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In this work, we propose an efficient numerical method to study the effects of
microstructures on the effective diffusion coefficient of the diffusion component in
materials. We take the diffusion of hydrogen (H) atoms in porous polycrystalline
tungsten (W) as an example. The grain structures and irradiated void microstructures
are generated by using the phase-field model. The effective diffusion coefficients of H in
these microstructures are obtained by solving the steady-state diffusion equation, using a
spectral iterative algorithm. We first validate our simulation code for calculating the effective
diffusion coefficient by using three simple examples. We then investigate the effects of the
grain morphology and porosity on the effective diffusion coefficient of H inW. Regardless of
whether the grain boundary is beneficial to the diffusion of H or not, it is found that the
effective diffusion coefficient of H along the elongated grain direction in columnar crystals is
always greater than that in isometric crystals. The increase of the porosity can significantly
decrease the effective diffusion coefficient of H from the simulations of the porous W. A
correlation of converting the two-dimensional (2D) effective diffusion coefficient into three-
dimensional (3D) in the porous and polycrystalline W is fitted by using our simulation data,
respectively. Two fitted correlations can be used to predict the synergistic effect of the
porosity and grain boundary on the effective diffusion coefficient of H in W. Consequently,
our simulation results provide a good reference for understanding the influence of the
complex microstructures on H diffusion, and may help to designW-based materials for the
fusion reactor.
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1 INTRODUCTION

Due to the energy crisis caused by the exploitation of the limited fossil energy, nuclear fusion energy
with many potential advantages such as abundant raw materials, pollution-free products, and high
energy efficiency, has been constantly studied. The Tokamak, a magnetically confined fusion device,
is considered to be the most likely future fusion device (Artsimovich, 1972). In the nuclear fusion
reactor environment, tungsten (W) has been considered as one of the most promising candidate
materials for plasma-facing materials (PFMs), owing to its advantages of high melting point, good
thermal conductivities, as well as low sputtering rate (Bolt et al., 2004; Cottrell, 2004). However,
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PFMs will be irradiated by high energy neutron (14 MeV) in
combination with the high temperature (300 < T < 2000 K) (Li
et al., 2017), which will inevitably induce microstructure changes
such as grain boundary migration (Stepper, 1972; Vaidya and
Ehrlich, 1983; Mannheim et al., 2018), and second-phase
formation (voids/dislocations caused by clustering of point
defects (Hasegawa et al., 2014; Hu et al., 2016), precipitates
formed by the precipitation of the transmutation elements
(Hasegawa et al., 2016)), etc. Besides, hydrogen (H) and its
isotope escaped from the plasma can penetrate through the W
surfaces and diffuse inside the bulk under plasma irradiation (El-
Kharbachi et al., 2014; Hodille et al., 2014; Grisolia et al., 2015).
The interaction between H and the defect microstructures may
result in a set of safety issues ofW such as surface blistering (Zhou
H. et al., 2019), embrittlement (Louthan et al., 1972), and cracking
(Ueda et al., 2005), which can notably degrade the mechanical
and thermal properties of W and thus reduce its service lifetime.
In addition, H and its isotope are very expensive reactants, finding
a way to recycle them can greatly reduce the cost. The diffusion
process of H and its isotope in such complex microstructures is
extremely important. Therefore, understanding the effect of the
microstructure on the diffusion of H is critical to improving the
irradiation properties and reducing the cost of fuels.

Recently, numerous simulations and experimental studies
have been conducted on the H diffusion in the bulk
(Frauenfelder, 1969; Heinola et al., 2010a; Yang and Oyeniyi.,
2017) and on the surface of W (Heinola and Ahlgren, 2010b; Xue
and Hassanein, 2014; Yang and Wirth, 2019), as well as the effect
of irradiated defects such as vacancies (Eleveld and Veen, 1994;
Liu et al., 2009; Johnson and Carter, 2010), dislocations
(Taketomi et al., 2008; Kimizuka and Ogata, 2011; Wang
et al., 2019), and grain boundaries (Oudriss et al., 2012; Yu
et al., 2014; González et al., 2015; Fu et al., 2021) on the H
diffusion. The thermal desorption experimental results show that
the H diffusion is influenced by various factors such as defect type
(Jin et al., 2017), distribution (Fujita et al., 2017), temperature
(Rieth et al., 2019), and annealing time (Sakurada et al., 2017). In
addition, it is found that the desorption temperature of H from
vacancies or voids does not exceed 800 K (Eleveld and Veen,
1994), and from grain boundaries is about 400–500 K (Hodille
et al., 2017). And the molecular dynamics studies indicate that the
H diffusion largely depends on the type of grain boundaries,
i.e., certain types of grain boundaries (e.g., ∑ 5(310)[001]) can
promote the H diffusion (Yu et al., 2014), while others (e.g.,∑ 25(430)[100]) can inhibit it (Zhou X. et al., 2019) compared to
it in the bulk. Vacancies always hinder the H diffusion in W, the
diffusion coefficient of H can be reduced by two orders of
magnitude in the single crystalline W when the mono-vacancy
concentration is only 0.5% at 1800 K and this effect becomes
more obvious with the increase of the vacancy concentration
(Wang et al., 2019). Results also show that the materials with
mono-vacancies have a stronger inhibition effect on H diffusion
than that containing vacancy clusters with the same porosity, due
to mono-vacancies can provide more H capture sites (Wang et al.,
2019). Despite atomistic simulations can give the microscopic
mechanism of H interacting with defects, they are hard to predict
the effective diffusion coefficient at the microstructural scale due

to the limited spatial and time scales. Several analytical models
have been developed to estimate the effective diffusion coefficient
of the diffusion component in microstructures (Maxwell, 1881;
Hart, 1957; Bakker et al., 1995; Chen and Schuh, 2007; Moradi,
2015; Jiang et al., 2021). Maxwell-Garnett et al. (Maxwell, 1881;
Moradi, 2015) developed a model to predict the effect of the
volume fraction of the second phase on the effective diffusion
coefficient in a two-phase system. Hashin-Shtrikman et al.
developed a model (Chen and Schuh, 2007) to calculate the
effective diffusion coefficient in isometric polycrystalline
materials, etc. However, these analytical models have
difficulties in giving the inhomogeneous concentration
distribution of the diffusion component intuitively, and more
importantly, they are far from enough to investigate the effect of
the complex microstructural features (e.g., arrangement and
morphology) on the effective diffusion coefficient of the
diffusion component in materials.

