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ZnO (ZO), Fe2O3 (FO), and graphene oxide (GO)/ZO/FO/ZnFe2O4 (ZFO) composite
photocatalysts have been synthesized successfully via a simple sol–gel method and
low-temperature technology. The phase structure and microstructural analysis confirmed
that the GO/ZO/FO/ZFO magnetic separation photocatalyst is composed of GO,
hexagonal ZnO, rhombohedral Fe2O3, and spinel ZnFe2O4 without any other
impurities. The GO/ZO/FO/ZFO composite photocatalysts have a high visible light
optical absorption coefficient and photocatalytic activity for degrading dyes, refractory
pollutants, and antibiotics. The degradation percentages of methyl orange,
tetrabromobisphenol A, and oxytetracycline hydrochloride by the GO/ZO/FO/ZFO
magnetic separation photocatalyst were 98% for 180min, 99% for 150 min, and 85%
for 180 min, respectively. The special synthesis path leads to the formation of a special
heterojunction between GO, ZnO, Fe2O3, and ZnFe2O4, which does not change the optical
band gap value of the main lattice Fe2O3, and enhances the surface defects of the GO/ZO/
FO/ZFO magnetic separation photocatalyst, resulting in high charge carrier transfer and
separation efficiency of the catalyst and then enhanced the photocatalytic activity of the
GO/ZO/FO/ZFO magnetic separation photocatalyst.
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INTRODUCTION

Environmental pollution has always been a coexisting problem with human development (Rasheed,
2022). Dyes, persistent organic pollutants, and antibiotics are all powerful environmental killers
(Cheng et al., 2022; He et al., 2022; Li et al., 2022). The degradation of these pollutants has become a
necessary means to protect the environment. As countries around the world attach importance to
environmental pollution, different technological means have been developed to degrade these
pollutants (He et al., 2019a; He et al., 2021a; Wang et al., 2021a; He et al., 2021b; Wang et al.,
2022a; Zhao et al., 2022). These technologies mainly include the photocatalytic technology, thermal
catalytic technology, piezoelectric catalytic technology, ultrasonic catalytic technology,
electrocatalytic technology, biodegradation technology, and a variety of technologies combined
together to degrade pollutants (Sadrameli, 2016; Xiong et al., 2018; He et al., 2019b; He et al., 2020;
Cheng et al., 2021; Dadashzadeh et al., 2021). Among these technologies, photocatalysis is a
semiconductor green technology driven by light energy, which can effectively degrade pollutants,
and has attracted extensive attention from researchers all over the world (Selli et al., 2008). The key
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aspect of the semiconductor photocatalysis technology is to
develop semiconductor materials that can respond to visible
light and use sunlight efficiently (Ren et al., 2016). Therefore,
the development of a semiconductor photocatalyst that can
respond to visible light becomes the key to solving this problem.

The photocatalytic activity of photocatalyst also depends on its
charge carrier transfer and separation efficiency (Tang et al., 2018;
Chen et al., 2019a; Cao et al., 2019; Luo et al., 2019; Xiao et al.,
2019; Lin et al., 2020; Tang et al., 2020; Wang et al., 2022b). Even
if some semiconductor materials can respond to visible light, the
transfer and separation efficiency of charge carriers is not high,
and Fe2O3 is such a material (Kuang et al., 2017; Chong et al.,
2021; Fu et al., 2021). In order to enhance the visible light
response capability of semiconductor materials and the
transfer and separation efficiency of charge carriers at the
same time, the excellent properties of various semiconductor
materials can be combined to form a new composite
semiconductor photocatalyst (Chen et al., 2019b; Shanavas
et al., 2019; Kormányos et al., 2020). ZnO (ZO)/Fe2O3(FO)/
ZnFe2O4(ZFO) is considered to be such a composite that its
visible light response is improved compared with any single
component materials (Valenzuela et al., 2002; Karpova et al.,
2013a; Karpova et al., 2013b). However, due to the lack of carriers
for charge carrier transfer and separation among the three, the
transfer and separation efficiency of the charge carrier is low.
Graphene oxide (GO) is a common carrier of charge carrier
transfer and transport and is often used to enhance the charge
transfer and separation efficiency of semiconductor materials
(Hosseini et al., 2019; Rahmani et al., 2020; Pei et al., 2021).
Therefore, the development of GO/ZO/FO/ZFO composite
photocatalysts and the study of their degradation of dyes,
POPS, and antibiotics are expected to show high
photocatalytic activity.

