportions (e.g., 80% of the data set is used as
the training set, 10% as the verification set, and 10% as the test
set). While the method of proportionally dividing datasets is
widely used in various data mining competitions, it is impractical
in the context of photovoltaic power prediction. In contrast to
other competitions, the datasets required for photovoltaic power
prediction models must be collected independently by
researchers, which means that the raw datasets collected by
researchers may differ from their experience. Additionally,
datasets constructed from historical data from different days
have a significant effect on model predictions (Graditi et al.,
2016). As a result, an acute problem arises: how to scientifically
select data for the purpose of constructing datasets with less
empirical interference when performing specific photovoltaic
power prediction tasks?

Additionally, many engineers incorporate historical data from
the previous time period into the feature quantity to aid in model
training, which may result in the predicted value curve lagging
behind the actual value curve due to the series’ autocorrelation.
The conventional method for removing autocorrelation is to use
difference calculation: set the regression target to the difference
between the current and previous times. However, the strategy is
not effective or efficient.

To construct rational and intelligent datasets, we define the
photovoltaic power prediction on a date as the prediction tasks
and the photovoltaic power prediction of the day before the
prediction tasks as priori tasks. Actively discover appropriate
dataset construction rules for the priori task from back to front on
the timeline using a priori model composed of LSTM and DE
algorithms. Additionally, we believe that by incorporating
multiple historical power data sets to improve the data’s
quality, we can eliminate autocorrelation and obtain the
optimal values via the priori model.

We obtain the dataset composition method based on the rules
extracted from the priori model. The law is primarily composed
of two parameters: the size of the training sets and verification
sets, and the number of historical power data points used to
bolster the dataset in the past. And apply the rules discovered in
the priori tasks to the prediction tasks.

During priori model experiments, the rules derived from the
priori model can be used to improve prediction accuracy across a

variety of different prediction models with varying structures.
However, the errors of single-task prediction models vary
significantly across prediction tasks, which makes practical
application of photovoltaic power prediction difficult. To
enhance the stability and reliability of photovoltaic power
prediction models, we propose a prediction model with lower
prediction error fluctuation through the use of a multi-task
learning mechanism.

To be more precise, the proposed prediction model takes the
photovoltaic power predictions of multiple single-task prediction
models on the same date as target tasks and related tasks and
trains the model using the multi-task learning hard-sharing
mechanism. Additionally, we use homoscedastic uncertainty to
determine the weight of the loss function for each task and apply
9) to ensure that the prediction model converges quickly and
accurately during training.

On the whole, a combined photovoltaic power prediction
model is proposed, as illustrated in Figure 5. To begin, we
filter out the characteristics of the public photovoltaic output
dataset that have the most significant impact on photovoltaic
power. Following that, the power-related data is compressed and
normalized using the normalization layers. Then, we define the
photovoltaic power prediction of the day before the prediction
tasks as priori tasks. We can find the laws suitable for
constructing the priori tasks dataset using the priori model
composed of the DE algorithm and LSTM and apply them to
the construction of the prediction tasks dataset. In the prediction
model, we combine predictions of photovoltaic power on the
same day from multiple single-task prediction models with
varying structures for target and related tasks that can be
adjusted flexibly. The parameter sharing layers combine all
tasks (related and target tasks) in order to achieve parallel
knowledge transfer and noise balance between tasks, thereby
implementing the multi-task learning mechanism via the hard
sharing mechanism. Finally, each associated task and target task
independently output the photovoltaic power prediction results
via their respective single-task prediction models.

EXPERIMENT AND RESULT ANALYSIS

It is necessary to introduce the working platform and
experimental equipment prior to beginning the experiments.
Our models were trained on laptops equipped with an AMD
R5-5600H processor, a Radeon RTX3050 graphics card, the
TensorFlow 2.4 deep learning framework, Keras 2.4, and a 64-
bit version of Windows 10.