In this work, we demonstrate an efficient numerical method to
study the effect of the microstructure on the H effective diffusion
coefficient in W at relevant high temperatures. Grain structures
and irradiated voids are considered as the main defect
microstructures generated by using phase-field simulations,
although other defect microstructures such as dislocations,
precipitates, and gas bubbles can also be easily incorporated in
the model. A spectral iterative algorithm (Wang et al., 2016; Li
et al., 2022) is used to solve the stationary diffusion equation
based on the phase-field microstructures to obtain the effective
diffusion coefficient. The current method is only applied at high
temperature or there is no interaction between the diffusion
component and microstructure, where H atoms can be
eventually desorbed from grain boundaries and voids
consisting with the thermal desorption experimental
observations (Eleveld and Veen, 1994; Hodille et al., 2014).
Using this method, the effects of grain boundaries, voids, and
their synergistic effect on the effective diffusion coefficient of H
are systematically investigated in W. Two sets of correlations that
can be used to transfer the two-dimensional (2D) into three-
dimensional (3D) effective diffusion coefficient are fitted based on
our simulation results, which can be used to predict the effective
diffusion coefficient of H in the porous polycrystalline W. We
believe that this method provides a good reference for
understanding the influence of the microstructure on the H
diffusion in W, and offers an efficient way to study the effect
of the complex microstructure on the effective diffusion
coefficient in other similar systems.

2 COMPUTATIONAL DETAILS

2.1 Phase-Field Model of Microstructure
Evolutions
Controlling the grain size is a common way to tune the thermal
and mechanical properties of the polycrystalline W. Within the
phase-field model, a set of continuous non-conservative phase
variables ηi (i = 1, . . . , n) are used to represent the different grain
orientations, in which n is the total number of the grain
orientations. Following the free energy of describing the grain
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growth developed by Chen et al. (Fan and Chen, 1997; Krill and
Chen, 2002), the total free energy of the system can be written as,

Fpoly
total � ∫[mf0(η1(r), η2(r), . . . , ηn(r)) + fpoly

grad(η1(r), η2(r), . . . , ηn(r))]dV ,

(1)
where f0 is a local microstructural energy density, and fpoly

grad is
the gradient energy density contributed by the grain boundary.
r � {x, y, z} is the spatial coordinate, m is a positive constant
associated with the grain boundary width and energy, andV is the
volume of the simulated system. Boldface characters (e.g., r)
denote vectors in this work.

The local microstructural free energy density can be
formulated as (Fan and Chen, 1997; Krill and Chen, 2002)

f0(η1, η2, . . . , ηn) � ∑n
i

[ − 1
2
η2i +

1
4
η4i +

1
4
] + γ∑n

i

η2i ∑n
j(j> i)

η2j , (2)

where the first term describes a multi-well potential with a minimal
value zero located at ηi � 1 and ηj � 0, ( j ≠ i). The second term
represents an energy penalty term among adjacent grains, and γ is a
positive constant that equals 1.5 (Moelans et al., 2008).

The gradient energy terms contributed by the grain
boundaries are written as

fpoly
grad �

kη
2

∑
i

∣∣∣∣∇ηi∣∣∣∣2, (3)

where kη is the gradient coefficient.
The evolution of the grain parameters is controlled by the

Allen-Cahn equation (Allen and Cahn, 1972; Allen and Cahn,
1973),

zηi
zt

� −LGB
δFpoly

total

δηi
, i � 1, 2, 3, . . . , n, (4)

where LGB � L0e
− Ea
kBT is a temperature-dependent kinetic

coefficient related to the migration of grain boundaries, L0 is a
constant, Ea is the activation energy of the grain boundary
migration, kB is the Boltzmann’s constant, and T is the
annealing temperature. By solving the above equation, we can
get the polycrystalline structure with designed grain size of W.
We then fix the grain structure to further simulate the void
formation in W by using a phase-field model.

A high density of point defects will be produced in W due to
the high-energy neutron irradiation (Eleveld and Veen, 1994;
Hasegawa et al., 2014; Hasegawa et al., 2016; Hu et al., 2016).
Although the interstitial atoms and vacancies are always
generated in pairs, we only consider the evolution of vacancies
based on the fact that the diffusion coefficient of the interstitial
atom is at least 103 magnitudes larger than that of the vacancy in
W at 300 < T < 2000 K (Hao et al., 2020). Therefore, the diffusion
of vacancies is the rate-controlling process in the formation of
voids and the interstitial atoms can be always considered at the
equilibrium state. This scenario was also used in previous work to
study the effect of the void evolution on effective thermal
conductivities in W (Wang et al., 2018). And it will not affect
our main conclusions since the objective of this work is to

investigate the effects of the porosity and void size on the
effective diffusion coefficient of H in W.