In this study, we proposed the synthesis of GO/ZO/FO/ZFO
composite photocatalysts with different GO contents by a low-
temperature sintering technique. The effect of GO content on the
phase purity, microstructure, optical properties, and
photocatalytic activity of the GO/ZO/FO/ZFO composite
photocatalyst was systematically studied. Using methyl orange,
tetrabromobisphenol A, and oxytetracycline hydrochloride as
degradation materials, the photocatalytic activity of the GO/
ZO/FO/ZFO composite photocatalyst was studied. Based on
the energy band theory and experimental results, a reasonable
photocatalytic mechanism of the GO/ZO/FO/ZFO composite
photocatalyst is proposed.

EXPERIMENTAL SECTION

Synthesis of ZnO and Fe2O3
According to the stoichiometric ratio of ZnO and Fe2O3, zinc
nitrate and ferric nitrate were dissolved in 25 ml deionized water,
respectively. Solutions containing zinc nitrate and ferric nitrate
are labeled as solutions A and B, respectively. After zinc nitrate
and ferric nitrate were dissolved, 5 g of citric acid was added to
both A and B solutions to make the citric acid react with Zn ions
or Fe ions. Then, the A and B solutions were transferred to an oil

bath at 300°C for 12 h to obtain a black gel. A and B gels were
ground into fine powder in a mortar, and after grinding with urea
for half an hour, they were transferred to the combustion network
for spontaneous combustion for 2 h to obtain ZnO and Fe2O3

powders.

One-Step Low-Temperature Sintering
Synthesis of Graphene Oxide/ZnO/Fe2O3/
ZnFe2O4 Photocatalysts
Graphene oxide (GO) and ZnFe2O4 (ZFO) were purchased from
Aladdin Reagent LTD. According to Guskos et al. (2010), ZO/FO/
ZFO with the mass ratio of ZO: FO: ZFO = 20 wt%: 10 wt%: 70 wt
% was obtained. Then, according to the GO mass ratios of 5 wt%,
10 wt%, 15 wt%, and 20 wt% to ZO/FO/ZFO, they are named
GO/ZO/FO/ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and
GO/ZO/FO/ZFO4, respectively. Finally, the samples were
placed in a box furnace and sintered at 200°C for 2 h to obtain
the final sample. Figure 1 shows the preparation flowchart of GO/
ZO/FO/ZFO.

Material Characterization
The phase structures of samples GO, ZnO, Fe2O3, GO/ZO/FO/
ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/
ZFO4 were measured by means of X-ray powder diffraction
(XRD) with Cu Kα radiation. The Fourier transform infrared
(FTIR) spectrophotometer with Bruker IFS 66v/S was used to
study the samples GO, ZnO, Fe2O3, GO/ZO/FO/ZFO1, GO/ZO/
FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/ZFO4 in the
wave-number range of 400–4000 cm−1. The microstructures of
GO/ZO/FO/ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and
GO/ZO/FO/ZFO4 were investigated by field-emission scanning

FIGURE 1 | Preparation of the flowchart of GO/ZO/FO/ZFO.
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electron microscopy (SEM) and transmission electron
microscopy (TEM). Ultraviolet-visible (UV-Vis) diffuse
reflectance spectra of samples GO, ZnO, Fe2O3, GO/ZO/FO/
ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/
ZFO4 were measured by using a UV1901 UV-Visible
spectrophotometer.

Photocatalytic Experiments for the
Degradation of Methyl Orange,
Tetrabromobisphenol A, and
Oxytetracycline Hydrochloride
The photocatalytic activity of GO/ZO/FO/ZFO composite
photocatalysts was studied using methyl orange,
tetrabromobisphenol A, and oxytetracycline hydrochloride as
degradation materials. The light source, initial pollutant
concentration, and catalyst concentration were xenon lamps
with 500W, 20 mg/L for methyl orange, 50 mg/L for
tetrabromobisphenol A, and 1 g/L for oxytetracycline
hydrochloride, respectively. Including adsorption experiments,
samples were taken every 30 min, and each photocatalytic
experiment was performed for 210 min. The removed solution
was centrifuged, and its absorbance was measured by using a UV-
Vis spectrophotometer. The photocatalytic degradation rate,
first-order kinetic curve, and degradation percentage of the
GO/ZO/FO/ZFO magnetic separation photocatalyst can be
calculated based on the measured absorbance value.