Data Collection and Processing
Dataset Introduction
We begin with the public photovoltaic output dataset (PVOD)
from the scientific data bank. PVOD is a high-quality dataset
collected and maintained on a regular basis by Tiechui Yao et al.
(Yao et al., 2021). It is constructed from two data sources
separated by a 15-min interval: numerical weather prediction
(NWP) frommeteorological services and local measurement data
(LMD) from photovoltaic power stations. The NWP is composed

Frontiers in Materials | www.frontiersin.org July 2022 | Volume 9 | Article 9381674

Pang et al. Photovoltaic Power Predicting Model

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


of seven components: global irradiance, direct irradiance,
temperature, humidity, wind speed, wind direction, and
pressure. Local Measurements Data consists of seven parts:
global irradiance, diffuse irradiance, temperature, pressure,
wind direction, and wind speed, as well as photovoltaic output
records. PVOD, in general, contains historical data on solar
photovoltaic energy generation and the major environmental
factors affecting energy generation, making it ideal for
photovoltaic power prediction experiments.

Feature Selection
Photovoltaic energy is extremely dependent on environmental
factors. Each environmental factor, however, has a unique effect
on photovoltaic power. To conserve resources and increase the
efficiency of models, we must first identify the significant ecological
characteristics affecting photovoltaic energy generation using

Spearman’s rank correlation coefficient shown in Eq. 10. We
choose environmental factors with absolute correlation
coefficients greater than 0.3 in the original dataset as the
characteristic quantity for our model training, as shown in
Table 1. Besides, because photovoltaic power is time-dependent,
we encode weekly and hourly photovoltaic power data, respectively
(For details, please refer to Supplementary Appendix A).

r � ∑n
i�1(yi − �y)(Mi − �M)










∑n

i�1(yi − �y)2√ 












∑n
i�1(Mi − �M)2√ (10)

Where r represents the calculation results of the correlation
coefficient, and yi represents the actual photovoltaic power
values in the prediction tasks. Mi represents the actual values
of each environmental factor. �y and �M are the average values of yi
andMi, respectively. Specifically, the closer the absolute value of r
is to 1, the stronger the correlation is.

FIGURE 5 | The training process of the combined photovoltaic power prediction model.

TABLE 1 | Correlation coefficients of the environmental factors.

Environmental
characteristics

nwp_globalirrad nwp_directirrad nwp_humidity lmd_totalirrad lmd_diffuseirrad lmd_windspeed

correlation coefficient of station Ⅰ 0.896 0.887 -0.403 0.957 0.704 0.446
correlation coefficient of station Ⅱ 0.881 0.871 -0.327 0.973 0.827 0.511
correlation coefficient of station Ⅲ 0.894 0.888 -0.382 0.954 0.867 0.376
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The Padding of Missed Data
PVOD is a collection of open datasets devoted to the photovoltaic
industry. It is routinely maintained andmanaged by professionals
and has an excellent dataset quality, eliminating the need to fill in
missing values.

Model Evaluation
To comprehensively test the rationality and correctness of the priori
model’s laws, we use the photovoltaic power predictions of three
photovoltaic power stations on 1 January 2019, 1 March 2019, and
1 May 2019 as prediction tasks 1 to 9 and conduct experiments on
several prediction models with various structures. The main form of
the models is shown in Table 2 (For details, please refer to
Supplementary Appendix B). Additionally, we maintain the
same number of network layers and neurons across all prediction
models to mitigate the effect of the basic structure of prediction
models. The optimizer opts for RAdam, while the activate function
opts for the swish.

We use six evaluation indexes to reflect the prediction accuracy
and stability of each model thoroughly: Root Mean Squared Error
(RMSE), Normalized Root Mean Squared Error (NRMSE),
R-Square (R2), and the standard deviations of RMSE, NRMSE,
and R2, as shown in Eqs. 11–16.