In the phase-field model, a conservative phase variable
Cv(r, t) is used to describe the vacancy concentration and a
non-conservative phase variable φ(r, t) is used to distinguish the
matrix phase and void phase. φ(r, t) equals 1.0 in the void phase
and zero in the matrix phase, and continuously changes from 1.0
to zero across the void-matrix interface. Following the Kim-Kim-
Suzuki (KKS) model (Kim et al., 1999; Kim, 2007), the free energy
density employed for the void evolution is described as

Fvoid
total � ∫[h(φ)fv + (1 − h(φ))fm + wg(φ) + fvoid

grad(φ)]dV ,

(5)
fm � kBT

Ω
(Cv

m lnCv
m/Cv

eq + (1 − Cv
m) ln(1 − Cv

m))), (6)

fv � kBT

Ω (Cv
v − 1.0)2, (7)

where fm and fv is the free energy of the matrix and void phase,
respectively. Ω � 1.5 × 10−29 m3 is the atomic volume of W. Cv

m
and Cv

v is the vacancy concentration in the matrix and void phase,
respectively, and Cv

eq is the thermodynamic equilibrium
concentration of the vacancy in the matrix phase. h(φ) �
φ3(6φ2 − 15φ + 10) is a monotonous interpolation function
satisfying h(0) � 0 and h(1) � 1, w is a constant, and g(φ) �
φ2(1 − φ2) is a double-well potential function.

The gradient energy term contributed by the void-matrix
interface is written as

fvoid
grad �

kφ
2

∣∣∣∣∇2φ
∣∣∣∣, (8)

where kφ is the gradient coefficient.
The temporal and spatial evolution equations of the phase

variable and concentration can be described by the Allen-Cahn
(Allen and Cahn, 1972; Allen and Cahn, 1973) and Cahn-Hilliard
equations (Cahn and Hilliard, 1958; Cahn and Hilliard, 1958) as

zφ

zt
� −Lv

δFvoid
total

δφ
+ ξφ(r, t) + Pv, (9)

zCv

zt
� ∇.Mv∇

δFvoid
total

δCv
+ ξCv

(r, t) + Pv − S(1 − Φ)Cv, (10)

where Mv � DVΩ
kBT

is the mobility of a vacancy, DV is the diffusion
coefficient of a vacancy, and Lv is the kinetic coefficient. ξ(r, t) is a
stochastic function. The last term inEq. 10 represents the annihilation
of vacancies by grain boundaries (Millett et al., 2009), and S is the
interaction intensity set as 1.0 tomeet the experimental observation of
no cavity nucleation on grain boundaries (Klimenkov et al., 2016).
The term Φ � η2i is employed to ensure that the interaction is only
valid at grain boundaries instead of within grains (Chen and Yang
1994). Pv is the source term of vacancies generated by cascade
collisions caused by neutron irradiation, which can be described as
(Millett et al., 2009),

Pv(r, t) � { 0
R2VG

φ≫ 0.8 or R1 >Pcasc

φ< 0.8 and R1 <Pcasc
, (11)
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where Pcasc is the probability of cascade collisions at each grid
point for each time step, which is related to the neutron
irradiation, and VG is the maximum net increase in vacancy
concentration from cascade events. R1 and R2 are random
numbers between zero and 1.0.

According to the assumption of the KKS model that the total
concentration is a mixture of two phases and the chemical
potential is the same at every position in the system (Kim
et al., 1999; Kim, 2007), the concentrations satisfy the
following two equations,

Cv � h(φ)Cv
v + (1 − h(φ))Cv

m, (12)
zfv

zCv
v

� zfm

zCv
m

. (13)

To sum up, the evolution Eqs. 9, 10 can be rewritten as

zφi

zt
� −Lv{h′(φ)[(fv − fm) + zfv

zCv
v

(Cv
m − Cv

v)] − kφ
2φi

+wg′(φ)} + ξφ(r, t), (14)
zCv

zt
� Mv∇

2( zfv

zCv
v

) + ξCv
(r, t) − S(1 −Φ)Cv, (15)

The semi-implicit FFTW numerical method is used to solve
the Eqs. 4, 14, 15 (Chen and Shen, 1998). A Newton’s method is
adopted to solve the nonlinear Eqs. 12, 13 for each time step.

2.2 Effective Diffusion Coefficient of H
Once we have the phase-field simulated grain structures and
voids in W, we can investigate the effects of these microstructure
evolutions on the effective diffusion coefficient of H. To do so, we
solve the steady-state diffusion equation,

z

zri
(Dij(r) zC(r)

zrj
) � 0, (16)

where Dij(r) is the microstructure-dependent diffusion
coefficient tensor, which has different values in the bulk, grain
boundary, and void in W and can be written as follows,

Dij �
⎧⎪⎪⎨⎪⎪⎩

Dm
ij

DGB
ij

Dvoid
ij

(η> 0.9 and φ< 0.5)(η≤ 0.9)(φ≥ 0.5) , (17)

where Dm
ij , D

GB
ij , and Dvoid

ij is the H diffusion coefficient in the
bulk, grain boundary, and void phase, respectively. In this
inhomogeneous system, we can separate the diffusion
coefficient into the homogeneous part D0

ij independent of
the position and the inhomogeneous part ΔDij(r)
dependent on the position. Thus, the H diffusion coefficient
Dij(r) can be written as

Dij(r) � D0
ij + ΔDij(r), (18)

Accordingly, the stationary distribution of the H
concentration can be separated into linear and nonlinear parts,

which corresponds to the homogeneous and inhomogeneous
diffusion coefficient, respectively, i.e.,

C(r) � Clinear(r) + Cnon−linear(r), (19)
where Clinear(r) is the linear part of the concentrate, and
Cnon−linear(r) is the nonlinear part that comes from the
inhomogeneous distribution of the concentrate.

Based on the Fick’s first law, the flux of the H concentration
along the j-direction is expressed as

Ji � −Dij(r)zC/zrj , (20)
where zC/zrj is the gradient of the concentration along the
j-direction.

Finally, the effective diffusion coefficient tensor Deff
ij of the

system caused by the inhomogeneous microstructure can be
determined by solving

Deff
ij � −〈Ji〉/〈zC/zrj〉, (21)

where Ji is the averaged flux along the i-direction, and zC/zrj
represents the averaged concentration gradient along the
j-direction.