RESULTS AND DISCUSSION

X-Ray Powder Diffraction Analysis
The phase structure and purity of semiconductor materials are
measured by using an X-ray powder diffraction (XRD)
instrument to determine whether the synthesized product is
the target product. Figure 2 shows the XRD patterns of
samples GO, ZnO, Fe2O3, GO/ZO/FO/ZFO1, GO/ZO/FO/
ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/ZFO4. The XRD
pattern of sample GO (Figure 2A) shows the XRD
characteristic peaks located at 10.905, 42.193, and 77.772°

related to (111), (200), and (123), respectively, which is
identical to the JCPDS No. 89-8489. Similarly, ZnO
(Figure 2B) displays an XRD pattern identical to the
hexagonal structural phase with the space group P63mc (186),
and the XRD characteristic peaks at 31.736°, 34.378°, 36.214°,
47.483°, 56.534°, 62.775°, 66.302°, 67.886°, 69.007°, 72.462°,
76.865°, 81.268°, and 89.489° related to (100), (002), (101),
(102), (110), (103), (200), (112), (201), (004), (202), (104), and
(203) crystal plane ZnO corresponds to the JCPDS No. 76-0704.
The sample of Fe2O3 (Figure 2C) exhibits several characteristic
peaks located at 2θ of 24.149°, 33.158°, 35.631°, 39.283°, 40.862°,
43.508°, 49.462°, 54.069°, 56.159°, 57.448°, 57.597°, 62.436°,
64.000°, 66.031°, 69.595°, 71.947°, 72.281°, 75.191°, 75.455°,
77.738°, 78.776°, 79.486°, 80.582°, 80.709°, 82.953°, 84.485°,
84.934°, and 88.557°, corresponding to the (012), (104), (110),
(006), (113), (202), (024), (116), (211), (122), (018), (214), (300),

FIGURE 2 | XRD patterns of samples (A) GO, (B) ZnO, (C) Fe2O3, (D) GO/ZO/FO/ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/ZFO4.
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(125), (208), (1010), (119), (217), (220), (036), (223), (131), (312),
(128), (0210), (0012), (134), and (226) crystal surfaces of
rhombohedral structural Fe2O3 with the JCPDS No. 87-1164.
When GO, ZnO, Fe2O3 and ZnFe2O4 are combined together,
ZnO, Fe2O3 and ZnFe2O4 peaks appear in GO/ZO/FO/ZFO1,
GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/ZFO4, as
shown in Figure 2D. However, the diffraction peak of GO is
difficult to observe. As the GO content increased to 20%, only a
weak diffraction peak was observed at 10.905° of the sample GO/
ZO/FO/ZFO4, further confirming that GO exists in the sample
GO/ZO/FO/ZFO4.

Fourier Transform Infrared Analysis
In order to further study the phase structure and purity of
semiconductor materials, FTIR was performed. Figure 3
shows the FTIR spectra of samples GO, ZnO, Fe2O3, GO/
ZO/FO/ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and
GO/ZO/FO/ZFO4. For all samples, the peaks at 3453 and
1616 cm−1 can be ascribed to the absorbed water due to the
use of KBr in the tablet pressing process (Gao et al., 2021; Li
et al., 2021; Liu et al., 2022). For the sample GO, the peaks at
1731 and 1065 cm−1 can be assigned to the graphene oxide
(Dat et al., 2022; Hwa et al., 2022). For ZnO, the peaks at 1113,
545, and 418 cm−1 are attributed to the characteristic peak of
C-O and the Zn–O and Zn-O-Zn vibrations, respectively
(Prabhu et al., 2018; Rammah et al., 2020; Wang et al.,
2021b; Nadeem et al., 2021; Wang et al., 2022c; Tang et al.,
2022). For Fe2O3, the peaks at 550 and 467 cm

−1 are assigned to
the Fe-O and Fe-O-Fe vibrations, respectively (Lv et al., 2010;
Ratep and Kashif, 2021). For the samples GO/ZO/FO/ZFO, the
intensity of the characteristic peak of GO increases with the
increase in the GO content, and the characteristic peak of
Fe2O3 is slightly shifted, especially due to the influence of the
Fe-O functional group in ZnFe2O4 (can be written as
ZnO•Fe2O3), and the heterojunction between GO, ZnO,
Fe2O3, and ZnFe2O4 is formed.