RMSE �













1
m
∑m
q�1

(yi − ŷi)2√√
(11)

NRMSE � RMSE(ŷ, y)
max(y) (12)

R2 � 1 − MSE(ŷ, y)
var(y) (13)

σRMSE �

























∑N
i�1[RMSEi(y�, y) − μRMSE]2

N

√√
(14)

σNRMSE �




























∑N
i�1[NRMSEi(y�, y) − μNRMSE]2

N

√√
(15)

σR2 �



















∑N
i�1[R2

i (y�, y) − μR2]2
N

√√
(16)

where yi, y and ŷi, ŷ are the actual and predicted values of the
prediction tasks; μRMSE, μNRMSE and μR2 are the mathematical
expectations of RMSE, NRMSE, and R2, respectively.

Experiments and Results Analysis
The Necessity Verification of the Priori Model
Aiming to reveal the influence of the features extracted by the
priori model on the accuracy of the models, we conducted a series
of comparative experiments with different characteristics on
prediction Model 5 on 1 January 2019, and the experimental
results are shown in Tables 3 and 4. The W (Watt) is the power
unit in the international system of units.

Tables 3 and 4 demonstrate that datasets of varying lengths
and historical photovoltaic power data added to the characteristic
quantity have a significant effect on the accuracy of prediction
models. When the number of days and the amount of intensive
data increases, the prediction errors initially decrease and then
increase. When the number of days is 20, the prediction errors are
the smallest in Table 3. By incorporating intensive data, the
prediction error is further reduced by 13.4% in RMSE when the
number of intensive data is five, as shown in Table 4. There are
two potential explanations. From the process of model training,
one possible reason for this is that insufficient or excessive data
may result in underfitting or overfitting, respectively, during the
model training process.

On the other hand, when predicting the photovoltaic power of
the next day, the models may pay more attention to the regularity
between the historical data of the previous week or month, while
the regularity of the historical information of half a year or even a
year ago may have little impact on the prediction of the model
that day, or even the opposite. In general, it is necessary to
construct different data sets for specific prediction tasks.

Experiments on Model Performance
As a result, we set the number of days of historical data used for
model training and the number of historical photovoltaic power
data used to improve the dataset’s quality as two variables
affecting the prediction models’ accuracy. In the priori model,
the prediction error R2 of Model 1 on priori tasks is set as the
objective function. The DE algorithm then determines the

TABLE 2 | The main structure of models.

Models Task type Models’ main structure

Model 1 Single LSTM and Attention
Model 2 Single LSTM × 2
Model 3 Single GRU and Attention
Model 4 Single GRU × 2
Model 5 Multiple —

TABLE 3 | Comparison of prediction errors of training sets with different days.

Days RMSE (W) NRMSE (%) R2 (%)

10 1906.731 13.782 82.182
20 355.307 2.568 99.381
30 373.066 2.699 99.315
40 391.630 2.831 99.248
50 464.279 3.355 98.943

TABLE 4 | Comparison of Prediction Errors of Training Sets by Adding different
Historical Photovoltaic Power Data.

Number
of intensive data

RMSE (W) NRMSE (%) R2 (%)

0 355.307 2.568 99.381
5 307.679 2.223 99.505
10 402.992 2.912 99.091
15 456.287 3.298 98.747
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FIGURE 6 | The corresponding prediction results of each model on different tasks. Specifically, (A–I) show the prediction results of prediction tasks 1 to 9,
respectively. Models 1 to 5 can achieve good prediction results in different prediction tasks.

TABLE 5 | RMSE, NRMSE, and R2 of models on different prediction tasks.

Date Models RMSE (W) NRMSE (%) R2 (%)

Station
Ⅰ

Station
Ⅱ

Station
Ⅲ

Station
Ⅰ

Station
Ⅱ

Station
Ⅲ

Station
Ⅰ

Station
Ⅱ

Station
Ⅲ

Jan.
1st

Model 1 393.797 433.905 254.611 2.846 2.650 2.500 99.156 99.236 99.370
Model 2 396.414 532.314 271.797 2.800 3.258 2.670 99.145 98.850 99.290
Model 3 359.521 378.913 270.685 2.598 2.310 2.660 99.297 99.417 99.290
Model 4 409.206 514.212 252.956 2.957 3.147 2.489 99.080 98.920 99.380
Model 5 282.617 369.726 229.414 2.040 2.260 2.259 99.560 99.440 99.410