To solve the steady-state diffusion equation shown in Eq. 16,
a spectral iterative method is adopted, which has been used to
solve the heat conduction equation in previous work (Wang
et al., 2016; Li et al., 2022). In order to facilitate the reader’s
understanding, we present the details of the solution process
here. Firstly, combining the Eqs 18, 19, the Eq. 16 can be
rewritten as,

z

zri
[(D0

ij + ΔDij(r))(zClinear(r)
zrj

+ zCnon−linear(r)
zrj

)] � 0, (22)

Then rearranging the Eq. 22, we get

D0
ij

z2Cnon−linear(r)
zrizrj

� − z

zri
[ΔDij(r)(zClinear(r)

zrj
+ zCnon−linear(r)

zrj
)].
(23)

After that, by taking the Fourier transform on both sides of Eq.
23, we have,

−D0
ijξiξjC

non−linear(ξ) � −ξi[ΔDij(r)(zC(r)
zrj

)]
ξ
, (24)

where Cnon−linear(ξ) and [ΔDij(r)(zC(r)zrj
)]ξ is the Fourier

transform of Cnon−linear(r) and ΔDij(r)(zC(r)zrj
), respectively.

Thus, we can get

Cnon−linear(ξ) � IG(ξ)ξi[ΔDij(r)(zC(r)
zrj

)]
ξ
, (25)

where G(ξ)−1 = k0ijξiξj , and I is the imaginary unit. At last, by
taking the inverse Fourier transforms on both sides of Eq. 25, the
nonlinear part concentration distribution can be written as,

Cnon−linear(r) � ∫ d3ξ

(2π)3C
non−linear(ξ)eIξ·r , (26)
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To sum up, the total concentration distribution C(r) shown in
Eq. 19 can be calculated as,

C(r) � Cnon−linear(r) + ∫ zClinear(r)
zrj

drj , (27)

Once we have the total concentration C(r), zC/zrj and the
flux can be calculated based on Eq. 20. Thus, the effective
diffusion coefficient Deff

ij can be obtained by using Eq. 21.

2.3 Simulation Details and Parameters
To simulate the grain growth and void microstructure
evolutions, the phase-field Eqs. 4, 14, 15 are numerically
solved with periodic boundary conditions. The time step for
the grain growth is set at 2.4 s, and the grid spacing
is Δx � Δy � Δz � 1.0 nm. A model sizes of 256.0 nm ×
256.0 nm in 2D and 96.0 nm × 96.0 nm × 96.0 nm in 3D are
used. According to Moelans et al. (Moelans et al., 2008), the
gradient coefficient kη and potential heightm can be obtained
by σgb �

�����
2mkη

√
/3 and lgb �

���
8kη

√
/

��
m

√
once the grain boundary

energy σgb and length lgb were given. In this work, σgb �
2.32 Jm−2 is determined by averaging the grain boundary
energies of 408 grain boundaries of W (Ratanaphan et al.,
2017), and lgb is assumed to be 4.0 nm to ensure there are
sufficient grid points across the diffused interface. The grain
boundary migration energy Ea is 0.6 eV based on the annealing
experiment of the grain growth in W (Guo et al., 2018), and L0
is 8.33 × 10−6m3 J−1 s−1 obtained by fitting the annealing
experimental results of the grain growth (Guo et al., 2018;
Li et al., 2022).

The input parameters for simulating the void evolutions
under irradiation are set as follows. The sizes of the simulation
domain are set as 256 Δx × 256 Δy in 2D and 64 Δx × 64Δy ×
64 Δz in 3D. The time scale is set as 10−9 s. According to the
previous work, the gradient coefficient kφ and the potential

height w can be obtained by σvoid �
���
ωkη

√
3
�
2

√ and lwidth � 2.2
��
2kη
ω

√
(Aagesen et al., 2021), where the surface energy σvoid is set as
1.0 J m−2 (Briant and Walter, 1988), and interface width
lwidth � 4.0 nm. Following the Arrhenius formula,

DV � D0 × e
Eva
KBT, in which D0 is the pre-exponential factor

and Ev
a is the activation energy of the vacancy diffusion.

They are equal to 4.0 × 10−6 m2 s−1 and 1.8 eV based on the
experimental measurements (Rasch and Schultz 1980).

The diffusion coefficients of H in the bulk, grain boundary,
and void are required to calculate the effective diffusion
coefficient of H in W. Previous atomistic simulations have
listed the diffusion coefficient of H in the bulk is
5.13 × 10−8 e0.21 eV/kBT m2 s−1 at the temperature range of
200–3000 K (Liu et al., 2014). The effect of the grain boundary
on the H diffusion largely depends on the type of the grain
boundary (Yu et al., 2014; Zhou et al., 2019B). Thus, we
systematically study the effect of the grain boundary on the
effective diffusion coefficient of H by using various diffusion
coefficients. The diffusion coefficient of H in the void is set to be
zero due to the strong inhibition of the vacancy/void on H
diffusion (Wang et al., 2019). It should be noted that we

assume our model is an ideal phase-field model with ignoring
the effect of the faster diffusion of H along the inner surface of the
irradiated voids on the effective diffusion coefficient to simplify
the calculation. To ensure there is a flow of the H concentration
along its diffusion direction, the concentrates on the two
boundaries perpendicular to the H diffusion orientations are
fixed at 0.4 and 0.1. These boundary values do not affect our
main calculation results. The H concentration on other
boundaries is fixed at 0.4.

3 RESULTS AND DISCUSSIONS

We first use three simple structures having analytical solutions of
the effective diffusion coefficient to validate our simulation code.
We then quantitively calculate the effective diffusion coefficient of
H in the polycrystalline and porous W. A correlation of
converting the 2D effective diffusion coefficient into 3D in the
porous polycrystalline W is fitted by using our simulation data,
respectively. The effects of the grain morphology, porosity, and
their synergistic effect on the effective diffusion coefficient of H
are systematically investigated.