XPS Analysis
Figure 4A shows the XPS survey spectrum of the sample GO/ZO/
FO/ZFO3. The survey spectra of the samples GO/ZO/FO/ZFO3
exhibit sharp peaks of C, Zn, Fe, and O elements, and no other
elements are observed, indicating that the sample GO/ZO/FO/
ZFO3 does not contain any impurities. Figure 4B shows the high-
resolution XPS spectrum of Zn 2p for the sample GO/ZO/FO/
ZFO3. The two bands of Zn 2p1/2 and 2p3/2 were recorded at
1044.61 and 1021.42 eV, respectively, in ZnFe2O4, while the peaks
at 1024.74 and 1047.77 eV can be ascribed to Zn 2p1/2 and 2p3/2
in ZnO, respectively. The Fe 2p spectrum showed obvious peaks
at 711.83 (Fe 2p3/2) and 727.24 (Fe 2p1/2) eV which may be
attributed to Fe2O3, and the peaks at 714.03 (Fe 2p3/2) and 733.85
(Fe 2p1/2) eV can be assigned to ZnFe2O4, as shown in
Figure 4C. The O 1s spectrum of the samples GO/ZO/FO/
ZFO3 is displayed in Figure 4D. The O1s peak could be
convoluted into five peaks at 535.75, 533.51, 531.65, 530.70,
and 530.21 eV, respectively. These peaks can be ascribed to
C-O, the lattice oxygen of ZnO (O-Zn-ZO), the lattice oxygen
of ZnFe2O4 (O-Zn-ZFO), the lattice oxygen of Fe2O3 (O-Zn-FO),
and the lattice oxygen of ZnFe2O4 (O-Fe-ZFO), respectively.
Figure 4E shows the high-resolution XPS spectra of C1s for
the sample GO/ZO/FO/ZFO3. Three peaks at 287.72, 285.32, and
283.49 eV can be assigned C-H, C-O, and C1s for the XPS
calibration peak, respectively. The results further confirmed
the successful synthesis of the GO/ZO/FO/ZFO photocatalyst
by low-temperature sintering technology.

Microstructural Analysis
The microstructure of semiconductor material has a great
influence on its photocatalytic activity. Figures 5A–D show
the SEM images of samples GO/ZO/FO/ZFO1, GO/ZO/FO/
ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/ZFO4. When the
GO content is 5%, the samples are mainly composed of fine
nanoparticles, with lamellar particles faintly visible, as shown in
Figure 5A. When the content of GO increased to 10%, the
agglomeration of fine particles became obvious, and the
lamellar structure gradually increased, as shown in Figure 5B.
When the content of GO further increased to 15%, fine
nanoparticles gradually deposited on GO, and the lamellar
structure became more obvious, as shown in Figure 5C. With
the GO content reaching 20%, lamellar structures appear in the
samples in large quantities, as shown in Figure 5D. Figures 5E,F
show the TEM and HRTEM images of the sample GO/ZO/FO/
ZFO3, respectively. It can be seen from Figure 5E that fine
nanoparticles are deposited on the lamellar GO, which is
consistent with the SEM observation result. The lattice planes
of ZnO, Fe2O3, and ZnFe2O4 were (100) and (101) with a lattice
space of 0.2827 and 0.2486 nm, respectively, (104) and (110) with
a lattice space of 0.2699 and 0.2517 nm, respectively, and (311)
with a lattice space of 0.2536 nm, respectively. The results further
confirmed that the GO/ZO/FO/ZFO3 samples contained GO,
ZnO, Fe2O3, and ZnFe2O4.