Mar.
1st

Model 1 384.865 567.982 491.657 2.510 2.826 3.559 99.346 99.140 98.470
Model 2 355.428 804.468 662.099 2.320 4.000 4.790 99.440 98.290 97.220
Model 3 343.060 622.664 778.012 2.200 3.000 5.630 99.480 98.970 96.170
Model 4 361.607 752.166 675.121 2.364 3.700 4.887 99.420 98.500 97.110
Model 5 298.903 442.156 336.257 1.954 2.190 2.434 99.600 99.480 99.520

May
1st

Model 1 512.149 394.341 424.045 2.746 2.080 3.000 99.330 99.600 99.022
Model 2 677.579 427.273 714.794 3.633 2.260 5.070 98.830 99.530 97.220
Model 3 511.213 430.502 557.518 2.700 2.270 3.954 99.330 99.520 98.310
Model 4 611.650 307.521 627.399 3.280 1.626 4.450 99.050 99.758 97.850
Model 5 356.109 266.167 365.213 1.909 1.407 2.590 99.670 99.800 99.159
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optimal value suitable for constructing the priori tasks dataset.
We are surprised to discover that the optimal values obtained
from priori tasks fluctuate within a small range (the optimal
values in the adjacent week are nearly unchanged), indicating that
the rule obtained by the priori model is robust to changing
prediction tasks in a short time. As a result, we directly apply
the rules learned from the priori tasks to the prediction tasks. The

results of the prediction models are shown in Table 5 and
Figure 6. In Table 5, the darker the color (red), the smaller
the prediction error; the lighter the color (white), the larger the
prediction error.

The R2 value for each model on different prediction tasks is
greater than 96% in Table 5, indicating that prediction models
perform well across multiple prediction tasks. As a result, the
rules extracted from the priori model exhibit a high degree of
robustness when applied to prediction models with varying
structures. This is demonstrated in Figure 6 (a) to (i), where
each prediction model fits well between the prediction curve
and the actual curve for various prediction tasks, thereby
validating the correctness and rationality of the underlying
theory of the priori model that selecting the appropriate
dataset for model training and adding a moderate amount
of historical power data to enhance the dataset can
significantly improve the prediction performance of the
prediction model.

Experiments on Prediction Stability and
Accuracy
However, while the prediction errors of each model are already
small, the prediction errors of Models 1 to 4 on different
prediction tasks exhibit significant fluctuations, increasing the
prediction models’ instability and unreliability. Thus, in the
experiments with prediction models, multi-task learning
facilitates knowledge transfer between related tasks by
sharing parameter layers, improving the prediction model’s
accuracy and stability. As illustrated in Figure 7 and Figure 8,
the R2 and NRMSE values for Model 5 are lower than those for
Models 1 to 4, indicating that multi-task learning models are
more accurate than single-task prediction models. This is also
demonstrated in Table 5 by the prediction error indicators.
Model 5’s RMSE is less than 450W, its NRMSE is less than
2.5%, and its R2 is greater than 99%. Additionally, when
comparing the evaluation indexes in Table 5, Model
5 reduces RMSE and NRMSE by an average of 28% and
56%, respectively, when comparing Models 1 to 4.

The standard deviations of the prediction model are shown in
Table 6 as σRMSE, σNRMSE, σR2 . Clearly, the standard deviations of
each evaluation index for Model 5 are lower than those for
Models 1 to 4, indicating that the multi-task learning model is
more robust and stable in predicting photovoltaic power than
single-task prediction models.

FIGURE 7 | R2 of models in different prediction tasks.

FIGURE 8 | NRMSE of models in different prediction tasks.

TABLE 6 | Standard deviations of evaluation indices of prediction models between
prediction tasks.