3.1 Simulation Code Validation
Three simple structures are used to fully validate our
simulation code for calculating the effective diffusion
coefficient of the diffusion component, including a two-
phase structure consisting of two different arrangements of
slabs (parallel and perpendicular to each other), a spherical
structure embedded in a cubic box, and a 3D isometric
crystalline structure. The calculated effective diffusion
coefficients are compared with the analytical solutions to
verify our simulation code.

3.1.1 Two Slab Structures for Validation
We first use a two-phase system with a simple slab structure to
validate the code since it has an analytical solution. Two
different configurations of the two-phase system are
constructed. One is that these two slabs are parallel to each
other (Figure 1A), while the other one is that they are
perpendicular to each other (Figure 1B). For the first
structure shown in Figure 1A, the effective diffusion
coefficient along the X and Y direction can be described
analytically as (Hart, 1957; Jiang et al., 2021)

Deff
x � Db + 2wslab

Lx
(Dslab −Db), (28)

Deff
y � DbDslab

(1 − 2wslab

Lx
)Dslab + 2wslab

Lx
Db

,
(29)

where Db andDslab is the diffusion coefficient in the matrix and
slab phase, respectively.wslab and Lx is the width of the slab phase
and the side length of the simulation domain.

For the other configuration of the slab structure shown in
Figure 1B, the effective diffusion coefficients along the X and Y
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direction are the same because of the symmetric structure. Two
different solutions derived by Jiang et al. based on Eqs 28, 29 are
respectively expressed as (Jiang et al., 2021)

Deff
1 � (1 − wslab

Lx
)⎛⎝ DbDslab(1 − wslab

Lx
)Dslab + wslab

Lx
Dslab

⎞⎠ + Dslab

Lx
Db,

(30)
Deff

2 � DslabLx
DbLx −Dbwslab +Dslabwslab

DbLxwslab −Dbw
2
slab +DslabL

2
x −DslabLxwslab +Dslabwslab

2

(31)
It is believed that the true solution of this configuration

should be somewhere in between these two solutions. We then

calculate the effective diffusion coefficient in these two-phase
structures by solving Eq. 16, whereDb is set to 15.0 andDslab is
set to 1.0. The simulation and analytical results as a function of
the width of the slab phase are compared as shown in Figures
1C, D. Cal_Deff

x and Cal_Deff
x are numerical results.

Analy_Deff
x and Analy_Deff

y represent the analytical results
along the X and Y orientations based on Eqs 28, 29. From
Figure 1C, it can be seen that the numerical and analytical
solutions are almost identical for the first slab structure in
Figure 1A. For the second configuration as shown in
Figure 1B, our simulation results shown in Figure 1D are
within those predicted by two different analytical formulas as
expected. Thus, these results can preliminarily validate our
simulation code.

FIGURE 1 | A two-phase systemwith a simple slab structure (A) parallel with each other, and (B) intersect with each other. (C)Comparison between the calculated
and theoretical effective diffusion coefficients as a function of the slab width for structure (A), and (D) for structure (B). The diffusion coefficient in the matrix and slab
phase is set as 15.0 and 1.0 in the same unit, respectively.

FIGURE 2 | (A) A spherical phase is embedded in a cubic box. Comparison of simulated and analytical effective diffusion coefficients as a function of the volume
fraction of the spherical phase for three different diffusion coefficient ratios (B) Dp/Dm >1.0 and (C) Dp/Dm <1.0. The scatter points represent the simulation results, and
the curves represent the results calculated by the Maxwell-Garnett model (Maxwell, 1881; Moradi, 2015).
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3.1.2 Sphere Embedded in a Cubic Box for Validation
We then construct a spherical structure inside a cubic box as
shown in Figure 2A, in which the purple part refers to the
spherical phase and the blank part is the matrix phase. The
effective diffusion coefficient can be expressed analytically by the
Maxwell-Garnett model (Maxwell, 1881; Moradi, 2015),

Deff � Dm

2Dm +Dp + 2fp(Dp −Dm)
2Dm +Dp − fp(Dp −Dm) , (32)

where Dp and fp is the diffusion coefficient in the spherical
structure and the volume fraction of the spherical structure,
respectively. We assume these two phases have different
diffusion coefficients. We test two different cases to compare
with the analytical solutions, one is the ratioDp/Dm greater than
1.0 and the other one is less than 1.0. In each case, three different
ratios of the diffusion coefficient are selected. The calculated
results as well as the analytical solutions of the effective diffusion
coefficient as a function of the volume fraction of the sphere are
shown in Figures 2B,C, in which the scatter points represent the
simulation results and the curves represent the analytical results
derived by the Maxwell-Garnett model (Maxwell, 1881; Moradi,
2015). It can be seen that our simulation results agree well with
the analytical solutions, which further validate our
simulation code.

3.1.3 Isotropic Polycrystalline Structure for
Validation
To further verify our code of solving the stationary diffusion
equation with inhomogeneous diffusion coefficient distribution,
we compare our results with the Hashin-Shtrikman (HS) model
of a 3D isometric crystalline structure (Chen and Schuh, 2007). In
the previous work, Hashin-Shtrikman derived an analytical
solution that can be used to estimate the effective diffusion
coefficient of H in isometric crystals as a function of the grain
boundary density (Chen and Schuh, 2007),

Deff � DGB + fm

(Dm −DGB)−1 + 1/3fGBD
−1
GB

, (33)

whereDeff,DGB, andDm is the effective diffusion coefficient, the
diffusion coefficient in the grain boundary, and the diffusion
coefficient in the matrix phase, respectively. fm and fGB is the
volume fraction of the matrix phase and grain boundary,
respectively.

We first generate a 3D isometric crystalline microstructure by
using the phase-field simulation as shown in Figure 3A, where
the yellow parts represent the bulk phase and the blue lines stand
for grain boundaries. After that, we consider two different
diffusion coefficient ratios between grain boundary and matrix
phase for comparison, i.e., promoting the diffusion (5:1) and
inhibiting diffusion (0.1:1). As shown in Figure 3B, the effective
diffusion coefficients in three directions are all in good agreement
with those predicted by the HS model, which further proves that
our code is suitable for the calculation of the effective diffusion
coefficients of the polycrystalline materials.