Optical Properties
The optical properties can be used to determine whether the
semiconductor material has a high optical absorption

FIGURE 3 | FTIR spectra of samples GO, ZnO, Fe2O3, GO/ZO/FO/
ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/ZFO4.
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coefficient and further verify whether it has high
photocatalytic activity. Figure 6A shows the UV-Vis diffuse
reflectance spectra of samples GO, ZnO, Fe2O3, GO/ZO/FO/
ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/
FO/ZFO4. Fe2O3 has the lowest reflectivity, and ZnO has
the highest reflectivity in the wavelength range of
400–800 nm, while GO tends to be almost constant in this
range. When GO, ZnO, Fe2O3, and ZnFe2O4 are coupled, the
reflectivity in the visible light range changes significantly
compared with ZnO and is greatly improved. After 850 nm,
the reflectivity of GO/ZO/FO/ZFO samples increases sharply
with the increase in wavelength.

According to Kubelka–Munk’s (K–M) formula, the UV-Vis
diffuse reflectance spectrum can be transformed into the UV-Vis
absorption spectrum.

F(R) � α

S
� (1 − R∞)2

2R
(1)

where R is the reflectance of samples GO, ZnO, Fe2O3, GO/ZO/
FO/ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/
FO/ZFO4, α is the optical absorption coefficient, and S is the
scattering coefficient of samples GO, ZnO, Fe2O3, GO/ZO/FO/
ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/
ZFO4. Figure 6B shows the UV-Vis absorption spectra of
samples GO, ZnO, Fe2O3, GO/ZO/FO/ZFO1, GO/ZO/FO/
ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/ZFO4. ZnO
exhibits a high UV absorption coefficient, indicating that it
has high UV photocatalytic activity. Fe2O3 has the highest
light absorption coefficient in the wavelength range of
190–900 nm, but its photocatalytic activity is not high because
of its high charge carrier recombination rate. When GO, ZnO,
Fe2O3 and ZnFe2O4 are coupled to form heterojunctions, the
absorption coefficient of the GO/ZO/FO/ZFO sample is greatly
improved in the visible light range compared with ZnO,
indicating that GO/ZO/FO/ZFO samples have high visible-
light photocatalytic activity.

FIGURE 4 | (A) XPS survey spectrum and high-resolution XPS spectra of (B) Zn 2p, (C) Fe 2p, (D) O 1s, and (E) C 1s for the sample GO/ZO/FO/ZFO3.
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The first-order differential curve is calculated based on the
UV-vis diffuse reflectance spectrum. The peak of the curve can be
used to obtain the optical band gap (Eg) value of the
semiconductor material (Gao et al., 2019; Gao et al., 2022a).

Eg(eV) � hc

λ0(nm) ≈
1240

λ0(nm) (2)

where λ0, h, and c are the peak of the first-order differential curve,
the Plank constant, and the velocity of light, respectively. Figures
6C–F show the first-order differential curves of UV-Vis diffuse
reflectance spectra of samples GO, ZnO, Fe2O3, GO/ZO/FO/
ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/
ZFO4. The Eg values of samples GO, ZnO, Fe2O3, GO/ZO/FO/
ZFO1, GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/
ZFO4 are 1.44, 3.18, 2.12, 2.11, 2.11, 2.11, and 2.11 eV,
respectively. As can be seen from Figure 5F, when GO, ZnO,
Fe2O3 and ZnFe2O4 are coupled, the Eg value does not change at

all. According to Xue et al. (2019), Kelaidis et al. (2020), Wang
et al. (2021c), Gao et al. (2022b), and Gao et al. (2022c), only
defects or vacancies can be introduced, and their Eg values will
not be changed after a variety of semiconductor photocatalysts
are coupled to form heterojunctions. This result is consistent with
the literature reports.

Photocatalytic Activity for the Degradation
of Dyes
The photocatalytic activity of the sample GO/ZO/FO/ZFO was
studied with dyes, pollutants, and antibiotics as target
degradation materials. Figure 7A shows the time-dependent
degradation of methyl orange in the presence of the sample
GO/ZO/FO/ZFO3 under simulated solar irradiation. Before
the photocatalytic degradation experiment, methyl orange was
adsorbed for half an hour to exclude the influence of adsorption
on photocatalytic activity. After half an hour of adsorption, the

FIGURE 5 | SEM images of samples (A) GO/ZO/FO/ZFO1, (B) GO/ZO/FO/ZFO2, (C) GO/ZO/FO/ZFO3, and (D) GO/ZO/FO/ZFO4. (E) TEM and (F) HRTEM
images of the sample GO/ZO/FO/ZFO3.
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FIGURE 6 | (A) UV-Vis diffuse reflectance spectra and (B) UV-Vis absorption spectra of samples GO, ZnO, Fe2O3, GO/ZO/FO/ZFO1, GO/ZO/FO/ZFO2, GO/ZO/
FO/ZFO3, and GO/ZO/FO/ZFO4. First-order differential curves of UV-Vis diffuse reflectance spectra of samples (C) GO, (D) ZnO, (E) Fe2O3, (F) GO/ZO/FO/ZFO1, GO/
ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/ZFO4.