Models σRMSE σNRMSE σR2

Model 1 90.14 0.40 0.32
Model 2 184.96 1.03 0.89
Model 3 160.23 1.11 1.08
Model 4 176.29 1.03 0.84
Model 5 64.67 0.34 0.18
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Additionally, as illustrated in Figure 7 and Figure 8, Model
5 exhibits more minor variations in prediction errors across
different prediction tasks. In concrete terms, when compared
to Models 1 to 4, Model 5’s standard deviations in RMSE,
NRMSE, and R2 are reduced by 54%, 54%, and 71%,
respectively.

In general, when validated on multiple prediction tasks
using various datasets, the combined model’s R2 value is
greater than 99 percent, with a standard deviation R2 of
0.18, indicating that the combined model composed of the
priori model and the prediction model based on multi-task
learning accurately and consistently predict various
photovoltaic power prediction tasks.

Policy and Environmental Impact
As the prediction accuracy and stability of the photovoltaic
power prediction model are greatly improved, it would
significantly enhance the power management efficiency of
photovoltaic power stations and create more economic
value for grid-connected power grids. Photovoltaic power
stations with larger installed capacity can be further
developed, conducive to relieving employment problems
and the environment.

To be more precise, improving the prediction accuracy and
stability of the photovoltaic power prediction model promotes
the development of photovoltaic installed capacity
tremendously. This will provide new jobs during the energy
transformation period in the context of the gradual
introduction of environmental policies and the
improvement of energy security issues. On the other hand,
with the increase of photovoltaic installed capacity, the
proportion of solar power generation in the total power
generation has been further increased, significantly
reducing the combustion of fossil energy and carbon
emissions.

CONCLUSION

The paper proposes a combined model composed of a priori and
multi-task learning prediction models to solve how to construct
the dataset scientifically and effectively improve the stability and
prediction accuracy of the prediction model, which has reduced
the uncertain impact of the photovoltaic power station grid
connection on the power grid. If properly utilized, the
accurate photovoltaic power prediction model would
significantly promote the development of the photovoltaic
industry and reduce carbon emissions. The following is the
conclusion to this paper:

• Numerous evaluation indices for various prediction tasks
have been proposed to assess the prediction performance
and stability of prediction models comprehensively. In

detail, the RMSE, NRMSE, and R2 values reflect the
accuracy of prediction models, while the standard
deviations of the RMSE, NRMSE, and R2 values reflect
the stability of prediction models.

• A priori model based on the DE algorithm and LSTM was
developed to construct datasets for various prediction tasks
efficiently. The priori model’s rule can significantly improve
the accuracy of prediction models with varying structures
(R2 of prediction models on different prediction tasks is
greater than 96%).

• A model for accurate and stable prediction has been
proposed that makes use of the multi-task learning
mechanism. The multi-task learning mechanism
enables the transfer of knowledge between related
tasks, thereby increasing the accuracy and
generalizability of photovoltaic power prediction
models. In comparison to other single-task prediction
models, the multi-task learning prediction model
improves prediction accuracy and stability by an
average of 28% and 54%, respectively.

FUTURE WORK

Although the model we proposed has outstanding prediction
performance, there are still many areas to be improved for the
efficiency and applicability of the prediction model. Specific
discussions about future work are as follows:

1. The differential evolution algorithm is a single objective
optimization algorithm. Although it can obtain an
excellent solution-set in most cases, it is easy to fall into
the local optimal solution in the process of optimization.
This is not conducive to the accurate prediction of the
photovoltaic power prediction model. In the following
research work, we will consider using a multi-objective
optimization algorithm to reduce or avoid the probability
of falling into the local optimal solution in the optimization
process.

2. Multi-task learning can relieve the problem of overfitting in
the process of model training by using knowledge transfer in
the process of model training. However, selecting target tasks
and related tasks is still a problem worthy of further study.
How to determine the target task will also be the focus of our
subsequent research. In addition, the selection of the number
of related tasks affects the running time of the whole model.
The more the number of related tasks, the longer the running
time of the model. Therefore, in the following research work,
we will also carry out corresponding research to find the least
number of related tasks without affecting the model’s
prediction performance to reduce the running time of the
model.
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