Based on the above three testing examples, we validate our
simulation code for calculating the effective diffusion coefficients
in different structures.

3.2 Effective Diffusion Coefficient of H in
Polycrystalline W
Based on our validated simulation code, we first study the
effective diffusion coefficient of H in the polycrystalline W.
The polycrystalline structures are generated using the phase-
field model by solving Eqs 1–4. Three different polycrystalline
structures including an isotropic grain structure and two
columnar grain structures with different grain sizes are
constructed as shown in Figures 4A–C. Then the effective
diffusion coefficients of H in these three different
polycrystalline structures can be obtained by solving Eq. 16.

The diffusion coefficientDij of H in the grain boundaries and
grains can be defined as

FIGURE 3 | (A) The simulated isometric polycrystalline microstructure. Blue lines are grain boundaries and the yellow parts are grains. (B)Comparison between the
simulated and analytical effective diffusion coefficients as a function of the grain boundary density alone three different directions with diffusion coefficient ratios of H in the
grain boundary to that in matrix phase are 0.1:1.0 and 5.0:1.0.
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Dij � {DGB

Dm

(η≤ 0.9)(η> 0.9) . (34)

According to previous atomic simulation results, the H
diffusivity in the grain boundary can be either larger or
smaller than that in the bulk, depending on the grain
boundary type (Yu et al., 2014; Zhou et al., 2019B). To
systematically investigate the effect of the grain boundary
on the H diffusion in the polycrystalline W, six different
ratios DGB/Dm of the H diffusion coefficient in grain
boundaries with respect to that in grains are considered in
this work, i.e., three with DGB/Dm > 1.0 and three with
DGB/Dm <1.0 are selected for isometric and columnar grain
structures.

Figure 4 shows the comparison of the numerically
simulated and analytically calculated effective diffusion
coefficients as a function of the grain boundary density in
three polycrystalline structures. Figures 4D–F are for the case
of DGB/Dm >1.0, while Figures 4G–I for the case of DGB/Dm

<1.0. It can be seen that the effective diffusion coefficient
increases with the increase of the grain boundary density when
DGB/Dm is greater than 1.0, while it decreases with the increase

of the grain boundary density when the ratio DGB/Dm is less
than 1.0 as expected. Interestingly, the effective diffusion
coefficient of H is greater in columnar crystals than that in
isometric crystals along the Z direction, regardless of whether
the H diffusivity in the grain boundary is larger or smaller than
that in the bulk. And the effective diffusion coefficient of H in a
simple columnar crystal containing parallel grain boundaries
plotted in Figure 4B can be described by Hart’s model (Hart,
1957), as shown in Eq. 28. It can be seen that our calculation
results agree well with those results predicted by Hart’s model.
For the columnar-II crystal, the grains elongate along the
Z-direction and grain boundaries have high density along
this direction. The effective diffusion coefficient is believed
to be larger than that for the isotropic crystal but smaller than
that for the columnar-I crystal along the Z-direction. Both
Hart’s model and HS’s model are hard to fit the simulation
results in this case, which suggests that the numerical model
without having the complex morphology of the microstructure
can only predict the effective diffusion coefficient for simple
grain structures.

2D simulations can save lots of computational resources
compared to 3D simulations. We also calculate the effective

FIGURE 4 | Polycrystalline structure of the (A) isometric crystal, (B) columnar-I crystal, and (C) columnar-II crystal. The calculated effective diffusion coefficients for
three different polycrystalline structures with three diffusion coefficient ratios DGB/Dm of H are greater than 1.0 (D–F) and less than 1.0 (G–I). The solid and hollow scatter
points represent the effective diffusion coefficient parallel and perpendicular to the direction of the elongated grains of the columnar crystals. The gray solid lines represent
the predicted effective diffusion coefficient as a function of the grain boundary density along the elongated orientations of structure Col-I by Hart’s model and the
blue dotted lines represent that predicted by the HS’s model for the isometric crystal.
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diffusion coefficient of H in isometric structures in 2D. At the
same grain boundary density, the effective diffusion coefficients
in 2D are usually smaller than that in 3D. Next, we derive a
correlation that transfers the 2D effective diffusion coefficient
into 3D based on Bakker et al.‘s derivations, in which two
formulas depending on the ratio of the diffusivity in the grain
boundary and bulk that can transfer the 2D thermal conductivity
into 3D were given (Bakker et al., 1995). When the H diffusion
coefficient DGB in the grain boundary is greater than the H
diffusion coefficient Dm inside the grains, the correlation is
given by

Deff
3D − b

Deff
2D − b

� C1 + 1
DGB

Dm
+ C2

(DGB >Dm), (35)

b � DGBDm

fGBDm +DGB − fGBDGB
, (36)

where Deff
2D and Deff

3D is the effective diffusion coefficient of H in
the 2D and 3D simulations, respectively. C1 and C2 are fitting
constants. We calculate the effective diffusion coefficients in 2D
and 3D in order to fit the constants C1 and C2. By using three sets
of the calculated effective diffusion coefficient from both 2D and
3D simulations, the fitted constants C1 and C2 are determined to
be 1.13 and 3.8, respectively. The effective diffusion coefficients
and the fitted results using Eq. 35 are shown in Figure 5A–C, in
which the purple dotted and pink solid lines represent the
simulation results and fitted results by Eq. 35. It can be seen
that the Eq. 35 can fit well with the simulated data in all
three cases.