FIGURE 7 | (A) Time-dependent characteristic, (B) plots of ln (At/A0) vs. irradiation time (t), (C) first-order kinetic constant (k), and (D) degradation percentage of
degradation of methyl orange in the presence of samples GO, ZnO, Fe2O3, and GO/ZO/FO/ZFO under simulated solar irradiation.
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adsorption of methyl orange by GO, ZnO, Fe2O3, and GO/ZO/
FO/ZFO is small, less than 10%. The degradation rate of all
samples increased with the increase in illumination time. Under
visible light irradiation, the photocatalytic degradation
percentage of GO, ZnO, and Fe2O3 is less than 30%. The
sample GO/ZO/FO/ZFO3 showed the highest photocatalytic
activity, and the degradation percentage reached 98% after 3 h
of degradation.

The first-order kinetic curve can directly reflect the
photocatalytic activity of semiconductor materials. The first-
order dynamics equation can be described as follows:

In(At/A0) � −Kt, (3)
where At is the absorbance of the pollutant at time t, A0 is

the absorbance of the pollutant at the initial time, k is the first-
order kinetic constant, and t is the irradiation time. Figure 7B
shows the plots of ln (At/A0) vs. irradiation time of
degradation of methyl orange in the presence of the sample
GO/ZO/FO/ZFO3 under simulated solar irradiation. ln (At/
A0) for samples GO, ZnO, Fe2O3, and GO/ZO/FO/ZFO shows
a good linear relationship with the irradiation time. Figure 7C
shows the k values of degradation of methyl orange in the
presence of samples GO, ZnO, Fe2O3, and GO/ZO/FO/ZFO
under simulated solar irradiation. The k values of samples GO,

ZnO, Fe2O3, GO/ZO/FO/ZFO1, GO/ZO/FO/ZFO2, GO/ZO/
FO/ZFO3, and GO/ZO/FO/ZFO4 are 0.00299, 0.00179,
0.00251, 0.00580, 0.00743, 0.02072, and 0.00550 min−1,
respectively. The photocatalytic degradation rate of GO/ZO/
FO/ZFO3 is 11.58 times that of ZnO. Figure 7D shows the
degradation percentage of degradation of methyl orange in the
presence of samples GO, ZnO, Fe2O3, and GO/ZO/FO/ZFO
under simulated solar irradiation. The degradation
percentages of samples GO, ZnO, Fe2O3, GO/ZO/FO/ZFO1,
GO/ZO/FO/ZFO2, GO/ZO/FO/ZFO3, and GO/ZO/FO/ZFO4
are 43%, 30%, 38%, 65%, 75%, 98%, and 62%, respectively.
With the increase in the GO content, the photocatalytic
velocity of the GO/ZO/FO/ZFO photocatalyst first increases
and then decreases. The results further confirmed that the
sample GO/ZO/FO/ZFO3 had the highest photocatalytic
activity.

Stability and Trapping Experiments
Figure 8A shows the emission spectra (λex = 300 nm) of the GO/
ZO/FO/ZFO photocatalyst. The GO/ZO/FO/ZFO photocatalyst
showed a narrow fluorescence emission peak at 485 nm, which
may be caused by GO (Iliut et al., 2013; El-Hnayn et al., 2020).
The maximum emission intensity at 485 nm of the GO/ZO/FO/
ZFO photocatalyst is shown in Figure 8B. Compared with the
photocatalytic activity, the emission intensity decreased with the