For the H diffusion coefficient DGB smaller than the H
diffusion coefficient Dm, a correlation for transferring the 2D
effective diffusion coefficients of H into 3D is (Bakker et al.,
1995),

1 − (1 − DGB

Dm
)fGB − Deff

2D

Dm

1 − (1 − DGB

Dm
)fGB − Deff

3D

Dm

� C3 + 1
Dm

DGB
+ C4

(DGB <Dm), (37)

where Deff
2D and Deff

3D is the effective diffusion coefficient in the
2D and 3D simulations, respectively. We use our simulated 2D
and 3D effective diffusion coefficients to fit this correlation, and
the fitted constants are determined as C3 � 1.07 and C4 � 1.03.
The simulated and fitted effective diffusion coefficients of H in the
3D polycrystalline W are shown in Figures 5D–F, in which the
purple dotted curves represent the simulated results and the pink
solid curves represent the results predicted by the fitting formula
Eq. 37. It can be seen that the fitting results are consistent with the
simulation results for all three cases.

3.3 Effective Diffusion Coefficient of H in
Porous Single Crystalline W
In addition to grain boundaries, irradiation-induced vacancies
and their clusters can also affect the diffusion of H atoms (Wang
et al., 2019). The porous structures formed by clustering of
vacancies are generated by phase-field simulations through
solving Eqs 5–15. Based on the phase-field simulated porous
single crystalline W microstructures, we then study the effect of
the porosity on the effective diffusion coefficient of H.

The diffusion tensor in the void and the matrix can be
expressed as

Dij � {Dvoid

Dm

(φ≥ 0.5)(φ< 0.5) , (38)

where Dvoid and Dm represents the diffusion coefficient of H in
the void and matrix phase, respectively. We assume that the

FIGURE 5 | The comparison between the simulated and fitted effective diffusion coefficients of H in 3D polycrystalline W with three diffusion coefficient ratios DGB/
Dm of H are greater than 1.0 (A-C) and less than 1.0 (D-F). The fitted 3D data is calculated from the 2D results by using Eqs 30, 31. The purple dotted curves represent
the simulated results and the pink solid curves represent the results predicted by the fitting formula.
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diffusion coefficient Dvoid is equal to zero based on the molecular
dynamics results that the vacancy-type defects can greatly inhibit
the H diffusion (Wang et al., 2019). Simulated and analytical
effective diffusion coefficients as a function of the temperature
and porosity in 2D and 3D porous W are plotted in Figures 6A,
B. The colored scatter points represent the simulation results, and
the solid black lines represent values of the effective diffusion
coefficients predicted based on the Bakker’s model (Bakker et al.,
1995), i.e., Deff � Dm(1 − p)2.0 in 2D and Deff � Dm(1 − p)1.5
in 3D. It can be seen that the effective diffusion coefficient
significantly decreases with the increase of the porosity, and
values Deff/Dm are basically consistent with those predicted
by Bakker’s model, especially in the 3D simulations. Compared
with the results of 2D and 3D simulation, it can be seen that the
effective diffusion coefficient of 3D simulations is higher than that
of the 2D simulations under the same annealing temperature and
porosity. This is because the 3D diffusion flux has one more
degree of freedom than that in the 2D simulations (Bakker et al.,
1995). Interestingly, the higher the temperature, the greater value
Deff/Dm is obtained at the same porosity. And the difference of
Deff/Dm between the high and low temperature increases with
the increase of the porosity, which is attributed to the rapid
increase in size of the void at high temperature. With the increase
of the temperature, larger voids are formed due to the faster
diffusion of the vacancies, which is consistent with previous

results (Li et al., 2011). This also shows the advantage of our
model, which can take the spatial morphology of the voids into
account rather than the volume fraction in the analytical model.

Both the 2D and 3D effective diffusion coefficients of H as a
function of the temperature and porosity in the porous single
crystalline W are calculated. To obtain a general correlation that
can transfer the 2D effective diffusion coefficient into the 3D in
porous materials, we use the 2D and 3D calculated results to fit
the parameter A by using the Eq. 39 proposed by Bakker et al.
(Bakker et al., 1995),

1 − p − Deff
2D

Dm

1 − p − Deff
3D

Dm

� A, (39)

where p, Deff
2D , and Deff

3D is the porosity, the effective diffusion
coefficient in 2D, and 3D, respectively. A is a fitting constant. The
fitted effective diffusion coefficient of H as well as the simulated
3D data in the porousW are plotted in Figures 6C–J, in which the
pink solid curves represent the simulation results and the purple
dotted curves represent the results predicted by Eq. 39. And the
fitted parameter A is determined to be 2.4. We can see that the
fitted results agree well with the simulated effective diffusion
coefficients. Therefore, this fitted correlation can be used to

FIGURE 6 | The simulated and analytical effective diffusion coefficients as a function of the porosity for four different temperatures in 2D (A) and 3D (B). (C)–(J)
Comparison between the simulated and fitted effective diffusion coefficients of H in 3D porous W as a function of the temperature and porosity, in which the pink solid
curves represent the simulation results and the purple dotted curves represent the results predicted by Eq. 39 based on 2D results.
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predict the 3D effective diffusion coefficient based on the 2D data
to save computational resources.

3.4 Effective Diffusion Coefficient of H in
Porous Polycrystalline W
We study the effective diffusion coefficient of H during the
formation of voids in two different polycrystalline W as a
function of the porosity. We take a particular temperature of
1073 K for an example. The polycrystalline microstructures are
generated using phase-field simulations by solving Eqs 1–4. The
nucleation and growth of voids are simulated by solving Eqs
5–15. It is simply assumed that the grain structures don’t evolve
with the time during the formation of voids, and the same
scenario was used in other relevant work (Wang et al., 2018).
The simulated microstructures of the porous polycrystalline W at
0.001 s are shown in Figure 7C, where the solid lines represent
the grain boundaries and the solid red round areas represent the
voids. We assume the grain boundary is a perfect sink for
vacancies, which is consistent with the experimental
observations (Klimenkov et al., 2016).