FIGURE 8 | (A) Emission spectra (λex = 300 nm) of the GO/ZO/FO/ZFO photocatalyst. (B) Maximum emission intensity at 485 nm of the GO/ZO/FO/ZFO
photocatalyst. The (C) stability and (D) trapping experiments of the GO/ZO/FO/ZFO3 photocatalyst.
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increase in the photocatalytic activity. It can be seen from the
fluorescence emission spectrum that the photocatalyst exhibits
poor transfer and separation rates of photogenerated carriers with
higher emission intensity. To study the stability of the GO/ZO/
FO/ZFO photocatalyst, Figure 8C shows the stability
experiments of the GO/ZO/FO/ZFO3 photocatalyst. After five
cycles, the photocatalytic activity of the GO/ZO/FO/ZFO3
photocatalyst decreased by less than 6%, indicating that the
GO/ZO/FO/ZFO3 photocatalyst has high stability and
recycling ability. The trapping experiments of the GO/ZO/FO/
ZFO3 photocatalyst are shown in Figure 8D. Trapping agents
include the disodium ethylenediamine tetraacetic acid (EDTA-
2Na), 2-propanol (IPA), and 1,4-benzoquinone (BQ), which have
been used to detect the hole (hVB

+), hydroxyl radical (•OH), and
superoxide radical (•O2

−), respectively. During each
photocatalytic experiment, the amount of the trapping agent
added to the reaction solution was 1 mmol/L. When EDTA-
2Na, IPA, and BQ were added to the reaction solution, the
photocatalytic activity of the GO/ZO/FO/ZFO3 photocatalyst
decreased to 32%, 20%, and 11%, respectively. The results
showed that holes, hydroxyl radicals, and superoxide radicals
play important roles in the photocatalytic reaction. This will
provide strong evidence for the subsequent analysis of the
photocatalytic mechanism.

Photocatalytic Activity for the Degradation
of Pollutants and Antibiotics
Figures 9A,B show the time-dependent degradation of
tetrabromobisphenol A and oxytetracycline hydrochloride in
the presence of the sample GO/ZO/FO/ZFO3 under simulated
solar irradiation, respectively. The degradation percentage of GO/
ZO/FO/ZFO3 to tetrabromobisphenol A reached 99% after
150 min and that of oxytetracycline hydrochloride reached
85% after 180 min. The results showed that the sample GO/
ZO/FO/ZFO3 had a high photocatalytic activity for the
degradation of refractory pollutants and antibiotics. Figures
9C,D show the plots of ln (At/A0) vs. irradiation time (t) for
the degradation of tetrabromobisphenol A and oxytetracycline
hydrochloride in the presence of the sample GO/ZO/FO/ZFO3,
respectively. The k-values of the sample GO/ZO/FO/ZFO3 for
the degradation of tetrabromobisphenol A and oxytetracycline
hydrochloride are 0.02687 and 0.01022 min−1, respectively. The
results showed that the sample GO/ZO/FO/ZFO3 had the highest
photocatalytic activity for the degradation of
tetrabrombisphenol A.

Photocatalytic Mechanism
In order to gain insight into the photocatalytic mechanism of
GO/ZO/FO/ZFO, the conduction band potential (ECB) and

FIGURE 9 | Time-dependent degradation of (A) tetrabromobisphenol A and (B) oxytetracycline hydrochloride in the presence of the sample GO/ZO/FO/ZFO3
under simulated solar irradiation. Plots of ln (At/A0) vs. irradiation time (t) for the degradation of (C) tetrabromobisphenol A and (D) oxytetracycline hydrochloride in the
presence of the sample GO/ZO/FO/ZFO3.
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valence band (EVB) potential of GO, ZnO, Fe2O3 and ZnFe2O4

were calculated based on the band theory. Table 1 shows the
conduction band, valence band potential, electronegativity,
and Eg values of GO, ZnO, Fe2O3, and ZnFe2O4.

ECB � X − Ee − 0.5Eg (4)
EVB � ECB + Eg (5)

where the Eg values of GO, ZnO,Fe2O3, and ZnFe2O4 are 1.44,
3.18, 2.12, and 1.71 eV (Wang et al., 2019), respectively. Ee is
4.5 eV. The absolute electronegativity (X) values of GO, ZnO,
Fe2O3, and ZnFe2O4 are 6.91, 5.79, 5.89, and 5.86 eV,
respectively, and can be evaluated by Eqs. 4, 5.

X(C4O2−x(OH)2x(x � 0.1)) � ���������������������
X4(C)pX2.1(O)pX0.2(H)6.3

√
(6)

X(ZnO) � ������������
X(Zn)pX(O)2

√
(7)

X(Fe2O3) �
�������������
X2(Fe)pX3(O)5

√
(8)

X(ZnFe2O4) �
�������������������
X(Zn)pX2(Fe)pX4(O)7

√
(9)

where X (C) = 6.27 eV, X (H) = 7.18 eV, X (Zn) = 4.45 eV, X (Fe)
= 4.06 eV, and X (O) = 7.54 eV.

Based on the aforementioned calculations, the energy level
diagram of GO/ZO/FO/ZFO is shown in Figure 10. As can be
seen from the figure, GO acts as a carrier of charge transfer
and transmission between ZnO, Fe2O3, and ZnFe2O4. When
light is illuminated on the surface of the GO/ZO/FO/ZFO

composite, the electrons in the respective valence band
undergo transition to the conduction band. Since the
conduction band of GO is more negative than ZnO, Fe2O3

and ZnFe2O4, the electrons will relax to the conduction band
of GO. The valence bands of GO are more positive than those
of ZnO, Fe2O3, and ZnFe2O4, and the valence band holes will
undergo transition to the valence bands of ZnO, Fe2O3, and
ZnFe2O4. Such relaxation and transition will promote the
separation of electron and hole pairs of the whole complex,
resulting in a large increase in its photocatalytic activity. The
conduction electrons will react with oxygen in the reactant
solution to form superoxide radicals and with O2/2H

+ to form
hydroxyl radicals. Valence band holes will react with H2O/
OH− to form hydroxyl radicals. Subsequently, hydroxyl
radicals or superoxide radicals react with pollutants to
form non-toxic and harmless small organic molecules.
Meanwhile, the valence band holes may react directly with
pollutants to form non-toxic and harmless small molecular
organics. The related chemical reactions can be expressed as
follows:

GO/ZO/FO/ZFO + hv → e− + h+ (10)
h+ + OH− → ·OH (11)
e− +O2 → ·O2− (12)

·O2− + 2H+ + e− → H2O2 (13)
2e− + O2 + 2H+ → H2O2 (14)
e− +H2O2 → ·OH + OH− (15)

·O2− +H2O2 → ·OH + OH− + O2 (16)
·OH/ · O2− + dye/Pollutant/antibiotics → degradation products

(17)
h+ + dye/pollutant/antibiotics → degradation products (18)
It can be seen that the holes, hydroxyl radicals, and

superoxide radicals play important roles in the whole
photocatalytic process.

TABLE 1 | Conduction band, valence band potential, electronegativity, and Eg
values of GO, ZnO and Fe2O3, and ZnFe2O4.

Sample Eg (eV) X (eV) ECB (eV) EVB (eV)

GO 1.44 6.91 1.69 3.13
ZnO 3.18 5.79 −0.30 2.88
Fe2O3 2.12 5.89 0.33 2.45
ZnFe2O4 1.71 5.86 0.51 2.22

FIGURE 10 | Photocatalytic mechanism of GO/ZO/FO/ZFO.
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CONCLUSION

GO/ZO/FO/ZFO composite photocatalysts with different GO
contents were synthesized by a low-temperature sintering
technique. The effects of the GO content on the phase purity,
functional groups, microstructure, optical properties, and
photocatalytic activity of GO/ZO/FO/ZFO composite
photocatalysts were studied in detail. XRD, FTIR, and
microstructural analysis confirmed that the GO/ZO/FO/ZFO
magnetic separation photocatalyst contains four components,
GO, ZnO, Fe2O3, and ZnFe2O4, without any other impurities.
The optical property analysis shows that the GO/ZO/FO/ZFO
magnetic separation photocatalyst has a high optical absorption
coefficient, suggesting that it has a high visible-light
photocatalytic activity, and the quadruple recombination does
not change the Eg value of the main lattice of Fe2O3. The
photocatalytic experiments confirmed that the GO/ZO/FO/
ZFO magnetic separation photocatalyst had high
photocatalytic activity for dyes, refractory pollutants, and
antibiotics, and the degradation percentages were 98% for
180 min, 99% for 150 min, and 85% for 180 min, respectively.
The special heterojunction structure promotes the transfer and
separation of electrons and holes in the GO/ZO/FO/ZFO

magnetic separation photocatalyst, showing high photocatalytic
activity under the combined action of holes, hydroxyl radicals,
and superoxide radicals.
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