The simulated microstructure is divided into three separate
phases including the matrix, grain boundary, and void phases.
We use two different methods to calculate the effective diffusion
coefficient of H in this three-phase system. Firstly, we calculate
the effective diffusion coefficient of H in the polycrystalline

structure and porous structure separately as shown in Figures
7A,B. For the polycrystalline structure part, the solution process
is the same as that in section 3.2, while for the effect of the
porosity on the diffusion of H, the solution process is the same as
that in section 3.3. The overall effective diffusion coefficient of H
in the three-phase structure is assumed to be a product of the
effective diffusion coefficient of the polycrystalline system Deff

poly
and that of the porous system Deff

void, which can be described as,

Deff/Dm � (Deff
void/Dm) × (Deff

poly/Dm). (40)
Secondly, the effective diffusion coefficients of H can be

calculated directly from the three-phase structure by solving
Eq. 16 as shown in Figure 7C. The diffusion coefficient in
each phase can be described in section as Eq. 17.

Figures 7D, E show the effective diffusion coefficients as a
function of the porosity for different diffusion coefficient ratios
obtained by above two different means, in which the scatter
points represent the results obtained by the first approach that are
calculated by multiplying the results of two separate systems as
shown in Eq. 40, and the curves represent the results derived from
the second method that are directly calculated according to the
three-phase system. Two different grain boundary densities of
0.15 nm−1 and 0.09 nm−1 are considered. Results show that the
effective diffusion coefficient decreases with the increase of the
porosity. In the case of DGB <Dm, it also decreases with the

FIGURE7 |Microstructure used for the first method (A, B) and secondmethod (C) for calculating the effective diffusion coefficient. Comparison of the valueDeff /Dm

calculated by two different methods as a function of the porosity under two different grain boundary densities of 0.15 nm−1 (D) and 0.09 nm−1 (E), in which the scatter
points denote Deff /Dm obtained by the first method, and the curves represent that obtained by the second method.
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increase of the grain boundary density, but it increases with the
increase of the grain boundary density for the case of DGB >Dm.
More importantly, it can be seen that results obtained by these
two different means agree well with each other, which verifies our
above guess and also provides an important reference for
estimating the effective diffusion coefficient of H in complex
microstructures.

Based on the above 2D results, the effective diffusion
coefficient of H in a 3D porous polycrystalline W can be
predicted by using Eqs. 35, 37, 39. The predicted effective
diffusion coefficients of H in the 3D porous polycrystalline W
as a function of the porosity are shown in Figure 8. Results show
that the effective diffusion coefficient decreases with the increase
of the porosity, which has the same trend as that in 2D. The
effective diffusion coefficient decreases with the increase of the
grain boundary density for the case of DGB <Dm, but it increases
with the increase of the grain boundary density for the case of
DGB >Dm in 3D microstructures. These results show that the
grain size and grain morphology can largely affect the effective
diffusion coefficient of H in W. However, by comparing the
calculation results in 3D porous polycrystallineWwith that in 2D
plotted in Figures 7A, B, it is found that the effective diffusion
coefficient of H in the 3D microstructure is always larger than
that in 2D. This is reasonable because the effective diffusivities of
H both in 3D polycrystalline or porous W are greater than that in
their corresponding 2D microstructures.

4 CONCLUSION

We propose a numerical method to systemically study the effective
diffusion coefficients of hydrogen (H) atoms in the porous
polycrystalline tungsten (W). We assume the H atoms can be
eventually desorbed from the grain boundaries and voids once
they were trapped, which is based on thermal desorption
experimental results (Eleveld and Veen, 1994; Hodille et al.,
2017). The grain structure and irradiated voids are generated by

using phase-field simulations. The effective diffusion coefficient in
such an inhomogeneous system is obtained by solving the steady-
state diffusion equation with a spectral iterative algorithm. The
effects of the grain morphology, porosity, and their synergistic
effect on the effective diffusion coefficient of H in W are
systemically investigated. Our main research findings from the
above simulations can be summarized as follows.

1) Using a spectral iterative algorithm, the calculated effective
diffusion coefficients of three simple microstructures agree
well with those predicted by previous analytical models, which
fully validates our simulation code.

2) In the polycrystalline W, when the grain boundary density is a
constant, the effective diffusion coefficient of H is always
greater in columnar crystals than that in isometric crystals
along the elongated grain direction, regardless of whether the
diffusion coefficient in the grain boundary is larger or smaller
than that in the bulk.

3) For the porous W, the effective diffusion coefficient of H
significantly decreases with the increase of the porosity. When
the porosity is a constant, our simulation results show that the
effective diffusion coefficient increases with the increase of the
average size of voids.

4) Based on our simulated effective diffusion coefficients in
polycrystalline and porous W, two correlations that can
transfer the two-dimensional (2D) effective diffusion coefficient
into three-dimensional (3D) are fitted. Using these fitted
correlations, we predict the effective diffusion coefficient of H
in the 3Dporous polycrystallineWbased on 2D results, which can
greatly save computational resources. It is found that the effective
diffusion coefficient of H in a heterogeneous system is equal to the
product of the effective diffusion coefficient of H in each phase.

The present study can help to better understand the influence
of the grain boundary and void evolutions on the H diffusion in
W. Other defect structures such as gas bubbles, dislocations, and
precipitates influence the H diffusion can also be easily included

FIGURE 8 | Predicted values of Deff /Dm for 3D porous polycrystalline W at 1073 K calculated by Eqs 35, 37, 39 based on 2D simulation results (as shown by the
scatter data in Figures 7D, E) as a function of the porosity under two different grain boundary densities of 0.15 nm−1 (A) and 0.09 nm−1 (B).
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in the model. It is also worthy to point out that the experimental
observations can be used as input microstructures instead of the
phase-field simulated microstructures to calculate the effective
diffusion coefficient of H. We expect that our findings can
provide some references on how to control the H and its
isotope retention and for the design of W-based materials
fusion devices in the future. The current method can also be
used in other systems that the diffusion component is not trapped
by the microstructures.
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